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Differential Role of Transforming Growth Factor-
beta in an Osteoarthritic or a Healthy Joint
Peter M. van der Kraan
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Transforming growth factor-β (TGF-β) is a cytokine that plays an important role in both 
normal joints and joints affected by osteoarthritis (OA), the most common joint disease. 
However, the role of this pleiotropic cytokine in a normal healthy joint is very different 
from its role in an OA joint. In a normal synovial joint, active TGF-β is only present after 
joint loading and only for a short period. In contrast, permanent and high levels of active 
TGF-β are detected in OA joints. Due to this difference in levels and exposure period of 
joint cells to active TGF-β, the function of TGF-β is strikingly different in normal and OA 
joints. The consequences of this difference in TGF-β levels on joint homeostasis and 
pathological changes in OA joints are discussed in this review. 
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OSTEOARTHRITIS (OA)

OA is the most common joint disease with an increasing prevalence due the 
ageing population of the Western world and until now not fully identified factors 
related to our Western society lifestyle.[1] OA is characterized by loss of articular 
cartilage, osteophyte formation, subchondral bone changes, fibrosis and in many 
patients inflammation. The major clinical symptoms are joint pain, stiffness and 
loss of function. In general, OA is progressive and no widely applied effective ther-
apy is available. The ultimate solution for an end stage OA joint is replacement of 
the damaged joint by an artificial one. In about twenty percent of the patients 
this procedure does not result in a pain free joint. The homeostasis of a healthy 
joint is dependent on the proper interaction between joint cells and tissues. Dis-
turbed cellular communication will result in loss of tissue integrity and damage to 
all joint tissues. In this way OA can be considered as a whole joint disease in which 
joint homeostasis is lost and in the joint has entered an irreversible disease state. 

TRANSFORMING GROWTH FACTOR-β (TGF-β)

TGF-β is a member of a protein family of over 35 members that can be found in 
all multicellular organisms.[2] TGF-βs regulate many important processes in both 
health and disease, including cell proliferation, tissue formation, and repair and 
inflammation. In mammalian tissues three peptides are identified TGF-β1, TGF-β2, 
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and TGF-β3. These peptides have a high degree of homol-
ogy but differ in their tissue specific expression. The func-
tion of the three different peptides in development and 
physiology can be partly drawn from knock out studies in 
mice. Knock out of TGF-β1 is in many cases lethal as a re-
sult of defective haematopoiesis and endothelial differen-
tiation during embryogenesis.[3] Mice deficient for TGF-β1 
that are born alive develop a rapid wasting syndrome and 
massive inflammation resembling autoimmune disorders.
[4,5] Deficiency for TGF- β2 leads to multitude of develop-
mental defects including, craniofacial, limb, spinal column, 
eye, lung, inner ear and urogenital abnormalities.[6] TGF-β3 
also plays a role in development since homozygous TGF-β3 
knockout mice have a cleft palate.[7] There is no pheno-
typic overlap between TGF-β1, TGF-β2, and TGF-β3 knock-
out mice indicating numerous but non-overlapping func-
tions between the TGF-β isoforms.

1. TGF-β signaling
TGF-β’s are synthesized as large pro-proteins that have 

to be activated before receptor binding and signal via a 
heteromeric complex of transmembrane serine/threonine 
receptors, so-called type I and type II receptors, and acces-
sory proteins.[8] The type I receptors, also called- activin 
receptor-like kinases (ALKs), are activated by the type II re-
ceptors and intracellular signaling is initiated by C- termi-
nal phosphorylation of receptor-regulated (R)-Smad pro-
teins by the type I receptors.[9] The canonical TGF-β type I 
receptor is ALK5 but also other ALKs have been shown to 
be able to propagate the TGF-β signal. In chondrocytes 
ALK1 has been identified as a TGF-β receptor.[10,11] Acti-
vation of ALK5 stimulates phosphorylation of Smad2 and 
Smad3 while ALK1 activates the Smad1/5/8 pathway.[10,11] 
Phosphorylated R-Smads form heterotrimers with Smad4 
and this complex is transported to the nucleus. In the nu-
cleus this complex, in association with enhancers and sup-
pressors, regulates gene expression. Activation of the Smad2/3 
and Smad1/5/8 pathway has differential effect on gene 
expression and regularly antagonize each other. 

In many cell types it has been shown that the TGF-β con-
centration to which the cells are exposed determines the 
preferred-signaling route. In primary human fibroblasts 
low TGF-β concentrations (≤1 ng/mL) activate the Smad2/3 
route while high concentrations (>5 ng/mL) mainly stimu-
late the Smad1/5/8 pathway.[12] A similar pattern was found 

in myofibroblast cell lines and endothelial cells.[13-15] This 
is most likely a result of the different affinities of TGF-β for 
different receptor complexes. However, how cellular sig-
naling is determined by the active TGF-β concentration will 
depend on the absolute and relative number of different 
TGF-β receptors on the cell membrane of different cell types. 
A consequence of this is that exposure of cells to different 
TGF-β contractions will results in differential regulation of 
gene expression at low or high TGF-β concentrations.

2. TGF-β levels in healthy and OA joints
Healthy human cartilage contains a large pool TGF-β that 

is normally not readily accessible for the chondrocytes.[16] 
The predominant form of TGF-β in articular cartilage ap-
pears to be TGF-β1 (60%-85% of total) and high quantities 
of total TGF-β1 have been detected in articular cartilage 
(68.5±20.6 ng/mL).[17] The first measurement of TGF-β 
activity in joint fluids of patients with joint diseases, using 
bioassays, has been published by Fava et al.[18]. They found 
high levels of active TGF-β in synovial fluid of rheumatoid 
arthritis patients (10 ng/mL), OA patients (4 ng/mL) and 
gout patients (8 ng/mL) but no significant TGF-β activity in 
synovial fluid of patients with avascular necrosis. Acid acti-
vation resulted in a 3 to 4 –fold increase in TGF-β activity. 
Furthermore, the synovial fluid of normal temporoman-
dibular joints does not contain detectable levels of active 
TGF-β but elevated levels are measured in patients with 
temporomandibular OA.[19] Moreover, there is evidence 
that TGF-β is proteolytically activated in synovial fluid and 
elevated levels of proteases are present in OA synovial flu-
id.[20] These results clearly indicate that active TGF-β levels 
will be very low or absent in normal articular joints and el-
evated in joint diseases such as OA.

It can be concluded that cells in normal joints are not ex-
posed to high TGF-β levels but that this will change once 
OA develops. The elevated levels of TGF-β in OA joints will 
activate cells that are normally not exposed to high levels 
of active TGF-β and this will result in altered cellular differ-
entiation and can contribute to pathogenesis if these high 
TGF-β levels are enduring.

Loading temporarily activates TGF-β in articular 
cartilage
TGF-β is stored in high amounts in the articular cartilage 

matrix but in an inactive form as part of a large latent com-
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plex. It has been reported that mechanical loading can ac-
tivate TGF-β. In a stiff matrix, like articular cartilage, me-
chanical force, in collaboration with presumably integrins, 
is able to release mature TGF-β from its latency-binding 
peptide (LAP) that confers inhibition of receptor binding of 
TGF-β.[21,22] Articular cartilage is a tissue that is regularly 
loaded and its main function are to withstand and propa-
gate mechanical forces. On top of the load resisting func-
tion of cartilage it has been shown that regular loading is 
essential to keep articular cartilage vital. Spinal cord injury 
patients, that do not load their cartilage recurrently, lose 
their cartilage at a faster pace than OA patients.[23]

Not only load is necessary to keep cartilage healthy, but 
also active TGF-β signaling. Chondrocyte specific loss of 
Smad3, ALK5 or the TGF type II receptor in mice all result in 
OA development at an early age.[24-27] Supporting the 
findings in mice is the observation that also in humans de-
fective Smad3 results in OA at a young age.[28] These data 
indicate that to keep cartilage healthy both regular load-
ing and active TGF-β signaling, via Smad3, is needed.

We showed that bovine articular chondrocytes show ac-
tive TGF-β signaling immediately after death but that ac-
tive TGF-β signaling is already decreasing within 2 hr in the 
absence of loading.[29] Compression, at a physiological 
level (3 MPa, 1 Hz, 30 min), rapidly restored TGF-β signal-
ing. Expression of TGF-β response genes was significantly 
reduced 24 hr after loading and also this response could 
be rapidly reactivated by loading. The role of TGF-β in this 
process, and in particularALK5, could be shown by the fact 
that load-induced effects could be blocked by a specific 
ALK5 inhibitor.[29] Furthermore, the effects of loading could 
be fully mimicked by exogenous addition of active TGF-β 
but not by activin or bone morphogenetic proteins (BMP).
[29]

These observation indicate that active TGF-β signaling is 
the default mode of cartilage when regularly loaded. We 
could show that the main function of TGF-β activation was 
prevention of hypertrophic differentiation of articular chon-
drocytes. Increased expression of type X collagen, a hyper-
trophy marker, in the absence of loading was blocked by 
either addition of exogenous TGF-β or loading. Moreover, 
loading-induced TGF-β signaling also up regulated the ex-
pression of ALK5 on chondrocytes while down regulating 
the expression of ALK1. Also expression of TGF-β1, in its la-
tent form, was stimulated by loading. The elucidated mech-

anism shows that loading-induced TGF-β signaling signal-
ing is an elegant system that prevents chondrocyte hyper-
trophy and keeps articular cartilage healthy. 

3. Effect of elevated active TGF-β levels in OA 
joints 

Cells in joint tissues that are normally not exposed to ac-
tive TGF-β are exposed to high levels in OA joints. Even in 
articular cartilage a situation of temporarily activation of 
TGF-β by loading, but fast inactivation of activated TGF-β 
by the cartilage matrix,[30] is altered to a state with a con-
tinuous exposure to elevated active TGF-β levels. Since 
high levels of TGF-β activate different receptor pathways 
than low levels, and continuous exposure will also alter 
chondrocyte activation, the role of TGF-β on cartilage will 
be different in an OA joint than in a normal joint. It can be 
expected that preferentially the Smad1/5/8 pathway will 
be activated (via ALK1), a pathway that is not activated in 
intact healthy cartilage by TGF-β (unpublished results). The 
changed situation of high TGF-β levels will drive chondro-
cytes preferentially in the direction of hypertrophy since it 
has been shown that the Smad1/5/8 pathway stimulates 
this in chondrocytes.[31-34] Due to the altered TGF-β con-
centrations to which the chondrocytes are exposed the 
function of TGF-β changes from a factor that blocks chon-
drocyte hypertrophy (Smad2/3 signaling) to a factor that 
facilitates chondrocyte hypertrophy (Smad1/5/8 pathway). 
As a consequence the protective effect of TGF-β on articu-
lar cartilage will be lost. We and others have found a switch 
from Smad2/3 to Smad1/5/8 signaling in age-related OA 
models which appears to confirm the altered role of TGF-β 
in OA cartilage compared to normal cartilage.[11,35]

4. Changes in subchondral bone
Subchondral bone is one of the tissues that shows alter-

ations in OA joints. Accelerated remodeling, indicated by 
cyst formation and subchondral sclerosis are hallmarks of 
OA joints.[36-38] Several studies indicate that TGF-β plays 
a role in the alterations in the subchondral bone in OA. A 
correlation between total TGF-β and OA severity has been 
reported for human hip OA and increased mRNA of TGF-β1 
and TGF-β3 subtypes has been shown in osteoblasts in 
subchondral bone from knee joints with OA.[39,40] Rats 
with experimental OA (anterior cruciate ligament transec-
tion [ACLT] model) treated with alendronate showed inhi-
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bition of subchondral bone resorption, vascular invasion 
and the local release of active TGF-β.[41] Activation of TGF-β 
has been shown in a mouse model of OA (ACLT model).[42] 
These high active TGF-β concentrations induced the for-
mation of nestin-positive mesenchymal stem cell clusters 
in subchondral bone. Furthermore, elevated expression of 
TGF-β1 in osteoblast induced OA while TGF-β inhibition re-
sulted in decreased development of OA in mice with ex-
perimental OA.[42] Treatment of mice and rats with post-
traumatic OA (ACLT model) with halofuginone, a TGF-β in-
hibitor, attenuated subchondral bone deterioration.[43] 
Moreover, in a guinea pig model of spontaneous OA chang-
es in subchondral bone were in parallel with active TGF-β 
expression. These data indicate that high active levels of 
TGF-β contribute to the pathogenetic changes observed in 
subchondral bone in OA joints. 

5. Osteophyte formation
In OA not only bone remodeling takes place but also the 

formation of new bone as a result of chondrogenesis and 
ostechondral ossification, osteophyte formation. Osteo-
phytes are a typical characteristic of OA and are not formed 
in joints affected by rheumatoid arthritis. Osteophytes are 
bony outgrowths that originate from progenitor cells be-
ing located in the periosteum at the border line of the car-
tilage and bone.[44] Bolus injections of TGF-β1 or adenovi-
ral overexpression of TGF-β1 in mouse knee joints induce 
the formation of osteophytes with structure and localisa-
tion similar to the osteophytes found in spontaneous mu-
rine OA.[45,46] Injection BMP’s also results in osteophyte 
formation but these osteophytes appear to mainly origi-
nate from the growth plate chondrocytes.[47,48]

Inhibition of TGF-β activity, either blocking receptor bind-
ing by the use of the soluble type II receptor or blocking 
intracellular signaling using Smad7, significantly decreased 
osteophyte formation in experimental OA in mice.[49,50] 
Mice with drug-inducible chondrocyte-specific overexpres-
sion of BMP-2 did not show more osteophyte formation 
than control mice.[51] However, osteophyte formation was 
greatly boosted in BMP-2 overexpressing mice when OA 
(destabilization of medial meniscus model) was induced in 
these mice. When under these conditions TGF-β1 activity 
was inhibited also the formation of osteophytes was strong-
ly reduced (unpublished). These results indicate, that at 
least in experimental models, TGF-β is the main driver of 

osteophyte formation but that this process can be enhanced 
by BMP activity. Elevated levels of active TGF-β, absent in 
normal joints, activate progenitor cells residing in joint tis-
sues, such as periosteum, to undergo chondrogenesis and 
make new bone. This is confirmed by in vitro studies which 
confirm that TGF-β is the most potent cytokine to induce 
chondrogenesis in progenitor cells.[52,53]

6. Synovial fibrosis in OA joints
Patients with OA complain of pain but also in many cas-

es of joint stiffness.[54,55] Joint stiffness can be a result of 
fluid accumulation in the affected joint but also of fibrosis 
of the joints capsule. Fibrosis can be considered as a exag-
gerated repair process of damage tissues. TGF-β is known 
to be the most potent profibrotic factor. Either injection or 
adenoviral expression of active TGF-β result in synovial fi-
brosis in mouse knee joints.[47,56] Remarkably, fibrosis is 
more pronounced after adenoviral overexpression of TGF-β, 
prolonged exposure to moderate levels, while osteophyte 
formation is more pronounced after TGF-β injection, short 
exposure to high concentrations. This suggest that differ-
ent cells types are activated by different regimes of TGF-β 
exposure, progenitor cells move forward into the direction 
of chondrogenesis by peak levels of TGF-β and fibroblasts 
are induced to proliferate and synthesize matrix molecules 
by prolonged elevated concentrations of TGF-β.

We could show that inhibition of TGF-β activity in experi-
mental OA inhibited synovial fibrosis.[50] Furthermore, ex-
posure of human fibroblasts to TGF-β or overexpression of 
TGF-β in murine knee joints resulted in up regulation of 
expression of the same genes that were found to be up 
regulated in synovium of knee OA patients.[57] It appears 
that these genes are central in synovial fibrosis and are 
stimulated by TGF-β. Moreover, elevated expression of pro-
collagen-lysine, 2-oxoglutarate 5-dioxygenase 2, an en-
zyme increasing the number of collagen hydroxypyridi-
none cross links, was both detected in experimental mu-
rine OA as well as mouse knee joints with adenoviral over-
expression of TGF-β.[58]

We have shown that elevated TGF-β concentrations pref-
erentially activate the Smad1/5/8 pathway in fibroblasts.
[12] In our in vitro experiments stimulation of fibrotic genes 
in fibroblast was mainly mediated by ALK5/Smad2/3 sig-
naling. The role of ALK1/Smad1/5/8 signaling in fibrosis is 
not clear yet. It has been reported that ALK1 activity de-
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creases fibrosis in a number of experimental set ups.[59,60] 
However, on the other hand BMP9, signaling via ALK1 main-
ly, has been reported to be a profibrotic factor.[61] The role 
of ALK1, being either pro or antifibrotic, is still an enigma 
but can be dependent on additional factors that modulate 
the function of the Smad proteins.[62]

7. TGF-β and inflammation in OA 
OA is long considered as a non-inflammatory wear and 

tear disease mainly involving cartilage degradation but is 
now regarded as a whole joint disease with inflammation 
as in integral component in many patients. TGF-β can be a 
stimulator of synovial inflammation and hyperplasia. It has 
been shown that intra-articular injection of rat knee joints 
with TGF-β resulted in swelling and erythema within one 
day.[63] The TGF-β-induced infiltrate consisted after 24 hr 
mostly of mononuclear phagocytes with some lympho-
cytes and neutrophils, while after 4 hr infiltration of mainly 
polymorphonuclear leukocytes was observed.[64] Antago-
nism of TGF-β with a neutralizing antibody in a model of 
erosive polyarthritis blocked cell infiltration and tissue pa-
thology.[65] These data indicate that elated levels of TGF-β 
in OA joints lead to TGF-β-related inflammation that can 
contribute to joint damage in OA.

On the other hand, although TGF-β can attract inflam-
matory cells to the joint TGF-β also has a strong anti-inflam-
matory action. As mentioned above, mice lacking TGF-β1 
develop massive inflammation resembling autoimmune 
disorders.[4,5,66] In lamina propria cells of the gut TGF-β 
suppressed nuclear factor (NF)-α-induced NF-κB p65 accu-
mulation in the nucleus, NF-κB binding DNA activity, and 
NF-κB-dependent gene activation.[67] Moreover, in a mouse 
model of zymosan-induced arthritis injection of TGF-β had 
no effect on inflammation but stimulated proteoglycan 
content and protected against proteoglycan loss.[68] These 
varying result show that TGF-β attracts inflammatory cells 
to the joint and stimulate synovial hyperplasia and fibrosis 
but that it is not clear what is the end effect of TGF-β on 
the progression of tissue destruction. This might be related 
to the (Osteo) arthritis model and the timing of the TGF-β 
or anti- TGF-β treatment. 

8. Concluding remarks
The role of TGF-β in the normal or the OA joint is strik-

ingly different. In a normal joint TGF-β plays an important, 

protective, role in maintaining the differentiated chondro-
cyte phenotype while in an OA joint TGF-β will have a del-
eterious action due to its continuous presence at high lev-
els. This changing action of TGF-β makes therapy targeting 
TGF-β a challenge. In general OA is a focal process, being 
confined to one or a defined number of joints and even in 
a specific joint the OA process can be at a different stage at 
different locations within this joint. Systemic inhibition of 
TGF-β has the danger of negatively affecting normal joints 
while the addition of extra active TGF-β can result in the 
pathogenic effects of TGF-β as described above. Only local 
inhibition in joints with severe OA appears to be an option 
although one has to keep in mind that TGF-β also has a 
role in cartilage repair as a stimulus of chondrogenesis of 
precursor cells. With this in mind, human trials with TGF-β 
or anti-TGF-β have to very well controlled, also measuring 
the effect of the treatment on active TGF-β levels, since ex-
pected findings can without doubt happen to the duality 
and context dependent action of this important cytokine. 
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