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Abstract: Commelina benghalensis L. is used as a traditional medicine in treating numerous ailments
and diseases such as infertility in women, conjunctivitis, gonorrhea, and jaundice. This study used
light and electron microscopy coupled with histochemistry to investigate the micromorphology,
ultrastructure and histochemical properties of C. benghalensis leaves and stems. Stereo and scanning
electron microscopy revealed dense non-glandular trichomes on the leaves and stems and trichome
density was greater in emergent leaves than in the young and mature. Three morphologically
different non-glandular trichomes were observed including simple multicellular, simple bicellular
and simple multicellular hooked. The simple bicellular trichomes were less common than the
multicellular and hooked. Transmission electron micrographs showed mitochondria, vesicles and
vacuoles in the trichome. The leaf section contained chloroplasts with plastoglobuli and starch grains.
Histochemical analysis revealed various pharmacologically important compounds such as phenols,
alkaloids, proteins and polysaccharides. The micromorphological and ultrastructural investigations
suggest that Commelina benghalensis L. is an economically important medicinal plant due to bioactive
compounds present in the leaves and stems.

Keywords: alkaloids; non-glandular trichomes; hooked; microscopy; morphology; multicellular; phenols

1. Introduction

Commelina benghalensis L. (Commelinaceae), also known as the Benghal dayflower, is a
perennial herb native to the tropics of Africa and Asia [1]. The plant is widely distributed
in the northern and eastern regions of South Africa [2]. This plant species has a low risk
of extinction which could be attributed to its rapid weed-like growth [3,4] and is thus
categorized as an invasive weed in various parts of the world [4]. The plants grow along
roadsides and lawns, home gardens, crop fields, waste sites, agricultural sites and forest
edges [5]. Globally, C. benghalensis is used as a traditional medicinal plant. In Africa, it
is traditionally used to treat infertility in women, gonorrhea, conjunctivitis, malaria and
jaundice [6–8]. Various studies have shown that the bioactive compounds in extracts of
C. benghalensis possess anti-inflammatory, antimicrobial, antidiabetic, antidiarrheal and
analgesic properties [1,9–13].

Plants can produce secondary metabolites which add to a plant’s medicinal value [14].
These metabolites are produced and stored in specialized tissues or organs situated inter-
nally or on the plant’s surfaces [15,16]. Trichomes are an example of such specialized plant
tissue that originates from small protrusions on the epidermis of the reproductive and
vegetative organs [17,18]. Trichomes are able to synthesize, store and secrete large volumes
of a variety of metabolites [18]. These metabolites have commercial value where they are
presented as fragrances, natural pesticides, pharmaceuticals and food additives [18]. The
exploitation of bioactive constituents within trichomes is brought about due to their easy
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accessibility as plant surface appendages [18,19]. Classified as non-glandular (NGT) or
glandular secreting (GST) [17], trichomes differ in their morphological and mechanical
characteristics (size, orientation, shape, density, and surface texture) that affect a plant’s
ecology and physiology [19]. The anatomical characteristics of trichomes make them one
of the most useful tools in taxonomy [20]. The metabolites found in trichomes may act
as a defense mechanism against pathogens and herbivores and show great potential in
human medicine and nutrition [21]. In addition to the bioactive constituents in trichomes,
calcium oxalate crystals can be found among several other cell contents that also exhibit a
protective and defensive role in plants [22]. Despite the extensive ethnobotanical uses of C.
benghalensis, there is a dearth of detailed scientific research on the micromorphology and
ultrastructure of trichomes present on the leaves and stems of this plant species. Previous
ultrastructural studies focused on the effect of herbicides on leaves [23], the coexistence of
apoplastic and symplastic phloem loading on leaves [24] and the transfer of fluorescent
dye symplastically through the leaf tissue [25]. There is no research identifying the ultra-
structure of trichomes of C. benghalensis or the presence of secondary metabolites within
these trichomes by means of histochemical staining. This study would be the first account
illustrating the ultrastructural features of trichomes in C. benghalensis. The identification
of micromorphological features would be beneficial due to its economic importance as a
medicinal plant. The purpose of this descriptive study was to investigate the micromor-
phology and ultrastructure of trichomes on the leaves and stems of C. benghalensis and to
identify the accessible sites of bioactive constituents, histologically, in order to aid further
research on this specific species.

2. Materials and Methods
2.1. Plant Material Collection

Commelina benghalensis leaves and stems were collected at the University of Kwa-Zulu
Natal, Westville campus (UKZN) in Durban. The species was identified using herbarium
specimens and a voucher specimen (18259) was deposited in the UKZN Ward Herbarium,
Westville Campus, Durban. For microscopic analyses, fresh leaves and stems were collected
and prepared. Leaves were categorized into three developmental stages based on leaf
length; emergent (±1.5−3 cm), young (±3−4 cm) or mature (±4 cm).

2.2. Stereomicroscopy

Trichome distribution on the adaxial and abaxial leaf surfaces was examined. Ap-
proximately 3–4 leaves per developmental stage were analyzed and imaged using a Nikon
AZ100 stereomicroscope with Nikon Fiber Illuminator on the NIS-Elements Software,
NIS-elements D 3.00 (Tokyo, Japan). The mid-vein regions of the leaves and the stem were
also examined and imaged.

2.3. Scanning Electron Microscopy (SEM)

Fresh leaves (approx. 6) from each developmental stage were collected and freeze-
dried. The leaves were trimmed into segments (4 mm × 4 mm) and quenched in subcooled
liquid nitrogen. Leaf segments were freeze-dried using an Edwards–Modulyo freeze dryer
for 72 h (−60 ◦C in a vacuum of 10–2 Torr). The segments were mounted and secured
onto brass stubs using carbon conductive tape. The segments were coated in gold using a
Polaron SC500 Sputter Coater and viewed on a LEO 1450 SEM at a working distance of
14–19 mm. Smart SEM version 5.03.06. was used for image capture.

2.4. Transmission Electron Microscopy (TEM)

Leaves (approx. 12) and stems were trimmed into segments and fixed in 2.5% glu-
taraldehyde for 24 h. The segments were washed three times for 5 min in a 0.1 M phosphate
buffer (pH 7.2). Postfixation was achieved by immersing segments overnight in 0.5%
osmium tetroxide. Segments were washed three times in phosphate buffer for 5 min. Seg-
ments were dehydrated by washing twice for 5 min in 30, 50, and 75% acetone, followed
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by two washes in 100% acetone for 10 min each. The segments were then washed twice
in propylene for 10 min each. Infiltration was achieved by immersing sections in Spurr’s
resin [26]: propylene oxide (25:75, 50:50, 75:25, and 100:0) for 18–24 h. The infiltrated
segments were placed into a silicon mold containing whole resin and polymerized in an
oven for 8 h at 65 ◦C. Glass knives were created using an LKB knife maker 7801A (LKB
Bromma, Bromma, Sweden). These knives were used to obtain semi-thin (survey) sections
cut from the resin blocks containing the leaf and stem segments on the Reichert−Jung
Ultra−microtome. Sections were stained with 1% Toluidine Blue and viewed on a Nikon
Eclipse 80i compound light microscope (Nikon, Tokyo, Japan) with the NIS-Elements
imaging software package. Ultrathin sections were cut at 100 nm using a Reichert−Jung
Ultracut−E ultra−microtome (Leica Microsystems, Wetzlar, Germany) and picked onto
copper grids. Sections were stained using 2.5% uranyl acetate and lead citrate. The sections
were viewed on a JEOL 2100 High−Resolution TEM (Tokyo, Japan) at 200 KeV.

2.5. Histochemistry

Histochemical analyses were conducted on fresh leaf and stem sections according to
standard staining procedures. Stains used were 0.1% Ruthenium red [27]; 1% Toluidine
Blue [28,29]; Methylene blue [30]; 0.01% Calcofluor white [31]; Fast green [32]; 0.25%
Coomassie blue for proteins [33]; Sudan Black B [34] 10% Ferric chloride [27,35]; under
UV light [36]; Safranin [37,38]; Wagner’s and Dittmar reagent [39] and 0.01% Acridine
orange [40].

Approximately 10 leaves and stem tissue were sectioned with an Oxford Vibratome
into 150–200 µm thick sections, stained and viewed using a Nikon Eclipse 80i compound
light microscope (Tokyo, Japan). Images were captured with the NIS-Elements imaging
software package. Fluorescence microscopy was carried out using Nikon Eclipse 80i
compound light microscope (Tokyo, Japan) equipped with a Nikon DS-Fil fluorescent
camera with excitation and DM wavelengths of 330 nm and 400 nm, respectively.

3. Results and Discussion
3.1. Stereomicroscopy of Leaves and Stem of C. benghalensis

The developmental stages of C. benghalensis leaves can be seen in Figure 1. C. beng-
halensis carries NGTs on the adaxial and abaxial surfaces of the leaves, stem, petiole and
leaf sheath (Figure 2A–F, Figure 3A–E). They are transparent except for those found on
the leaf sheath. The trichome densities in the leaves and stem differ, with decreasing
densities in the leaves due to leaf expansion. Trichomes densities appear to be relatively
high on the adaxial and abaxial surfaces of emergent leaves (Figure 2A,B) in comparison
to the mature leaves (Figure 2E,F). NGTs physically protect the plant against abiotic and
biotic stresses [17,41]. With plant leaf expansion and growth, the trichomes become spaced
further apart; however, if new trichomes are not produced on mature leaves, there will
be an evident sparse indumentum [42]. Emergent leaves require increased protection as
they are more susceptible to pathogen and insect attacks, possibly due to their elevated
nutritional value [43–45].

Upon microscopic evaluation, the trichomes appear denser along the midrib of the
abaxial leaf surface (Figure 2B,D,F). Studies have shown that the role of trichomes becomes
less important as leaf development progressed. During this period, trichomes senesce
and drop off [44]. Trichomes protect the plant against damage from biotic factors such as
herbivores or ovipositing insects [46,47]. An aphid is seen attempting to move between the
leaf pubescence of C. benghalensis in Figure 3A. NGTs appear to restrict insect movements
and may cause further entrapment [48]. The stem indumentum showed a high density of
NGTs (Figure 3B,C) as did the petiole (Figure 3D). Trichome density is developmentally
regulated and may be controlled by plant hormones [49]. The leaf sheath is covered with
red NGTs (Figures 1 and 3E). Key characteristics of C. benghalensis were also previously
described by Faden [50].
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Figure 1. C. benghalensis leaves at different developmental stages. (A) Emergent; (B) Young; (C)
Mature leaf.
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Figure 2. Stereomicrographs of non-glandular trichomes on the adaxial and abaxial surfaces of C.
benghalensis leaves. (A) Adaxial surface of emergent leaf; (B) Abaxial surface of emergent leaf; (C)
Adaxial surface of young leaf; (D) Abaxial surface of young leaf; (E) Adaxial surface of mature leaf;
(F) Abaxial surface of a mature leaf.
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Figure 3. Stereomicrographs of non-glandular trichomes found on C. benghalensis plant parts. (A)
Insect trapped among leaf trichomes; (B,C) Stem; (D) Flower and petiole; (E) Leaf sheath (red
trichomes, arrow).

3.2. Scanning Electron Microscopy of Leaves and Stems of C. benghalensis

The leaves and stems of C. benghalensis contain three morphologically distinct NGT
types, bicellular, multicellular and multicellular hooked. The term “simple” is explained as
trichomes being unicellular, uniseriate or unbranched [51]. The trichomes of C. benghalensis
appear uniseriate and unbranched. The NGTs may be classified as simple bicellular (SB),
simple multicellular (SM), or simple multicellular hooked (SMH) (Figure 4). The basal
cell (Figures 4 and 5) wedges into the epidermis, where it becomes thickened and almost
bell-shaped. The uppermost cells of the SM (Figure 5A–C) and SB (Figure 5D) trichomes are
tapered. The bicellular NGTs are less frequent than the hooked and multicellular trichomes.
There was no evidence of glandular secreting trichomes (GST) on the leaves and stems of
C. benghalensis. Non-glandular hooked and multicellular trichomes consisted of three cells,
including the basal cell. The cell walls of each NGT type are of varying thickness. Similar
results were found in a study that looked at the epidermal features of C. benghalensis [52,53].

The anatomical features of Commelinaceae were classified by Tomlinson [54] and it
was proposed that apart from the GST, NGTs found in Commelina are two-celled, prickled,
uniseriate with differing cell numbers and hooked. High densities of hooked NGTs were
also found on the spathe and leaves of Commelina erecta [55]. NGTs act as a physical barrier
against various external factors such as insects and animals [17]. They protect against
ultraviolet radiation, extreme temperatures, and water loss [17,56]. The NGT’s spine-like
and hooked nature allows for direct impaling of an insect’s body hindering insect feeding
behavior [47].
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and the stem of C. benghalensis. Abbreviations: BC: basal cell; SC: stalk cell; HDC: hooked distal cell.

Plants 2021, 10, 512 7 of 19 
 

 

 

Figure 4. Scanning electron micrography of simple hooked non-glandular trichomes in all leaf 

stages and the stem of C. benghalensis. Abbreviations: BC: basal cell; SC: stalk cell; HDC: hooked 

distal cell. 

 

Figure 5. Simple bicellular and multicellular non-glandular trichomes on leaves and stems of C. 

benghalensis. (A) Multicellular NGT on the midrib; (B,C) Multicellular NGT; (D) Bicellular NGT on 

the leaf and stem. Abbreviations: BC: basal cell; SC: stalk cell; TDC: tapered distal cell; St: stomata. 

Figure 5. Simple bicellular and multicellular non-glandular trichomes on leaves and stems of C.
benghalensis. (A) Multicellular NGT on the midrib; (B,C) Multicellular NGT; (D) Bicellular NGT on
the leaf and stem. Abbreviations: BC: basal cell; SC: stalk cell; TDC: tapered distal cell; St: stomata.
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3.3. Survey Sections of Leaves and Stem of C. benghalensis Embedded in Resin

The transverse section of the leaf midrib consisted of an upper and lower epidermis,
xylem, and phloem (Figure 6A). A cuticle covers the epidermis. The cells of the epidermis
are polygonal in shape and conform to a straight, anticlinal wall pattern. There are
numerous air spaces between the spongy parenchyma cells (Figure 6B,C). The vascular
bundle appeared to be closed (Figure 6B). NGTs were present on the upper and lower
epidermis (Figure 6A,C). The stem section has a circular outline (Figure 6E). The stem
consists of the epidermis, hypodermis, vascular bundle, and ground tissue. Previous
studies had shown similar results [53,57].
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Figure 6. Light micrographs of resin embedded leaf and stem sections of C. benghalensis. (A,B)
The midrib of an emergent leaf; (C) Segment of a leaf with a non-glandular trichome; (D) Non-
glandular trichome on the epidermal layer of a leaf section; (E) Stem section Abbreviation: CT: cuticle;
UE: upper epidermis; LE: lower epidermis; PP: palisade parenchyma; Xy: xylem; Ph: phloem; SP:
spongy parenchyma; NGT: non-glandular trichome; BC: basal cell; SC: stalk cell; VB: vascular bundle;
E: epidermis; HD: hypodermis; S: sclerenchyma; Co: collenchyma; GT: ground tissue; AS: air space.

3.4. Ultrastructural Analysis Using Transmission Electron Microscopy

Transmission electron micrographs showed various metabolically active organelles
within the trichome (Figure 7). The cell wall of the trichomes appears to be highly cu-
tinized (Figure 7A) especially between the stalk and basal cell of the trichome (Figure 7B,C).
Lamellar bodies and mitochondria can be seen toward the periphery of the cell (Figure 7D).
Lamellar bodies are specialized structures for storing and secreting certain lipids [58].
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Figure 7E shows an enlarged nucleus adjacent to a mitochondrion. The mitochondria aid
in adenosine triphosphate (ATP) generation that drives the cell’s fundamental function-
ing [59].

Plants 2021, 10, 512 9 of 19 
 

 

7D). Lamellar bodies are specialized structures for storing and secreting certain lipids [58]. 

Figure 7E shows an enlarged nucleus adjacent to a mitochondrion. The mitochondria aid 

in adenosine triphosphate (ATP) generation that drives the cell’s fundamental functioning 

[59]. 

Organelles such as vesicles and vacuoles are shown in Figure 8B. With the vesicle in 

close proximity to the plasma membrane, it could be speculated that larger molecules such 

as polysaccharides and proteins or other secretory substances are being transported 

[41,60,61]. Plasmodesmata are observed in the trichome and leaf cell (Figure 8C,D). Plas-

modesmata between the trichome stalk cells act as cytoplasmic channels that aid in plant 

cell connectivity, through which nutrients and growth and development signals are trans-

ferred [60]. The presence of plasmodesmata suggests that there could be intercellular 

transport between the NGT and leaf. Figure 8C,D also show a mitochondrion close to the 

plasma membrane. Mitochondria can be located along membrane surfaces when a cell’s 

plasma membrane is highly active in the transportation of compounds in or out of the cell 

[61]. Numerous chloroplasts are evident in the leaf section (Figure 8E). These chloroplasts 

contain plastoglobuli and starch grains (Figure 8F). 

Multiple starch grains within the chloroplast may act as storage products and accu-

mulate only during active photosynthesis is taking place [61]. Plastoglobuli are lipopro-

tein globules found in plastids and function as a lipid reservoir, mediate the plant stress 

response, disassemble the thylakoid in senescing tissues, and act in the transition of chlo-

roplast to chromoplast [62]. 

 

Figure 7. Transmission electron micrograph of non-glandular trichomes found on C. benghalensis 

leaves. (A,B) Non-glandular trichomes on the leaf epidermis; (C) Cytoplasm containing electron 

dense material within the trichome; (D) Mitochondria and lamellar bodies located toward the pe-

riphery of the cell; (E) Nucleus and mitochondria within the cytoplasm. Abbreviations: BC: basal 

cell; SC: stalk cell; E: epidermis; LB: lamellar bodies; Mt: mitochondria; Nu: nucleus. 

Figure 7. Transmission electron micrograph of non-glandular trichomes found on C. benghalensis
leaves. (A,B) Non-glandular trichomes on the leaf epidermis; (C) Cytoplasm containing electron
dense material within the trichome; (D) Mitochondria and lamellar bodies located toward the
periphery of the cell; (E) Nucleus and mitochondria within the cytoplasm. Abbreviations: BC: basal
cell; SC: stalk cell; E: epidermis; LB: lamellar bodies; Mt: mitochondria; Nu: nucleus.

Organelles such as vesicles and vacuoles are shown in Figure 8B. With the vesicle in
close proximity to the plasma membrane, it could be speculated that larger molecules such as
polysaccharides and proteins or other secretory substances are being transported [41,60,61].
Plasmodesmata are observed in the trichome and leaf cell (Figure 8C,D). Plasmodesmata
between the trichome stalk cells act as cytoplasmic channels that aid in plant cell connec-
tivity, through which nutrients and growth and development signals are transferred [60].
The presence of plasmodesmata suggests that there could be intercellular transport between
the NGT and leaf. Figure 8C,D also show a mitochondrion close to the plasma membrane.
Mitochondria can be located along membrane surfaces when a cell’s plasma membrane is
highly active in the transportation of compounds in or out of the cell [61]. Numerous chloro-
plasts are evident in the leaf section (Figure 8E). These chloroplasts contain plastoglobuli
and starch grains (Figure 8F).

Multiple starch grains within the chloroplast may act as storage products and accu-
mulate only during active photosynthesis is taking place [61]. Plastoglobuli are lipoprotein
globules found in plastids and function as a lipid reservoir, mediate the plant stress
response, disassemble the thylakoid in senescing tissues, and act in the transition of chloro-
plast to chromoplast [62].
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Figure 8. Transmission electron micrographs of C. benghalensis leaf section. (A–C) Trichome; (D–F)
Leaf tissue containing chloroplasts and starch grains. Abbreviation: CW: cell wall; SC1: stalk cell
1; SC2: stalk cell 2; V: vacuole; Vs: vesicle; Mt: mitochondria; PD: plasmodesmata; Ch: chloroplast;
PG: plastoglobuli; SG: starch grain.

3.5. Localisation of Bioactive Compounds within Trichomes of C. benghalensis

SM and SMH NGTs are distinct in the unstained leaf and stem sections of C. beng-
halensis ((Figure 9A,B). Raphide crystals are present within the stem and epidermal layer
of the leaf section (Figure 9A,C). The needle-like raphide crystals are larger in size in the
stem section as compared to their minute size in the leaf section. These crystals appear
needle-shaped and appear singularly or in clusters. The raphide crystals are made of
calcium oxalate (CaOx) [63]. These CaOx crystals usually occur in meristematic tissues in
plants where the transport of organic molecules is regulated by calcium ions and is a form
of metabolic waste [64]. The functions of CaOx in plants are to regulate calcium levels in
tissues and organs, detoxify heavy metals and prevent herbivory [65]. Previous studies
have reported similar needle-like raphide crystals that were found in C. benghalensis leaves
and stems [57,66].
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Figure 9. Unstained leaf and stem sections of C. benghalensis. (A) Multicellular non-glandular
trichome on a leaf that contains raphide crystals; (B) Hooked non-glandular trichome on the stem;
(C) Raphide crystals inside stem tissue (Arrow).

Histochemical analyses highlighted the locality of several important phytochemical
compounds in plant tissues and trichomes. Ruthenium red had stained the basal cells
of the SMH (Figure 10A) and SM trichomes (Figure 11A) a pinkish-red, a positive indi-
cation of mucilage and pectin in the cells. Sections stained with Toluidine blue reveal
carboxylated polysaccharides (purple) in the tissue while the basal cells of the trichomes
(Figures 10B and 11B) stained a light blue signifying the presence of polyaromatic sub-
stances. The basal and stalk cells of the SMH (Figure 10C) and SM (Figure 11C) trichomes
stained with Methylene blue exhibited nucleoproteins. Sections stained with Fast Green
were light green in the basal cells of the SMH (Figure 10D) and SM (Figure 11D) trichomes
highlighting cellulosic cell walls. Figures 10E and 11E showed proteins in the basal cell of
SMH and SM, respectively, stained with Coomassie blue.

Sudan black was used to identify lipids in plant tissues and trichomes staining blue
to black [34]. As shown in Figures 10F and 11F, the entire SMH and SM trichome stained
dark brown, indicating the presence of lipids. Phenols were present in the stalk and basal
cells of SMH (Figure 10G) and SM (Figure 11G) trichomes as indicated by the brown
deposits brought upon by Ferric chloride. Safranin stained the stalk and basal cells of SMH
(Figure 10H) and SM (Figure 11H) red revealing lignified cell walls. Alkaloids were present
in the basal and stalk cells of the SHM (Figure 10I) and SM (Figure 11I) trichomes indicated
by the orange-brown stain.

Several bioactive compounds found in trichomes aid in the host’s defense and overall
physiology [19]. Phenolic compounds can polymerize to form a glue that sticks insects to
the leaf surface [67,68]. Due to the selection pressure of competing herbivores, alkaloids in
plants have evolved to form chemical defenses against herbivores and pests [69]. Lignin
is responsible for the plant organ’s mechanical support being cell wall polymers, defense
against pathogens and herbivores and water transport through xylem vessels [70–72].
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Proteins such as proteinase inhibitors may accumulate in plant tissues once the tissue is
wounded [18] to inhibit an insect or animal’s digestive proteins once the plant is eaten,
interfering with the herbivore’s physiology [18].
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Figure 10. Transverse sections of histochemically stained leaf sections of C. benghalensis. (A) Mucilage
and pectin present in basal cells (Ruthenium red); (B) Toluidine blue for carboxylated polysaccharides
(purple) and polyaromatic substances (blue); (C) Basal and stalk cell nucleoproteins (Methylene blue);
(D) Cellulosic cell walls present in the basal cell (Fast green); (E) Coomassie blue stained proteins
in the basal cell; (F) Lipids accumulated throughout the trichome (Sudan black); (G) Ferric chloride
stained phenols in the basal and stalk cells (orange-brown); (H) Lignified cell walls in the basal and
stalk cells stained red (Safranin); (I) Alkaloids were present in the basal and stalk cells stained with
Wagner’s and Dittmar reagent (brown-orange).
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Figure 11. Light micrographs of histochemically stained leaf sections of C. benghalensis. (A) Ruthe-
nium Red stained basal cell red (mucilage and pectin); (B) Toluidine blue stained polyaromatic
substances (blue) and carboxylated polysaccharides (purple); (C) Basal and stalk cell indicating
nucleoproteins (Methylene blue); (D) Cellulosic cell walls in the basal cell indicated by Fast green;
(E) Coomassie blue stained proteins in the basal cell; (F) Lipids accumulated throughout trichome
(Sudan black); (G) Ferric chloride stained the basal and stalk cells orange-brown stain (phenols); (H)
Lignified cell walls in the basal and stalk cells stained red (Safranin); (I) Alkaloids were present in
the basal and stalk cells stained with Wagner’s and Dittmar reagent (brown-orange).

Fluorescence micrographs showed that the leaf section and trichomes present on
the leaves and stems stained with Calcofluor white fluoresced bright blue, indicating
cellulose in the cell walls (Figure 12A,D,G,J). The blue autofluorescence of the leaf section
and leaf and stem trichomes illustrated the presence of phenols (Figure 12B,E,H,K). Leaf
sections and trichomes stained with Acridine orange fluoresced bright yellow-green-blue,
indicating cell and trichome viability (Figure 12C,F,I,L).
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Figure 12. Fluorescent micrographs of leaf and stem sections of C. benghalensis. (A,D,G,J) Sections stained with Calcofluor
white (cellulose); (B,E,H,K) Autofluorescence of sections (phenols); (C,F,I,L) Sections stained with Acridine orange (cell
viability); (A–C) Hooked trichomes on leaf sections; (D–F) Multicellular trichomes on leaf sections; (G–I) Multicellular
trichomes on stem sections; (J–L) Stained leaf sections.

NGTs are not known to synthesize, accumulate or liberate bioactive compounds [17].
There is, however, little evidence to suggest that NGTs are incapable of low levels of
secretion [19]. The histochemical analyses performed on the NGTs of C. benghalensis
showed the ability to accumulate various phytochemicals. Similarly, Tozin et al. [41]
performed histochemical analyses on NGTs of Lamiaceae and Verbenaceae which showed
that the NGTs synthesize and accumulate biologically active compounds. An accumulation
of secretions was found in the apex of NGTs of Lantana camara [41]. Cells within NGTs are
metabolically active during early development and may remain active at maturity [41,61,73].
Acridine orange stain showed that cells in the SMH and SM trichomes of C. benghalensis
are viable.

Previous phytochemical studies on C. benghalensis whole plant, leaves and/or stems
showed the presence of phytocompounds such as carbohydrates, polyphenols, alkaloids,
resins, flavonoids, proteins, phlabotannins, volatile oils, terpenoids, saponins, balsams,
caffeine, glycosides, tannins, gum and mucilage [5,10,13,74–83]. One speculation for the
accumulation of metabolites in the NGTs could be that it forms part of a plant’s chemical
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defense against herbivores, insects or pathogens [45]. These bioactive compound in the
leaves and stems could possibly be translocated from the plant cell into the trichome
cell by means of simple diffusion, symplastic or apoplastic transport, vesicle mediated
movement or transporter-mediated membrane transport [84,85]. This could be theorized
as one possible explanation for the presence of lamellar bodies and mitochondria within
the NGT cell as well as the vesicle in close proximity to the plasma membrane of the plant
cell. However, further research needs to be performed for greater detail.

4. Conclusions

Histochemical analysis revealed various pharmacologically important bioactive com-
pounds, such as phenolics, alkaloids and cellulose, within the NGTs. These results show
that the NGTs are metabolically active as they contain organelles such as vacuoles and mito-
chondria and can retain and possibly synthesize various bioactive compounds, expressing
a characteristic similar to glandular trichomes. It can be speculated that the movements
of substances such as metabolites or large molecules are transported by vesicles located
within the trichomes. The presence of the mitochondrion near the plasma membrane
suggested that the membrane is highly active with the movement of substances in and out
of the cell. The subcellular contents of the trichomes were not previously investigated. By
understanding the contents of the NGTs in C. benghalensis on a cellular and biochemical
level, the production of medicinally significant metabolites within the trichome can be
strengthened and augmented in the future by means of plant biotechnology [45,68] as
access to these epidermal extremities is relatively easy.

Detailed compound isolation studies should be conducted solely on the trichomes
as histochemistry displayed some evidence of the presence of secondary metabolites
within the trichomes of C. benghalensis. Further research should identify the stomatal and
trichome density and length on the adaxial and abaxial surfaces over the leaf developmental
stages, stem, floral organs, and root, as well as investigating the chemical constituents of
trichomes over all the developmental stages. New research will add to the existing body
of knowledge for this species’ trichomes and enable possible identification of its growth
patterns, function/s, and significance to the plant.
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