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ABSTRACT

Ribosome profiling has emerged as a powerful
method to assess global gene translation, but
methodological and analytical challenges often lead
to inconsistencies across labs and model organ-
isms. A critical issue in ribosome profiling is nu-
clease treatment of ribosome–mRNA complexes, as
it is important to ensure both stability of riboso-
mal particles and complete conversion of polysomes
to monosomes. We performed comparative ribo-
some profiling in yeast and mice with various ri-
bonucleases including I, A, S7 and T1, character-
ized their cutting preferences, trinucleotide period-
icity patterns and coverage similarities across cod-
ing sequences, and showed that they yield com-
parable estimations of gene expression when ribo-
some integrity is not compromised. However, ribo-
some coverage patterns of individual transcripts had
little in common between the ribonucleases. We fur-
ther examined their potency at converting polysomes
to monosomes across other commonly used model
organisms, including bacteria, nematodes and fruit
flies. In some cases, ribonuclease treatment com-
pletely degraded ribosome populations. Ribonucle-
ase T1 was the only enzyme that preserved ribosomal
integrity while thoroughly converting polysomes to
monosomes in all examined species. This study pro-
vides a guide for ribonuclease selection in ribosome
profiling experiments across most common model
systems.

INTRODUCTION

Ribosome profiling (footprinting, Ribo-seq) is a recently
developed method used to monitor translation with sub-
codon resolution across multiple genes (1,2). It involves iso-
lation of intact mRNA-ribosome complexes followed by se-
quencing short fragments of mRNA residing within active
core of ribosomes (footprints). Ribonuclease (RNase) treat-
ment is a critical step in preparing footprints. RNase has
to serve two opposite goals: first, thoroughly digest mRNA

outside of translating ribosomes; and second, keep ribo-
somes intact. Ribosome is a large protein–rRNA complex,
therefore, any RNase would inevitably digest the rRNA, po-
tentially compromising ribosomal integrity, causing experi-
mental bias and loss of information. The initial ribosome
profiling articles were focused on the biology of budding
yeast (1,3,4). Serendipitously, yeast ribosomes turned out
to be very resilient and could withstand rigorous RNase di-
gestion without detectable loss of structural integrity, mak-
ing yeast a perfect organism to work with. This was not
always the case with other species. Notably, Drosophila ri-
bosomes were found easily degradable by RNase I, an en-
zyme used in the majority of ribosome profiling studies. Mi-
crococcal S7 nuclease was suggested as a viable alternative
in that particular case (5,6). However, inspired by the ease
of ribosome footprinting in yeast, the exact same experi-
mental strategy was applied to other model organisms, such
as mice (2). Often, RNase-induced degradation of mono-
somes is not properly addressed and controlled, assuming
that these ribosomes are as stable as yeast ribosomes. In
part, this is to speed up sequencing library preparation,
as unlike standard mRNA-seq, ribosome profiling involves
cumbersome, time-consuming stages. The initial protocols
made use of ultracentrifugation in a sucrose gradient to
separate ribosomes from other cellular components. This
approach offered quality control during ribosome prepa-
ration but lacked scalability. Ultracentrifugation through
a sucrose cushion or minicolumn-based gel filtration over-
came the scalability issue at the expense of quality con-
trol, because ribosomal integrity could not be visually mon-
itored (2,7,8).

During ribosome isolation from various species, we no-
ticed that ribosomes from different sources had distinct
tolerance to different ribonuclease treatments. We iden-
tified at least four commercially available RNases that
could be used for ribosome footprinting and tested them
all with five most widely used model organisms: bacte-
ria (Escherichia coli), budding yeast (Saccharomyces cere-
visiae), nematode worms (Caenorhabditis elegans), fruit flies
(Drosophila melanogaster) and house mice (Mus musculus).
Based on these and other analyses, we provide a guide to ri-
bonuclease selection that can be used as a reference by any-
one interested in carrying out experiments involving ribo-
some profiling.
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MATERIALS AND METHODS

Yeast strain and growth conditions

Saccharomyces cerevisiae strain BY4741 was grown on YPD
agar plates at 30◦C for 2 days. The day before the experi-
ment, cells were transferred to a 20 ml flask of fresh YPD
medium and grown overnight at 30◦C with shaking. A part
of that culture was inoculated into 500 ml of fresh YPD
at the initial OD600 = 0.025 and further cultured at 30◦C
with shaking until the OD600 reached 0.5–0.6. Cell harvest
was performed by vacuum filtration on 65 �m PVDF filters
(Millipore). Cell paste was frozen in liquid nitrogen.

Bacterial strain and growth conditions

Bacterial strain BL21� was grown in 50 ml lysogeny broth
medium (LB) overnight at 37◦C. A part of culture was trans-
ferred to two 500 ml LB flasks to reach the initial OD600 of
0.025 and grown until the OD600 of 0.5. 500 �l chloram-
phenicol (150 mg/ml stock) was rapidly added and bacteria
were incubated for 3 more min. Cells were collected by 5
min centrifugation at 6.000 g in two large 500 ml centrifu-
gal buckets packed with crushed ice. Each pellet was washed
in 1 ml of buffer 20 mM Tris–HCl pH 7.5 at room tempera-
ture, 100 mM NH4Cl, 10 mM MgCl2, 1 mM Dithiothreitol
(DTT), 0.5 mg/ml lysozyme (Sigma, 10 mg/ml stock) and
150 �g/ml chloramphenicol; and spun for 1 min 5000 g at a
table-top centrifuge. Supernatant was discarded and 0.8 ml
of lysis buffer (see below) was added to each tube. Suspen-
sions was frozen in liquid nitrogen and kept at −80◦C.

Drosophila embryo collection

Laying pots were used to collect embryos. A typical laying
pot consists of a 500 ml plastic bucket perforated at the one
side and covered with a Petri dish at another side. The Petri
dish is filled with agar hardened apple juice and also has
yeast paste spread over the center. Drosophila female flies
were allowed to lay eggs in the laying pot for 2–3 h, fol-
lowed by embryo collection. Embryos were washed from
the dish surface with water and a soft brush, placed in a
sieve and rinsed from residual yeast cells. Excess of water
was removed by vacuum filtration on a 65 �m PVDF filters
(Millipore). Embryos were then frozen in liquid nitrogen.

Nematode worm collection

Ten Petri dishes (10 cm diameter) filled with NGM-agar and
OP50 bacterial strain as a food source were seeded with C.
elegans N2 strain and allowed to grow for 5 days at 20◦C.
Then, they were washed off with ∼20 ml M9 buffer (0.1 g/l
cycloheximide) in 50 ml falcon tube and pelleted by 1 min
centrifugation at 500 g. The supernatant was discarded and
the washing procedure was repeated twice more. The pellet
was resuspended in 10 ml of buffer (20 mM Tris–HCl pH
7.5, 100 mM KCl, 5 mM MgCl2, 1 mM DTT, 0.1 mg/ml
cycloheximide) and vacuum filtered on a 65 �m PVDF fil-
ter. Wet paste was scrapped with a plastic spatula and sub-
merged in liquid nitrogen.

Mouse strain and tissue collection

Tissues were collected from 15–20 week old C57BL6 mice.
Mice were sacrificed by CO2 inhalation. Selected tissues
were cut in ∼20 mg slices and frozen in liquid nitrogen.

Cell lysis and ribosome isolation

Frozen pellets of yeast, flies and nematodes were cryogeni-
cally pulverized in a Mini Bead Beater (BioSpec) using
stainless steel vials and chromium beads. To prevent thaw-
ing, vials were submerged in liquid nitrogen in between pul-
verization cycles. The powder was then resuspended in 1 ml
of lysis buffer: 20 mM Tris–HCl pH 7.5, 100 mM KCl, 5
mM MgCl2, 1 mM DTT, 0.1 mg/ml cycloheximide (Sigma)
and Roche complete ethylenediaminetetraacetic acid-free
protease inhibitors. The yeast lysis buffer contained 1% of
Triton-X100, and the nematode and fly lysis buffer con-
tained 1% Tween-20 and 0.25% deoxycholate as detergents.
Bacterial lysates were prepared by slowly thawing frozen
suspensions in a jar filled with tap water followed by snap
freeze in liquid nitrogen and second thaw. The following
components were added to the bacterial lysate: 1/10 volume
of 10% Tween-20 and 2.5% deoxycholate; 5 U/ml Turbo
DNase (LifeTech) and 10 �l/ml x50 Roche protease in-
hibitors. Frozen mouse liver was pulverized by grinding in a
ceramic mortar filled with liquid nitrogen and then lysed in
a glass-teflon homogenizer in the following buffer: 20 mM
Tris–HCl pH 7.5, 100 mM KCl, 10 mM MgCl2, 1 mM DTT,
1% Triton X100, 0.1 mg/ml cycloheximide with protease in-
hibitors. Any residual debris was removed by centrifugation
at 12 000 g for 5 min.

Ribonucleases

RNase I (LifeTech, cat# AM2295), RNase A (LifeTech,
cat# AM2270), RNase T1 (Epicentre, cat# NT09500K),
RNase S7 (Roche/Sigma, cat# 10107921001). Digestion
was performed by adding 1–4 �l of each nuclease directly to
the lysis buffer and incubating for 1 h at room temperature.
In the case of RNase S7, the reaction was supplemented
with 5 mM CaCl2. Controls were supplemented with 2
�l/ml Superase-In (LifeTech) and protease inhibitors.

Sequencing library preparation and analysis

Libraries were prepared and analyzed as described previ-
ously (9) and sequenced on the Illumina HiSeq 2000 plat-
form. Adapters were removed with Cutadapt software (cu-
tadapt -u 1 -m 12 -a AGATCGGAAGAGCACACGTCT)
(10). Short reads alignment of yeast libraries was performed
with Bowtie v. 1.1.2. Read count per gene was calculated
with a custom Perl script. Mouse libraries were aligned
with TopHat 2.1.0 (11) against NCBI BestRefSeq tran-
scriptome (tophat –transcriptome-index -T –library-type fr-
firststrand -N 1 –read-gap-length 1 –read-edit-dist 1). Read
count per gene was accessed by HTseq-count software (12).
ORF coverage profiles and gene expression plots were gen-
erated with custom R scripts. All scripts are available at
gladyshevlab.org/ribosome profiling 2016/index.html.
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Comparison of gene coverage patterns

Spearman’s rank correlation coefficients were calculated be-
tween coverage patterns of genes with more than 2000 rpk
in each study. Median correlation coefficient was selected
as a single representative value. Complete linkage hierar-
chical clustering was performed using Spearman correla-
tion distance. Note on experimental design. Sequencing li-
braries for nuclease A, S7 and T1 treatments were prepared
from the same batch of frozen yeast cells. Nuclease I li-
braries came from an independent batch of yeast. Sequences
can be accessed through GEO repository, accession number
GSE82220.

RESULTS

Ribosomes from different species display drastically different
stability upon ribonuclease treatment

Efficacy of ribonuclease treatment in a typical ribosome
profiling experiment can be monitored by conversion of
polysomes to monosomes. The monosomal peak is then col-
lected for mRNA fragment extraction. Different nucleases
exhibit specific cutting preference and efficacy. We treated
polysome-containing lysates of five most common model
organisms with different RNases to identify the nuclease
that introduces least bias. The tested ribonucleases included
I, S7 (Micrococcal), A and T1 enzymes. The first two are
broad range nucleases cutting at all four nucleotides, RNase
T1 only cuts at guanines and RNase A cuts after cytosine
and uridine (13). Since the first ribosome profiling experi-
ments were implemented in budding yeast, we used it as a
starting point. All four ribonucleases performed well with
yeast ribosomes. They digested most of the mRNA while
preserving integrity of ribosomes, as can be seen by the pro-
portional increase of the monosome peak in sucrose gra-
dient profiles (Figure 1). The total amount of ribosomes
(green shaded area under the curve) in the control and
RNase treatments was almost the same, indicating that no
ribosomes were lost due to ribonuclease digestion. Simi-
larly, all ribonucleases performed well with bacteria, with
the exception of RNase I, which is known to be inactive in
E. coli lysates. These initial observations suggested that both
prokaryotic and eukaryotic ribosomes do not loose struc-
tural integrity in response to RNase digestion of rRNA.
However, subsequent experiments with flies and mice have
proved otherwise.

RNase T1 was the only enzyme gentle enough to pre-
vent monosomes from degradation in Drosophila samples,
while other RNases notably degraded both monosomes and
polysomes, potentially leading to experimental bias prior to
footprint isolation. A somewhat similar outcome was ob-
served in mouse liver samples. RNase I and A failed to pre-
serve structural integrity of ribosomes, likely due to diges-
tion at some critical residues of the rRNA. Nucleases S7
and T1 yielded a much more accurate result (Figure 1). It
is worth noting that none of our multiple attempts to fine-
tune the amount of RNase I used in the reaction, temper-
ature and duration of treatment, buffer composition or pH
resulted in better preservation of monosomes. This is an in-
dication that mouse ribosomes are genuinely vulnerable to

Figure 1. (A) Schematic of a sucrose gradient fractionation of ribosomes.
Cells are lysed, and the lysate is loaded on top of the tube filled with a
sucrose gradient solution. Ultracentrifugation at high G leads to separa-
tion of mRNA–ribosome complexes based on how many ribosomes are
bound to a particular mRNA molecule. Ribosomes appear as UV absorb-
ing peaks when the content of the tube is passed through the UV detec-
tor. Monosomal and polysomal peaks correspond to one or more ribo-
somes bound by mRNA (green arrows on the left panel). (B) Sucrose gra-
dient profiles of ribosomes from model organisms. Each row represents a
species, and columns correspond to treatments with different ribonucle-
ases. Equal amounts of ribosomes were taken for nuclease digestion and
the control. Mouse (15 weeks old) is represented by liver samples, and fruit
fly by whole embryos (2 h post laying). Absorbance was measured at 254
nm. Yeast monosomes display resistance to any ribonuclease tested. Mouse
and Drosophila ribosomes show signs of degradation by RNases I and A
in particular. The profile corresponding to mouse liver RNase I treatment
was obtained with the low amount of the nuclease; increasing the amount
or incubation time would further degrade monosomes producing profiles
similar to RNase A in mouse or S7 in Drosophila. RNase T1 performs
consistently well in all model organisms; it is also lenient in terms of incu-
bation times and concentrations. The number in each panel is the recovery
of ribosomes relative to the control (it does not reflect the extent of the
polysomes to monosomes conversion).
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Figure 2. Sucrose gradient profiles of ribosomes from mouse spleen and
pancreas. (A) Pancreatic ribosomes do not require the addition of ribonu-
clease inhibitors. Splenic ribosomes require the presence of heparin (800
�g/ml) as a stabilizing agent in order to collect the monosomal peak.
Equal amounts of splenic ribosomes were incubated for 30 min at room
temperature. Curiously, RNase T1 is not affected by heparin (Supplemen-
tary Figure S7) unlike RNase I or A, hence it can be used when other nu-
cleases are inhibited. (B) Comparison of footprint yield between different
RNase treatments. No additional methods for rRNA depletion were ap-
plied (such as subtractive hybridization). Samples with multiple biological
replicates are drawn with SD error bars. RNases I, S7 and T1 perform
reasonably well, while RNase A generated the highest contamination with
rRNA (proportion of reads aligned to ribosomal RNAs in the total pool
of reads).

RNase I and A. Therefore, nucleases S7, T1 or their mixture
have to be used instead.

Ribosomes from mouse organs have different resistance to
RNases

Curiously, some mouse organs (namely pancreas, spleen
and lungs) contain large amounts of endogenous ribonucle-
ases that are essentially the same enzymes as RNase A tested
in our digestion assay. Therefore, loss of ribosomes was ex-
pected during cell lysis even in the control with no exoge-
nous nucleases added. Indeed, ribosome preparations from
mouse spleen yielded no ribosomes in the control samples.
This effect was completely prevented by adding high con-
centration of heparin––a non-specific RNase inhibitor (Fig-
ure 2A). Intriguingly, pancreatic ribosomes seemed to be re-
sistant to endonuclease degradation. The structural compo-
sition of ribosomes has to be identical for most of the mouse
tissues, suggesting some extraribosomal factors can be in-
volved in ribosome stability and should be considered prior
to the experiment (Figure 2A). Perhaps, a combination of
many factors, such as ionic strength of the lysis buffer, de-

Figure 3. Estimation of gene expression produces similar results for all ri-
bonucleases. (A) Gene expression levels in yeast lysates treated with dif-
ferent RNases. Left panel shows correlation between biological replicates
treated with RNase I. (B) Pearson correlation matrix for yeast and mouse
Ribo-seq libraries. (C) Gene expression levels in mouse liver lysates treated
with T1, micrococcal S7 nucleases or both.

tergent choice and magnesium concentration should be ad-
justed individually for each tissue in order to use nucleases
other than RNase T1. Our experience shows that it may take
considerable time.

Quantitative gene expression studies

Ribosome profiling is often used to identify differentially
expressed genes. Unlike mRNA sequencing, there are many
more technical caveats to bias quantitative gene expression
estimates. Ideally, different nucleases should lead to simi-
lar results if they do not cause ribosomal degradation. To
test this hypothesis, we sequenced ribosome profiling li-
braries prepared from the same batch of yeast treated with
four RNases. In each case, the resulting gene expression
estimates were closely correlated, with Pearson coefficient
above 0.9 (Figure 3). Therefore, nucleases other than RNase
I can be used as an alternative, and gene expression tables
can be directly compared across studies regardless of the nu-
clease used. To further test this issue, we sequenced Ribo-
seq libraries from mouse liver. As discussed above, RNase I
and A are a bad choice for ribosome profiling in mice due to
ribosomal degradation (Figure 1), hence there are only two
alternatives: micrococcal nuclease S7 and nuclease T1. We
sequenced libraries from liver lysates treated with either S7,
T1 or a combination of nucleases. Gene expression levels
were strongly correlated, suggesting that any single ribonu-
clease or a mixture can be reliably used to address gene ex-
pression as long as it does not degrade monosomes (Figure
3). The last condition seems to be particularly important, as
in a related study in Drosophila (6) two cell lines were treated
with RNase I and S7, and the variance was way higher, sug-
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Figure 4. Characteristics of footprints produced by different ribonucleases.
(A) Nuclease cutting preference and periodic nature of ribosome profiling
footprints. Sequencing reads with specified lengths were lined up by their
3′ termini. Full-length pattern is shown for guanine, patterns for other nu-
cleotides are shown partially to address cutting preference of the nucleases.
Note: no mapping to a transcriptome is necessary at this point. Nuclease
T1 has a strong preference for guanine residue with over 90% of all foot-
prints having G at the 3′ terminus. Nuclease A cuts exclusively after U and
C. Refer to Supplementary Figures S1–4 for footprints with other lengths.
(B) Reference pattern typically observed in mRNA-seq. Codon periodic-
ity is weak but noticeable. (C) Read length distribution among ribosomal
footprints produced by different nucleases.

gesting that unstable ribosomes can significantly skew gene
expression estimates.

Characteristics of ribosomal footprints

Nucleases are expected to possess certain cutting prefer-
ence toward nucleotides. As discussed above, RNase I is
commonly used for ribosome profiling application since it
cleaves after any nucleotide and displays little to no cut-
ting preference (13). In the case when RNase I cannot be
used, micrococcal nuclease S7 is suggested as an alterna-
tive. It also cleaves after all four nucleotides, but apparently
has some obscure cutting preference. For instance, bacte-
rial and Drosophila lysates treated with nuclease S7 were
reported to have weak periodical patterns allegedly due to
cutting bias (5,14–16). In our experiments in yeast, codon
periodicity was clearly detectable for every nuclease (Figure
4A). RNase I indeed has the strongest pattern that holds the
same regardless of the footprint length (Supplementary Fig-
ure S1). Nuclease S7 has a less consistent pattern, clearly de-
pendent on the footprint length (Figure 4A and Supplemen-
tary Figure S3). Two other nucleases: A and T1 are known

to be heavily biased. Nuclease A cuts exclusively after C and
U residues, while nuclease T1 cuts after G (13,15,17,18).
Yet, nucleotide periodicity can be clearly seen (Figure 4A
and Supplementary Figures S2–4).

RNase I outperforms other nucleases by producing nar-
rower distribution of footprint lengths with a peak at 28
nucleotides. RNases A, S7 and T1 yield a broader distri-
bution (Figure 4C). However, the difference is not extreme,
and the majority of ribosome protected fragments fall into
the interval of 26–30 nucleotides regardless of the nucle-
ase used. Interestingly, RNase T1, despite cutting only at
G residue, yields the shortest footprints, peaking at 27 nu-
cleotides in length. On the other hand, read length does not
seem to be a very consistent characteristic of the ribonu-
cleases. For instance, mouse libraries prepared with T1 nu-
clease have much broader length distribution and in general
longer footprints compared to yeast source (Supplementary
Figure S5).

Another important consideration when doing ribosome
profiling is the yield of ribosome protected fragments. They
are always accompanied by contaminating fragments of
rRNA. The amount of rRNA contamination depends on
the organism, translation status and footprint isolation
method and often comprises the majority of the sequencing
reads. Here, we compared performance of four ribonucle-
ases. RNase A has the lowest footprint yield in yeast, while
RNase T1 has the highest. RNases S7, T1 and their mix-
ture performed equally well with mouse liver samples (Fig-
ure 2B). Since RNase I behaves odd with mouse ribosomes,
it is reassuring that RNase T1 in mice generates a similar
proportion of footprints as RNase I in yeast.

Footprint coverage patterns

Since ribonucleases have a cutting preference, it is of inter-
est to test if they have any similarity in the pattern of gene
coverage. Figure 5B shows coverage profiles of an abundant
yeast protein. They are remarkably reproducible between
biological replicates as it can be seen by comparing profiles
generated by RNase I (Figures 5 and 6). This is also true
for all other genes with sufficient coverage (Figure 6B–D).
Given the sufficient number of reads, the coverage pattern
becomes stable and reproducible between biological repli-
cates. The cutoff is determined to be >2000 rpk (Figure 6D).
A related study has placed the cutoff at 105 reads per base,
which is 1.7-fold more conservative than our estimate, prob-
ably due to multiple datasets, including noisy ones, com-
bined together (19). However, there is little in common be-
tween RNase I and any other ribonuclease profiles (Figure
6E). Surprisingly, RNase S7 and RNase A have quite high
similarity of coverage profiles (� = 0.65) despite their dif-
ferent cutting preference.

Cumulative ribosome occupancy profiles in all nuclease
treated samples are similar as well (Figure 5A). Therefore,
any nuclease can be used to study global translation events
such as the slow-down of ribosomes or measuring the rate
of translation. We would like to point one interesting de-
tail. Although the slope of the line can vary between exper-
iments (compare red and orange lines in Figure 5A), but
the gap between the peak at the start codon and the bulk of
the footprint density downstream was consistently present
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Figure 5. Ribosome coverage profiles. (A) Aggregate ribosome occupancy profiles of all yeast genes longer than 1000 nt. Note: RNase A, S7 and T1
treatments were applied to the exact same yeast harvest, whereas RNase I control comes from a separate harvest. This explains the slight difference
between line slopes. The line designated NAR 2014 represents one of the control samples from our previous study (9) and illustrates variability of slope
in nuclease I treated samples. (B) Ribosomal coverage profiles of TPI1 gene (YDR050C) produced by various ribonucleases. Left-side panels show the
coverage when the entire footprint length is used. Right-side panels show the coverage when only a single 3′ end nucleotide of each read is mapped. Two
biological replicates for RNase I demonstrate remarkable similarity of coverage patterns (Pearson’s correlation coefficient 0.99).
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Figure 6. Similarity scores of transcript coverage patterns produced by different RNases. (A) Comparison of gene coverage patterns between two yeast
Ribo-seq replicates. A cutoff is the average number of reads supporting each nucleotide position within a gene’s open reading frame. Increasing the cutoff
leads to omission of genes with low similarity of their patterns. (B) Sequencing depth raises correlations between patterns for every gene. Ideally, at the
very high coverage, all correlation coefficients would be close to 1. (C) Spread on Spearman’s rank correlation coefficients in a set of six yeast Ribo-seq
biological replicates. Fifteen possible pairwise comparisons were done for each gene’s coverage pattern. Replicates have different sequencing depth, as
can be seen in the panel B. (D) The more footprints per pattern a gene has, the higher the correlation is. At the rpk cutoff > 2000 (red dashed line), the
Spearman’s correlation reaches its maximum. Genes that passed this cutoff can be further compared across studies or across samples. (E) Coverage patterns
of the 87 genes (Supplementary Table S1) with rpk > 2000 were compared across Ribo-seq samples. Spearman’s rank correlation coefficient was chosen
as a similarity score metric. This metric requires a high number of reads per pattern, therefore we limited our analysis to genes with a large number of
footprints. The ‘pattern’ is defined as footprint coverage when the entire footprint length is used (Figure 5B, left panel). Complete linkage hierarchical
clustering was performed using Spearman correlation distance. RNase I is represented by two biological replicates to show nearly perfect reproducibility
of coverage pattern when the experiment is performed at the same conditions. None of the other RNases has the pattern similar to the one of RNase I.
Notably, RNase S7 and RNase A patterns share some common features.

in all our ribosome profiling experiments done in yeast (4,9),
similar to many other studies (1,3,20–24) (Supplementary
Figure S6). We were intrigued by the fact that other nucle-
ases do not have this gap (blue, green and purple lines in
Figure 5A). Perhaps, RNase I over digests ribosomes with
shorter nascent peptides. The effect is small enough to not
be detected by sucrose gradient profile. The data suggest
that S7 (micrococcal) nuclease may be the enzyme of choice
to study short upstream reading frames (uORF). Despite
the obscure cutting preference, the less aggressive action to-
ward ribosomes in early elongation can be particularly ben-
eficial compared to nuclease I.

DISCUSSION

Ribosome profiling is an invaluable method for in-depth
investigation of translation mechanisms. It is particularly
promising for studying dynamics of translation in vivo.
However, translation is a relatively fast process, e.g. ∼6
codons/s in mouse cells (2) and ribosome is a large protein–
RNA complex, sensitive to biochemical factors such as in-
hibitors, pH, temperature, ionic strength, etc. Therefore, ri-
bosome profiling requires careful planning to account for
sources of potential bias during sample preparation. Ribo-
some has to be properly maintained during ribonuclease
digestion and footprint isolation. Furthermore, ribosomal
RNA is exposed to ribonuclease during mRNA digestion
which can lead to degradation of monosomes.

Recently, several contradictions regarding the use of
translation inhibitors were resolved. Cycloheximide was re-
lated to the artificial stress-induced increase in upstream
reading frame utilization and accumulation of ribosomes at
the 5′ termini of transcripts (9). It was also explained why
the addition of cycloheximide changes individual codon oc-
cupancy estimates across different ribosome profiling stud-
ies (25). Together, these studies emphasized the importance
of careful experimental planning in order to avoid data mis-
interpretation. There are many more studies addressing po-
tential biases bioinformatically and computationally (26–
29). In the current study, we focused on another core as-
pect of ribosome profiling––selection of the ribonuclease. A
properly chosen nuclease has to meet at least two require-
ments: convert polysomes to monosomes and keep mono-
somes intact. While RNase I is the nuclease of choice in the
case of yeast, it is not necessarily the case with other species.
As we demonstrate in this study, it severely degrades ribo-
somes in some other organisms. Substitution with other nu-
cleases, such as S7 (also known as micrococcal) or T1 could
be a viable alternative, because they are less aggressive to-
ward the ribosome. When used for gene expression studies,
or to calculate translation efficiency, all four ribonucleases
produce nearly identical results as long as the monosomes
are left intact.

We would like to emphasize that our results regarding
RNase I induced instability of ribosomes in mouse samples
apply to tissues. On the other hand, sensitivity of mouse-
derived cell lines varies dramatically. We encountered cell
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lines with no obvious signs of RNase I ribosomal degra-
dation as well as hypersensitive cell lines which could only
be treated with RNase T1. Examination of currently pub-
lished ribosome profiling studies in mouse or human indi-
cates that footprint isolation methods often do not allow
quality check (2,7,8,30–32). In other cases, sucrose gradient
profiles of post-nuclease digests were not included in pub-
lications (33–37). Therefore, it is unclear whether ribosome
degradation was left unnoticed or its extent was marginal in
these cell lines and tissue types. In order to test if ribosomes
are sensitive to nuclease degradation, we recommend run-
ning RNase-treated and -untreated lysates side by side and
compare the areas under the curves, as it is done in Figure 1.
If the sucrose profile demonstrates clear signs of ribosome
breakdown, switch to another nuclease. As we show, cutting
preference is not an issue for gene expression and transla-
tion efficiency analyses. More advanced study designs, such
as evaluation of individual codon occupancies and riboso-
mal pausing, may suffer from a decrease in power and res-
olution due to biases of these ribonucleases. It is particu-
larly true for the S7 nuclease that has a complex cutting bias
pattern. On the other hand, the use of nuclease T1 is very
straightforward; it only cuts after G regardless of the nu-
cleotide that precedes or follows it. Therefore, this simple
well-defined cutting preference can be easily accounted for
and corrected by computational means.

Analysis of ribosome occupancy patterns revealed sim-
ilarity between RNase A and the S7 nuclease (Figure 6).
This is fairly surprising, considering the difference in cut-
ting preference. What is even more striking is that there is
almost no correlation between patterns produced by RNase
I and S7 nucleases. Both nucleases cut at all four nucleotides,
yet, their gene coverage profiles share nothing in common.
This difference is unlikely due to ribosome degradation and
associated loss of footprints, because yeast sucrose gra-
dient profiles (Figure 1) indicate a high preservation of
monosomes post digestion. Whether this means that some
mRNA regions are left uncleaved is a standing question.
This fact should be of a primary concern for those investi-
gating relative codon occupancies from ribosome profiling
data. Clearly, codon enrichment in data sets from RNase
I treated cells would be different from those treated with
RNase S7. The differences in transcript coverage evenness
and continuity between mRNA-seq libraries generated by
different methods has long been known (38). There is very
little in common between transcript coverage patterns as
well, although within a single experiment these patterns are
usually stable. Ribosome profiling data, in addition to the
same library preparation biases as mRNA-seq, are appar-
ently influenced by the nuclease-associated source of bias.
Recently, the more advanced data analysis strategies began
to emerge, including machine learning algorithms, aiming
to extract causality between translation and transcript fea-
tures such as secondary structure, GC content, synonymous
codon usage etc. (23,39). Since the inferences of machine
learning depend on the quality of training sets, accompa-
nying biases have to be kept in check. Moreover, even when
experimenters use similar cell harvesting conditions and the
same RNase I for subsequent footprint generation, the re-
sults are highly variable at the level of individual transcripts,
with some studies sharing virtually no correlation (Supple-

mentary Figure S8). A recent related study came to the sim-
ilar conclusion adding that even extreme peaks in transcript
coverage have median reproducibility around 30% (19).

Additional difficulties would arise when RNase I treat-
ment cannot be applied. In bacteria, all published studies
make use of S7 (micrococcal) nuclease. This presents a chal-
lenging question of how different ribosome profiles would
look if RNase I could be applied instead. According to our
side-by-side comparison of nucleases in yeast, the expected
difference is fairly large.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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