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Abstract: The gastrointestinal-brain axis is a key mediator of the body weight and energy homeostasis
regulation. Uroguanylin (UGN) has been recently proposed to be a part of this gut-brain axis
regulating food intake, body weight and energy expenditure. Expression of UGN is regulated by
the nutritional status and dependent on leptin levels. However, the exact molecular mechanisms
underlying this UGN-leptin metabolic regulation at a hypothalamic level still remains unclear. Using
leptin resistant diet-induced obese (DIO) mice, we aimed to determine whether UGN could improve
hypothalamic leptin sensitivity. The present work demonstrates that the central co-administration of
UGN and leptin potentiates leptin’s ability to decrease the food intake and body weight in DIO mice,
and that UGN activates the hypothalamic signal transducer and activator of transcription 3 (STAT3)
and phosphatidylinositide 3-kinases (PI3K) pathways. At a functional level, the blockade of PI3K,
but not STAT3, blunted UGN-mediated leptin responsiveness in DIO mice. Overall, these findings
indicate that UGN improves leptin sensitivity in DIO mice.
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1. Introduction

Obesity is characterized by a deregulation of numerous pathways involved in the energy
homeostasis modulation. In order to maintain the body weight at stable levels, the central nervous
system (CNS) is constantly informed about the status of the organism’s energy stores by peripheral
systems through complex pathways. Among others, the gastrointestinal-brain axis has been described
as a key player in all this metabolic homeostasis regulation [1]. Indeed, the large spectrum of peptides
secreted by the gastrointestinal tract regulates the two sides of the energy balance equation (i.e., food
intake and energy expenditure).
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Uroguanylin (UGN) has been recently proposed to be one of the members of this gut-brain axis
implicated in body weight regulation [2–6]. UGN is a 16 amino-acid peptide secreted by the duodenal
epithelial cells under its precursor form – prouroguanylin (pro-UGN) –, the pro-UGN is cleaved to give
rise to the active form of the peptide which will bind the transmembrane receptor guanylin cyclase 2C
(GUCY2C) [7]. Interestingly, it has been shown that UGN could bind GUCY2C at a hypothalamic level
inducing the activation of anorexigenic pathways [6]. Although, subsequent studies failed to confirm
UGN effects on food intake [8,9], we have recently reported that UGN centrally administered induced
a body weight decrease on diet-induced obese (DIO) mice by increasing the energy expenditure in a
food intake-independent manner [10].

Intestinal and plasmatic UGN levels are dependent on the nutritional status [11]: expression of
UGN could be (i) increased concomitantly with food intake [6], (ii) reduced under fasting conditions
and (iii) recovered following refeeding [11]. Interestingly, it has been demonstrated that this UGN
nutritional status-based modulation was dependent on leptin. Leptin is an adipocyte derived hormone
mainly implicated in the enhancement of metabolism and food intake reduction [12,13]. Leptin
circulating levels are positively correlated with the adipose tissue mass [12]. Although obese patients
exhibit high levels of leptin, they also appear to be resistant to its central hypothalamic effects [14–17].
The exact mechanisms still remain unclear, however this leptin resistance seems to be mainly due to
a decrease in leptin transport across the blood-brain barrier and to an impairment of several leptin
receptor-signaling pathways [17–20]. However, some studies have demonstrated that leptin sensitivity
could be improved using pharmacological agents [21–23], suggesting that leptin administration could
be a valuable target when used in combination with other hormones or peptides [24]. Thus, taking
into account that the regulation of UGN levels by the nutritional status is dependent on leptin, and
that centrally administrated UGN reduces body weight in DIO mice, within this study we wanted to
evaluate whether UGN could restore leptin sensitivity in DIO mice models.

2. Materials and Methods

2.1. Animals and Diets

Swiss male mice (20–25 g, 8–10 weeks old) were housed in individual cages under controlled
conditions of illumination (12:12-h light/dark cycle), temperature and humidity. Mice were allowed
ad libitum access to water and a high fat diet (HFD) (Research Diets 12451; 45% of calories from fat,
4.73 Kcal/g, Research Diets, New Brunswick, NJ) for 13 weeks. 7–11 animals per group were used.

The food intake and body weight were measured daily. Animals were sacrificed by decapitation;
the brains were rapidly removed and immediately frozen on dry ice and kept at −80 ◦C until their
analysis. All experiments and procedures involved in this study were reviewed and approved by
the Ethics Committee of the USC, in accordance with the European Union normative for the use of
experimental animals.

2.2. Treatments and Surgeries

Mice were anesthetized by an intraperitoneal injection of ketamine (8 mg/kg) and xylazine
(3 mg/kg). Intracerebroventricular (ICV) cannulae were implanted stereotaxically in mice, as previously
described [25–27]. Animals were ICV injected with vehicle (saline), UGN (25 µg/mouse, Bachem,
Bubendorf, Switzerland) and/or leptin (3 µg/mouse, kindly provided by Dr A. F. Parlow, National
Hormone and Peptide Program, Harbor- UCLA Medical Center, Torrance, CA, USA). To perform the
molecular analysis, the mice were sacrificed 15 min after the leptin ICV administration, and the brains
were immediately removed, frozen and stored at −80 ◦C.

To study the STAT3 pathway, the mice were fasted overnight and then ICV injected with either
vehicle (saline) or a peptide inhibitor of STAT3 (STAT3 PI) (75 pmol/mouse, Calbiochem, San Diego,
CA, USA) [28]. Thirty minutes later, the mice received either ICV vehicle (10 mM NaHCO3, pH 7.9) or
leptin (3 µg/mouse) as previously described [28]. For the analysis of phosphatidylinositide 3-kinase
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(PI3K) pathway, the mice were fasted overnight and then received an ICV infusion of either vehicle
(DMSO) or an inhibitor of PI3K (LY294002) (1 nmol/mouse, Sigma-Aldrich, St. Louis, MO, USA).
Twenty minutes later, the mice received either an ICV vehicle (10 mM NaHCO3, pH 7.9) or leptin
(3 µg/mouse) [28].

2.3. Dissection of Brain Areas

After the sacrifice, the brains were removed and immediately frozen and stored at −80 ◦C until
further processing. Then, the brain was placed in a brain matrix with the ventral surface under a
dissecting microscope. The mediobasal hypothalamus was removed from the whole hypothalamus
by cutting between the rostral and caudal limits of the median eminence parallel to the base of the
hypothalamus and 0.5 mm to each lateral side of the median eminence [27,29,30].

2.4. Real Time Polymerase Chain Reaction (PCR)

The specificity of the mediobasal hypothalamus isolation was evaluated by measuring the mRNA
levels of Agrp and Pomc. RNA was isolated using the TRIzol Reagent (Invitrogen, Carlosbad, CA,
USA) according to the manufacturer´s instructions [10]. The extracted total RNA was purified with
the DNase treatment using a DNAfree kit as a template (Ambion; Thermo Fisher Scientific, Grand
Island, NY) to generate the first-strand cDNAs using a High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Foster City, CA, USA). Quantitative real-time PCR was performed
using a StepOnePlus Instrument with specific TaqMan quantitative RT-PCR primers and probes.
The oligonucleotide-specific primers are listed in Table 1. Hypoxanthine phosphoribosyltransferase
(Hprt) was used as an endogenous control, and the expression levels in the sample group were relatively
expressed to the average of the control group.

Table 1. Primers and probes used for gene amplification.

Gene Direction Primer Sequence 5’ → 3’

HPRT
FWD AGCCGACCGGTTCTGTCAT
REV GGTCATAACCTGGTTCATCATCAC
PB CGACCCTCAGTCCCAGCGTCGTGAT

AgRP
FWD GCACAAGTGGCCAGGAACTC
REV CAGGACACAGCTCAGCAACAT
PB CAAGCATCAACAAGCAAAGGCCATGC

POMC
FWD CGTCCTCAGAGAGCTGCCTTT
REV TGTAGCAGAATCTCGGCATCTTC
PB CGGGACAGAGCCTCAGCCACC

2.5. Western Blotting

The mediobasal hypothalamus was isolated with a brain dissection block, as previously
described [27,29–31]. Tissues were homogenized using a TissueLyser II (Qiagen, Tokyo, Japan) in
fresh RIPA buffer (containing 200 mMTris/HCl (pH 7.4), 130 mM NaCl, 10%(v/v) glycerol, 0.1%(v/v)
sodium–dodecyl sulfate (SDS), 1%(v/v) Triton X-100, 10 mM MgCl2) containing anti-proteases and
anti-phosphatases (Sigma-Aldrich, St. Louis, MO, USA). The tissue lysates were centrifuged for
30 min at 18,000 g in a microfuge at 4 ◦C. The mediobasal hypothalamus total protein lysates were
subjected to SDS-polyacrylamide gels (SDS–PAGE), then electrotransferred on a PVDF membrane and
probed successively with the following antibodies: Phospho-PI3K P85, PI3K P85, phospho-STAT3
and STAT3 (Cell Signaling, Danvers, MA, USA); β-actin (Sigma-Aldrich, St. Louis, MO, USA)
after blocking the membranes with 5% BSA blocking buffer. For the protein detection, we used
horseradish-peroxidase-conjugated secondary antibodies (Dako Denmark, Glostrup, Denmark).
Specific antigen-antibody bindings were visualized using chemiluminescence method according
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to the manufacturer´s instructions (Pierce ECL Western Blotting Sustrate, Thermo Fisher Scientific,
Grand Island, NY, USA). Values were expressed in relation to β-actin.

2.6. Blood Biochemistry

Blood samples were harvested from the saphenous vein and the levels of leptin were
determined using a Leptin Mouse enzyme-linked immunosorbent assay (ELISA) (Millipore, Catalog
number EZML-82K).

2.7. Statistical Analysis

Results are expressed as mean ± standard error of the mean (SEM). The GraphPad Prism Software
Version 5.0 (GraphPad, San Diego, CA, USA) was used for the data analysis. The number of animals
used is listed in the figure legends. Statistical analysis was performed using a one-way analysis of
variance followed by a post hoc multiple comparison test (Bonferroni test) for multiple comparison
tests. For two population comparisons, an unpaired t test (two-tailed) was used. A p value less than
0.05 was considered statistically significant.

3. Results

3.1. Central UGN Administration Restores Leptin Sensitivity in Diet-Induced Obese (DIO) Mice

In order to evaluate whether UGN could improve leptin sensitivity, the DIO mice were first ICV
injected with vehicle or UGN (25 µg/day during four days, a dose known to induce body weight
decrease in DIO mice) (Figure 1A). In accordance with the previous data we have obtained in 2016 [10],
the central administration of UGN in DIO mice induced a body weight decrease (Figure 1B) without
modifying food intake (Figure 1C) and this during three days. At the end of the first three days,
the two groups of mice were fasted overnight before being injected either with vehicle or leptin at a
dose of 3 µg, known to induce a decrease of feeding and bodyweight in chow diet fed rodents [28]
(Figure 1A). As shown on Figure 1D,E, the ICV administration of leptin in non-UGN pretreated mice
did not induce any changes in body weight (Figure 1D) or food intake (Figure 1E,F). However, in an
interesting way, when administrated in obese mice previously treated with UGN for four days, leptin
induced a significant decrease in body weight (Figure 1D) as in food intake after 6 h (Figure 1E) and
24 h (Figure 1F). Leptin was also ICV injected in chow diet fed lean mice, and we were able to observe
that leptin at the dose of 3 µg induced a decrease in body weight (Figure 1G) and in food intake after
six and 24 h (Figure 1H–I). Taking into account all these results, we were able to demonstrate that a
central administration of UGN could restore leptin responsiveness in DIO mice.
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Figure 1. Schematic representation of the in vivo protocol (A). Effect of chronic 
Intracerebroventricular (ICV), uroguanylin (UGN) (25μg/mouse) injection for four days in DIO mice 
on body weight (BW) (B) and food intake (FI) (C). Effect at 24h of ICV leptin injection (3μg/mouse) 
(the mice being pretreated with UGN (25μg/mouse/four days) and submitted to fasting the night 
before leptin injection) body weight (D), and food intake at 6h (E) and 24h (F). Effect at 24h of ICV 
leptin injection (3μg/mouse) in lean mice fed a chow diet (CD) on body weight (G) and food intake 
after 6h (H) and 24h (I). Values are represented as mean ± standard error of the mean ( SEM); n = 8–
17 animals per group. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. vehicle. 

Figure 1. Schematic representation of the in vivo protocol (A). Effect of chronic Intracerebroventricular
(ICV), uroguanylin (UGN) (25 µg/mouse) injection for four days in DIO mice on body weight (BW)
(B) and food intake (FI) (C). Effect at 24 h of ICV leptin injection (3 µg/mouse) (the mice being pretreated
with UGN (25 µg/mouse/four days) and submitted to fasting the night before leptin injection) body
weight (D), and food intake at 6 h (E) and 24 h (F). Effect at 24 h of ICV leptin injection (3 µg/mouse) in
lean mice fed a chow diet (C,D) on body weight (G) and food intake after 6 h (H) and 24 h (I). Values
are represented as mean ± standard error of the mean (SEM); n = 8–17 animals per group. * p < 0.05;
** p < 0.01; *** p < 0.001 vs. vehicle.
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3.2. Central UGN Administration Restores Hypothalamic Leptin-Induced Signaling Pathways in DIO Mice

In DIO mice, the leptin receptor-induced intracellular signaling pathways have been shown
to be impaired, including phosphatidylinositol 3-kinase (PI3K) and signal transducer and activator
of transcription 3 (STAT3) pathways [12,13]. Therefore, after harvesting the hypothalamus of the
different mice and groups, we have analyzed whether these hypothalamic signaling pathways could
be affected by UGN. Interestingly, we were able to observe that the separated single UGN or leptin
treatments in DIO mice models did not affect the levels of the total or phosphorylated form of PI3K,
neither the ones of total and phosphorylated STAT3 (Figure 2A). However, the DIO mice pretreated
with UGN during four days then injected with leptin exhibited increased mediobasal hypothalamic
levels of the total and phosphorylated forms of PI3K, as well as a tendency to increased levels of
phosphorylated STAT3 (Figure 2A). To evaluate the specificity of the isolation of the mediobasal
hypothalamus (MBH), we have measured the expression of Agrp and Pomc—specific mediobasal
hypothalamic markers—and interestingly, Agrp and Pomc mRNAs were only detected in the MBH and
not in the lateral hypothalamus (LHA) (Figure 2B). All together, these data suggest that UGN restores
hypothalamic leptin-induced signaling pathways in DIO mice.
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(25μg/mouse/four days) and submitted to fasting the night before leptin injection). The mice were 
sacrificed and the tissues collected 15 min after leptin injection. Values are expressed in relation to β-
actin levels. Dividing lines indicate splicing within the same gel (A). mRNA expression of Agrp and 
Pomc in mediobasal and lateral hypothalamus (B). Values were expressed relatively to Hypoxanthine-
guanine phosphoribosyltransferase (Hprt) levels. ND: non detected. Values are mean ± SEM of 8 
animals per group. ** p < 0.01, *** p < 0.001 vs vehicle. 

Figure 2. Evaluation of mediobasal hypothalamic levels of Phospho-PI3K P85, PI3K P85,
Phospho-STAT3, STAT3 following an ICV leptin injection (3 µg/mouse) (the mice being pretreated
with UGN (25 µg/mouse/four days) and submitted to fasting the night before leptin injection).
The mice were sacrificed and the tissues collected 15 min after leptin injection. Values are expressed in
relation to β-actin levels. Dividing lines indicate splicing within the same gel (A). mRNA expression
of Agrp and Pomc in mediobasal and lateral hypothalamus (B). Values were expressed relatively
to Hypoxanthine-guanine phosphoribosyltransferase (Hprt) levels. ND: non detected. Values are
mean ± SEM of 8 animals per group. ** p < 0.01, *** p < 0.001 vs vehicle.
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3.3. Blockade of STAT3 does not Affect UGN-Mediated Leptin Responsiveness

Taking into account that both phosphorylated STAT3 and phosphorylated PI3K pathways were
activated in the hypothalamus after the co-administration of UGN and leptin, we next performed
functional studies to address if these intracellular pathways could mediate the restoration of leptin
sensibility in DIO mice. Surprisingly, the ICV single treatment with leptin or combined with the
inhibitor of STAT3 (STAT3 PI) did not modify either the food intake or the body weight of DIO mice
(Figure 3A,B). The same experimental protocol was realized on the UGN-pretreated mice and as
expected, the food intake (Figure 3A) and the body weight (Figure 3B) were decreased. However,
the inhibition of STAT3 pathway did not modify the metabolic response of these mice, exhibiting the
same decrease in food intake and body weight (Figure 3A,B) as the other groups. Therefore, these data
indicate that STAT3 is not playing an essential role in the mediation of UGN effect on leptin sensitivity.
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Figure 3. Evaluation of the blockade of STAT3 pathway in the response in 24 h cumulative food
intake (A) and body weight change (B). The mice were perfused with UGN (25 µg/mouse) for four
days, submitted to fasting overnight and then injected with leptin (3 µg/mouse), an inhibitor of
STAT3 (STAT3 PI) (75 pmol/mouse), or by the combination leptin/STAT3 PI. Values are represented as
mean ± SEM; n = 10–11 animals per group. * p < 0.05, ** p < 0.01 vs. vehicle.

3.4. Blockade of PI3K Blunts UGN-Mediated Leptin Responsiveness

We next blocked the central PI3K pathway in DIO mice by administering a PI3K inhibitor,
LY294002. As observed in the previous experiment, the ICV treatment with leptin or LY294002 did not
modify the food intake or body weight of DIO mice (Figure 4A,B). However, the DIO mice pretreated
with UGN and injected with leptin exhibited a decrease in food intake (Figure 4A) and body weight
(Figure 4B), reflecting the restoration of leptin sensitivity. However, when the mice were injected with
a combined treatment composed of UGN, leptin and LY294002, the food intake (Figure 4A) and the
body weight (Figure 4B) were restored to similar levels as the ones observed in the DIO mice injected
with the vehicle. Therefore, the present data demonstrate that UGN centrally administered fails to
restore leptin sensitivity in DIO mice when PI3K is blocked.
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(A) and body weight change (B). The mice were perfused with UGN (25 µg/mouse) for four days,
submitted to fasting overnight and then injected with leptin (3 µg/mouse), an inhibitor of PI3K
(LY294002) (1 nmol/mouse), or by the combination leptin/LY294002. Values are represented as mean
± SEM; n = 7–8 animals per group. * p < 0.05; ** p < 0.01, *** p < 0.001 vs. vehicle.

3.5. Central UGN Restores Leptin Sensitivity Independently of Body Weight Changes and Leptin Levels in
DIO Mice

Later on, we wanted to evaluate whether the effects of UGN on leptin sensitivity were due to a
direct action of UGN, rather than being a consequence of the reduction of leptin levels induced
by the body weight decrease. Therefore, to obtain reliable results on UGN effects, the same
experiments were repeated using weight-matched DIO mice (i.e., the initial body weights were
defined according to the body weight measured after three days of UGN treatment), giving rise to
five different groups: (i) control group injected by vehicle (DIO+Vehicle), (ii) mice ICV perfused by
UGN (25 µg/day during for four days) (DIO+UGN), (iii) control weight-matched mice receiving
vehicle (DIO-Weight- matched +Vehicle), (iv) weight-matched mice receiving leptin at a dose of 3 µg
(DIO-Weight-matched+Leptin) and (v) weight-matched UGN-pretreated mice receiving leptin at a
dose of 3 µg (DIO-Weight-matched +Leptin).

As expected, the central ICV administration of UGN for three days induced a body weight
decrease compared to the vehicle perfused control group. Interestingly, the injection of leptin in the
weight-matched control mice did not induce any modifications of the body weight. However, the
injection of leptin in mice that had been pretreated with UGN for three days exhibited a significant
body weight decrease (Figure 5A). As demonstrated before, the body weight decrease (Figure 5B)
induced by UGN was not associated to anorexia (Figure 5C). Interestingly, the chronic UGN injection
of weight-matched mice during three days induced the same metabolic phenotype response: A body
weight decrease (Figure 5D) without any changes in food intake (Figure 5E) as observed in their UGN
pretreated control mice. As noticed before, the ICV administration of leptin in weight-matched mice
did not modify the body weight (Figure 5F) and the food intake (Figure 5G,H) of the treated mice.
However, as expected, injected into UGN-pretreated weight-matched mice, leptin at a dose of 3 µg
induced a significant decrease in body weight (Figure 5F) and food intake at 6 and 24 h (Figure 5G,H).
To complete this analysis, we have also evaluated the circulating levels of leptin, and we were able to
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observe that the ICV administration of UGN induced a significant decrease of leptinemia (Figure 5I),
consistent with the associated fat mass reduction. Moreover, the circulating levels of leptin were found
to be reduced in weight-matched DIO mice compared to their control (Figure 5I), this observation being
in accordance with their lower body weight. Overall, these findings indicate that the weight-matched
DIO mice also exhibit a leptin resistance, and that UGN is able to induce a body weight decrease in
the different groups of mice, suggesting that UGN effects on leptin sensitivity are independent on the
body weight and on the leptin levels.
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Figure 5. Effect of chronic ICV UGN (25 µg/mouse) injection for four days and ICV leptin (3 µg/mouse)
for 24 h in DIO mice and weight-matched DIO mice on body weight (A). Effect of chronic ICV saline or
UGN (25 µg/mouse) injection for three days on body weight change (B) and food intake (C) in DIO
mice. Effect of chronic ICV saline or UGN (25 µg/mouse) injection for three days on body weight
change (D) and food intake (E) in weight-matched DIO mice. Effect of ICV leptin (3 µg/mouse)
infusion in weight-matched DIO mice (the mice being pretreated with UGN (25 µg/mouse/four
days) and submitted to fasting the night before leptin injection) on a 24 h body weight change (F), six
and 24 h cumulative food intake (G and H respectively). Circulating leptin levels in DIO mice and
weight-matched DIO mice treated with ICV vehicle or UGN (I). Values are represented as mean ± SEM;
n = 5–14 animals per group. * p < 0.05; ** p < 0.01, *** p < 0.001 vs. vehicle.

4. Discussion

In spite of the widely described effects of leptin on decreasing food intake and body weight
on different animal models, the use of leptin as a therapeutic agent in an obesity driven context
remains inefficient [14]. Due to the elevated circulating levels of leptin detected in DIO mice and obese
human patients inducing a desensitization of the leptin receptor (LepR), the hypothalamic intracellular
pathways could be impaired and deregulated [16,17], explaining the lack of therapeutic efficiency of
leptin to decrease the body weight. The present study provides mechanistic evidences that the leptin
sensitivity can be improved by UGN, inducing a decrease in food intake and body weight in DIO
mice. We were able to demonstrate that the UGN effects on leptin sensitivity were mediated by the
PI3K pathway while being STAT3-independent, confirming that the leptin resistance can be due to an
intracellular signaling defect in leptin-responsive hypothalamic neurons that lies upstream of STAT3
activation [14].

The key role of UGN in the regulation of energy homeostasis through the gut-brain axis has lately
acquired great relevance [4,5,32]. In humans, UGN stimulates lipolysis in adipocytes [32] and the
UGN mRNA expression is increased in obese patients following bariatric surgery [9]. Moreover, the
circulating levels of pro-UGN are decreased in obese adults [33] and obese female adolescents [34]
compared to lean subjects. In rodent models, the chronic central administration of UGN reduced the
body weight in DIO mice through an increase of energy expenditure [10]. UGN levels are regulated by
the nutritional status and this phenomenon is dependent on leptin [11]. Moreover, ob/ob mice, a model
of genetic obesity characterized by a lack of leptin, show very low levels of UGN, recovering normal
levels following a leptin treatment [11]. Given the strong interaction between UGN and leptin, and
that both hormones require hypothalamic mechanisms to exert their catabolic actions, it was plausible
to hypothesize that these two systems were likely interacting at a hypothalamic level. Our results
showing that DIO mice centrally infused with UGN exhibit enhanced leptin responsiveness reducing
both feeding and body weight, support this hypothesis.

It is widely known that the activation of the leptin receptor in the hypothalamus induce the
modulation of the JAK2/STAT3 and PI3K/AKT pathways [17,35,36] and they have been extensively
studied as key molecular determinants of hypothalamic leptin resistance [17,37,38]. As these signaling
pathways are blunted in obesity, further research efforts have been made to discover therapeutic
agents to improve leptin sensitivity focusing on JAK-STAT and PI3K-Akt-FoxO1. Through the years,
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some efficient agents have been discovered, such as amylin, which restores leptin responsiveness in
both obese rodents and patients [21], as well as FGF21 [22] and GLP-1/glucagon co-agonism [23].
The PI3K/AKT pathway is also activated by UGN since the guanylate cyclase activators modulate
AKT signaling in intestinal cells, cardiomyocytes and neurons [39–41]. This had led us to hypothesize
that UGN could play a key role in restoring leptin sensitivity in DIO mice. Accordingly, the present
findings demonstrate that the central administration of UGN enhances leptin-induced phosphorylation
of PI3K and STAT3 in the mediobasal hypothalamus of DIO mice. More specifically, UGN requires
PI3K but not STAT3, to improve leptin sensitivity. Lastly, the improvement of leptin sensitivity in DIO
mice has been shown to be independent of UGN-induced body weight loss or UGN-reduced leptin
levels, since the weight-matched DIO mice did not display any metabolic response to single treatment
of leptin. However, this study remains mostly pharmacological, and it is likely that the dose of central
administrated UGN used here is probably higher than the amount of endogenous UGN reaching the
brain under physiological conditions. Further studies using genetically modified mice lacking UGN
or GUCY2C peripherally injected with UGN are needed to elucidate whether physiological levels of
UGN would be sufficient to improve leptin sensitivity.

In summary, the present results indicate that UGN is a new factor in the improvement of
leptin sensitivity in DIO mice and its effects are dependent on the activation of PI3K pathway in
the hypothalamus. These results support that pharmaceutical targeting of UGN in combination with
leptin administration could be a new strategy to reverse obesity.
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