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Abstract: Nowadays, supercritical CO,(SC-CO;) is known as a promising alternative for challenge-
able organic solvents in the pharmaceutical industry. The mathematical prediction and validation
of drug solubility through SC-CO, system using novel artificial intelligence (AI) approach has been
considered as an interesting method. This work aims to evaluate the solubility of tamoxifen as a
chemotherapeutic drug inside the SC-CO,; via the machine learning (ML) technique. This research
employs and boosts three distinct models utilizing Adaboost methods. These models include K-
nearest Neighbor (KNN), Theil-Sen Regression (TSR), and Gaussian Process (GPR). Two inputs,
pressure and temperature, are considered to analyze the available data. Furthermore, the outputis Y,
which is solubility. As a result, ADA-KNN, ADA-GPR, and ADA-TSR show an R? of 0.996, 0.967,
0.883, respectively, based on the analysis results. Additionally, with MAE metric, they had error rates
of 1.98 x 1079, 1.33 x 107°, and 2.33 x 1079, respectively. A model called ADA-KNN was selected
as the best model and employed to obtain the optimum values, which can be represented as a vector:
(X1 =329, X2=318.0, Y =6.004 x 10*5) according to the mentioned metrics and other visual analysis.

Keywords: pharmaceutical industry; supercritical CO,; drug solubility; predictive models

1. Introduction

The discovery of novel drug molecules followed by their introduction into clinical trials
is considered as the main goal of the drug development industry for increasing the efficiency
and reducing the side effects of drugs [1-4]. Solubility is one of the main parameters that
influence drug efficiency [5,6]. Low solubility is considered as the most important challenge
towards the formulation of novel chemical entities [7]. Various techniques can be used to
improve drug solubility, such as physical modification (i.e., nanosuspension), chemical
modification (i.e., complexation and salt formation), and miscellaneous procedures (i.e.,
supercritical fluids (SCFs) process and solubilizers) [8-11].

SCFs (especially supercritical CO, (SC-CO;)) have been recently identified as a promis-
ing alternative for challengeable organic solvents. The emergence of remarkably positive
points such as cost-effectiveness, inert nature, environmentally friendly, excellent chemical
affinity in almost all organic solvents, safety of application and non-toxic characteristic has
improved the tendency of researchers to apply them in pharmacology [12-14]. Additionally,
the modulation of two momentous properties of CO, including density and solvent power
is feasible by the alteration of operational pressure/temperature and true control of the
process kinetics [15-18].

The development of predictive models to estimate the solubility of various types of
drugs in real conditions has been an interesting topic. Artificial intelligence (Al) approach
is known as a robust and efficient approach to mathematically predict the results in various
scientific scopes, such as nanotechnology, separation, extraction, chemical reactors, and
transport phenomena [19-23].
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Machine learning (ML) is a set of techniques and tools that uses data to create a
mathematical model to make predictions or perform analysis, and it is critical in artificial
intelligence [24,25]. ML approaches are progressively replacing computational methods
in scientific domains. ML models may now investigate any problem with several input
features and at least one target. These models extract inputs—outputs relationships using
various strategies [26-28].

Boosting is a subtype of ensemble techniques that integrate the outcomes of several
weak estimators to build a robust estimator. Boosting makes the usage of weak estimators
applying a sequential logic, which implies the results of each weak estimate the influence
of the following estimate. AdaBoost [29], in particular, is a representative boosting learning
method that generates weak estimators gradually utilizing reweighted training data.

In recent years, GPR has gained popularity as a data-driven modeling tool. GPR’s pop-
ularity stems in part from its theoretical connection to Bayesian nonparametric statistics, in-
finite neural networks, kernel approaches in machine learning, and spatial statistics [30,31].

If the target data are numeric and continuous, neighbors-based regression such as
KNN can be used. A query point’s label is determined by averaging the labels of its nearest
neighbors [32].

Theil-Sen Regression is another weak estimator is used here. Compared to Ordinary
Least Squares (OLS), Theil-Sen Regressor has a comparable asymptotic efficiency and is an
unbiased estimate. Since it makes no assumptions about the underlying distribution of the
data, Theil-Sen is non-parametric in comparison to OLS. Theil-Sen can withstand outliers
more effectively [33,34].

The main novelty of this paper is to predict the optimized value of tamoxifen solubility
in an SC-CO; system via the ML approach. To achieve this, three ML-based predictive
models including K-nearest Neighbor (KNN), Theil-Sen Regression (TSR), and Gaussian
Process (GPR) were developed. The comparison of the models showed the fact that ADA-
KNN is the most accurate and general model due to more proximity of points with actual
test and train data lines and greater R? value.

2. Dataset

In this research, a small dataset containing two inputs composed of X1 = P (bar) and
X2 =T (K) and the only possible output is Y = solubility was applied. There are only 32 data
points that were taken from the literature, and they performed the analysis for the pressure
of 120400 bar and temperature of 308-338 K [35]. The entire dataset is displayed in Table 1.

Table 1. Dataset.

No. X1 =P (bar) X2 =T (K) Y (Solubility/Mole Fraction)
1 120 308 4 x 1070
2 160 308 494 x 1076
3 200 308 5.49 x 107°
4 240 308 5.96 x 107°
5 280 308 3.99 x 107°
6 320 308 3.88 x 107°
7 360 308 8.38 x 10~°
8 400 308 1.24 x 107
9 120 318 215 x 107°
10 160 318 5.79 x 107°
11 200 318 8.95 x 10~°
12 240 318 7.27 x 1076
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Table 1. Cont.

No. X1 =P (bar) X2 =T (K) Y (Solubility/Mole Fraction)
13 280 318 3.40 x 107°
14 320 318 7.03 x 107
15 360 318 4.01 x 1076
16 400 318 1.39 x 107°
17 120 328 1.79 x 10~°
18 160 328 5.13 x 107°
19 200 328 1.05 x 107
20 240 328 548 x 107°
21 280 328 231 x 107°
22 320 328 2.04 x 107°
23 360 328 2.50 x 107°
24 400 328 441 x 107>
25 120 338 1.52 x 107
26 160 338 3.84 x 107°
27 200 338 1.05 x 10°
28 240 338 2.08 x 107°
29 280 338 3.13 x 107°
30 320 338 1.95 x 1075
31 360 338 5.47 x 107°
32 400 338 6.0 x 107

3. Methodology
3.1. Base Models

The first base model is a kernel-based and non-parametric method, Gaussian process
regression (GPR). GPR focused on statistical learning theory and Bayesian models. When
used in conjunction with the mean function, a kernel can be used to explain the covariance
function of a Gaussian random variable. The GPR'’s capacity to generalize well, particularly
when working with minor data sets, is one of its most significant advantages [36-38]. When
constructing a GPR model, the following equation is assumed to be true for an output Y:

Y=f(X)+¢ )

f(X) illustrates the underlying function, X as input of the training data, X, as test
subset, and £~N(0, 0°) as the error. The error variance o2 is calculated based on the input
vector. The previous joint distribution of the actual target Y and the expected target y
are [39,40]:

Y ~ N(0,K(X,X) + 1) )
OGRS &) e

K = (kjj) as the covariance kernel matrix of the train subset in which the elements measure
the relation between X; and X; through k. K. stands for the covariance matrix between the
test and train subsets, and K, indicates the covariance matrix of the test subset [36,41]. The
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posterior distribution (in Bayesian analysis, reflects information about uncertain quantities)
of y is shown in Equations (4)—(6):

vy ~N(7.03) )
7= K.Kly (5)
0y = Kiw — KKK (6)

The other base models are K-nearest neighbor regression (KNN). The KNN re-
gressor learns by comparison of the identified test examples to the training set [42].
T ={(x1,¥1),..., (xN,yNn)} represent the training data with a parameter of distance d.
x;i = (X1, Xjp, Xi3,. .., Xjp ) represent the i-th sample indicates with m input features and its
target output y;. Additionally, N represent the count of examples. It must calculate the d;
between a test instance x and any sample x; € T and sort the d; distance by its value for a
test sample x. If d; is in the i-th place, the instance of x matches di, which is called the i-th
nearest neighbor, or NN;(x), and its target is called y;(x). Lastly, the estimation § of input

k
instance x denotes the average of the prediction of k-nearest neighbors to x ( = % Y yi(x)).
i=1

KNN regression algorithm can be summarized in the following steps [43]:

e Inputs: training samples {x;,y;}, x;: input features, y;: real-valued output, testing
point x to predict

e  Algorithm:
e  Calculate distance D(x, x;) to every training example x;
e  Select k closet examples xj; ... xj and their outputs y;1 ... v
e Output:
1 k
7=f0) =% Ly, @)
j=1

The third base model is Theil-Sen Regression. The model is estimated in Theil-Sen
regression by computing the slopes and intercepts of a subset of all feasible solutions of p
subsample points. When an intercept is fitting, p must be bigger than or equal to number
of features + 1. The spatial median of these slopes and intercepts is then used to define the
final slope and intercept.

The trend slopes were estimated using the Theil-Sen (TSR) estimator [44], which was
chosen since it is better than raw linear regression approaches in evaluating trend slopes in
the existence of outliers in data [45].

The initial phase in calculating the TSR predictor is to determine the Q; value given N
pairs of data [44]:

X i~ X

Q; = -L ic{1,2,...,N} (8)
j—k
xj, Xy are the data point vectors.
If only one datum is existed, then N = n(n2—1) . Additionally, n is the count of vectors.

If there are many observed data in several vectors, then N < "(nz_l) , n is the count of

observed vectors.
Then, the TSR predictor is calculated as the median Q,,.; of the N values of Q;, sorted
in (minimum, maximum) interval [44]:

Q (v+1) when N is odd
Qmed = )
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The sign of Qs shows the trend behavior, and its value shows the magnitude
of the trend.

3.2. AdaBoost

Adaboost [46] is the most well-known boosting model, and it was initially employed
to address the classification issue. Freund [29] then presented the Adaboost.R to handle
real-valued regression problems. Additionally, drucker [47] solved the regression problem
using the updated Adaboost.R2 model, with amazing results.

The data sample weights are set to zero. The initial iteration trains a weak learner, and
the instance weights are adjusted based on the training outcomes. The adjusted weights are
used to train the next weak learner. Each iteration, the weights of the instances estimated
incorrectly (with a high error) in the previous iteration are increased, while the weights
of the instances estimated correctly (near expected value) in the previous iteration are
decreased. The influence of hard-to-predict instances becomes increasingly substantial as
the number of iterations grows; after each iteration, the weak learner concentrates more on
samples that were previously estimated poorly. The final prediction outcome is established
by a weak learner’s weighted vote. Any machine learning regression technique may be
used to choose the weak learner in AdaBoost regression [48-50]. In this study, we used
three models of previous section as weak learners distinctly.

4. Results

We employed grid search to find the optimal hyper-parameters of these models and ob-
tained the final configuration of each model. MAE and R? are two metrics that were used to eval-
uate the performance of the model that were calculated using Equations (10) and (11) [51,52].

1 t+1
MAE = Yolx =t (10)
A1 2
=i
R2 = (11)

- 1 1) ?
Y (xi —X;

t+1 js the estimated value, xf“ is the observed value, and # is the

In these equations, x;
quantity of examples.
The accuracy of the final models is presented in Table 2 Additionally, the comparison
of expected and estimated values of tamoxifen solubility in SC-CO, system via ADA-KNN,
ADA-GPR, and ADA-TSR models is shown in Figures 1-3. In these diagrams, the green
line is the actual data line, and the point is predicted values blue for train sunset and red for
test subset. Comparing these three charts proves that the ADA-KNN is the most general

and appropriate model since the points are near actual test and train data lines.

Table 2. Output.

Models MAE R?2
ADA-KNN 1.98 x 107° 0.996
ADA-GPR 1.33 x 107° 0.967

ADA-TSR 2.33 x 107 0.883
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le—s Train / Test

Predicted Y

0 1 2 3 4 5 '
le-5

Observed Y

Figure 1. Fitting chart for ADA-KNN.

le-5 Train / Test

Predicted Y

0 1 2 3 4 5 '
Observed Y te=s

Figure 2. Fitting chart for ADA-GPR.
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le-5 Train / Test

Predicted Y

2 3 4 5
Observed Y te=s

Figure 3. Fitting chart for ADA-TSR.

Figure 4 illustrates the three-dimensional projection to demonstrate the final results of
the ADA-KNN mathematical model to measure the impacts of input parameters (pressure
and temperature) on drug solubility at the same time. Furthermore, two-dimensional
depictions to individually evaluate the effects of pressure and temperature on the values of
tamoxifen solubility in SC-CO, system are shown in Figures 5 and 6. It can be seen from
the figures that pressure has positive effect on the solubility value of drugs in the SC-CO,
fluid due to increasing the density of SCFs owing to modify the molecular compaction. If
the value of density increases, the solvating capability of solvent increases significantly and,
the solubility of drug in SC-CO; increases. The effect of temperature on drug solubility
is paradoxical. In one side, increment of temperature improves the pressure sublimation
of solvent, which is a positive phenomenon in increasing the solubility of the drug inside
SCFs. On the other side, the increase in temperature reduces the density of solvent, which
considerably deteriorates the solvating power and consequently solubility amount of
drug. Considering the abovementioned explanations, the net impacts of the sublimation
pressure and density can determine the favorable/unfavorable role of temperature on the
solubility. The evaluation of figures illustrates the emergence of a cross-over pressure in
the isotherms. At the pressures over than cross-over pressure, an increase in temperature
improves the drug solubility because of the greater effect of sublimation pressure compared
to density. For the pressures lower than the cross-over pressure, increasing the temperature,
decrement in the solvent density overcomes the effect of pressure sublimation and as a
result, and decreases the tamoxifen solubility in SC-CO; fluid [35]. Based on the presented
results of Table 3, the pressure and temperature at 329 bar and 318 K, respectively, were
considered as the optimum pressure and temperature for reaching the maximum amount
of tamoxifen solubility.
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Figure 4. Three-dimensional illustration of pressure (X1), temperature (X2), and solubility (Y).
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le—s X1=240

310 315 320 325 330 335

X2

Figure 6. Tendency of X2.

Table 3. Modified parameters applying maximum response.

X1 =P (bar) X2 =T (K) Y (Solubility)
329 318.0 7.03 x 1075

5. Conclusions

In this research work, three new models were compared through machine learning
to estimate and validate the solubility of tamoxifen in supercritical CO,. The Adaboost
method was applied to improve these three different models, including KNN, GPR and
TSR, and the results are promising. According to the analysis, the R? of the ADA-KNN,
ADA-GPR, and ADA-TSR models were 0.996, 0.967, and 0.883, respectively. The MAE error
rates for these three models were 1.98 x 107, 1.33 x 107, and 2.33 x 10~°, respectively.
An ADA-KNN model was selected as the best model, and it was applied to optimize the
values using these metrics (X1 = 329, X2 = 318.0, Y = 6.004 x 10~°) and some visual analysis.
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