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Abstract

Background: The mannose receptor (MR) is an endocytic receptor of M¢ and endothelial cell
subsets whose natural ligands include both self glycoproteins and microbial glycans. It is also
expressed by immature cultured dendritic cells (DC), where it mediates high efficiency uptake of
glycosylated antigens, yet its role in antigen handling in vivo is unknown. Knowledge of which APC
subsets express MR will assist the design of experiments to address its immunological functions.
Here the expression of MR by MHC class Il positive APC in non-lymphoid organs of the mouse is
described.

Results: MR positive APC were identified in several peripheral organs: skin, liver, cardiac and
skeletal muscle and tongue. MR positive cells in salivary gland, thyroid and pancreas coexpressed
MHC class Il and the myeloid markers macrosialin and sialoadhesin, but not the dendritic cell
markers CDIlc or DEC-205. MR and MHC class Il colocalised in confocal microscope images,
implying that antigen capture may be the primary role of MR in these cells. Distinct ligands of MR
were found in salivary gland and pancreas tissue lysates that are candidate physiological ligands of
MR positive APC in these organs.

Conclusions: The tissue and subcellular distribution of MR suggest it is appropriately located to
serve as a high efficiency antigen uptake receptor of APC.

loaded surface MHC class I and II molecules and develop

Background

Dendritic cells (DC), APC specialised for the efficient
stimulation of naive T cells, are of fundamental impor-
tance in the control of antigen-specific immune responses
(reviewed in [1]). Immature DC are sparsely distributed in
peripheral organs, where they act as sentinels, continu-
ously sampling the antigenic environment. They undergo
maturation in response to stimuli that include microbial
components and tissue damage, and migrate to T depend-
ent areas of lymphoid organs. Here, they upregulate
expression of costimulatory molecules and peptide-

the capacity to stimulate antigen-specific T cells restricted
by MHC class I and II.

Immature DC capture antigens by receptor-mediated
endocytosis, in addition to macropinocytosis and phago-
cytosis (reviewed in [2]). DC are phenotypically and func-
tionally heterogenous (reviewed in [3]), so the ability to
target antigens via specific receptors to different subsets of
DC in vivo may help to reveal distinctive features of their
roles. One candidate receptor for endocytosis in DC is the
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mannose receptor (MR), or CD206, which recognises gly-
coconjugates bearing terminal mannose, fucose and N-
acetylglucosamine by interaction with its carbohydrate
recognition domains (CRDs). Natural ligands include
microbial polysaccharides, glycoproteins and glycolipids,
and mammalian glycoproteins with N-linked high-man-
nose (reviewed in [4]). MR is expressed mainly by subsets
of M¢ and endothelial cells in vivo [5,6], but it is also
expressed by immature cultured DC, where it endocytoses
mannosylated ligands for processing and presentation to
T cells by MHC class II [7]. Mannosylation of antigen con-
fers a greatly enhanced efficiency of presentation to T cells
of the order of 100 [8], and 200 to 10 000-fold [9]. How-
ever, MR is not expressed by immature splenic DC or epi-
dermal Langerhans cells in situ in naive mice [6], and its
contribution to T cell immunity remains unknown.

Notwithstanding their role in stimulating immune
responses, it is becoming increasingly apparent that DC
play a role in maintaining T cell tolerance to self antigens
in the periphery (reviewed in [10,11]). Direct evidence
that DC can induce T cell unresponsiveness under non-
inflammatory conditions came from an elegant study in
which a model MHC class II peptide was targeted to DC
in situ [12]. The peptide was engineered into a mAb spe-
cific for DEC-205 [12], an endocytic receptor of DC that is
structurally related to MR [13]. Although T cells initially
proliferated in vivo in response to DC targeting, the
response was short-lived, and mice were rendered unre-
sponsive to subsequent challenge with antigen in adju-
vant [12]. Antigen targeting via DEC-205 also led to CD8+
T cell tolerance in the steady state [14], and the generation
of regulatory T cells [15]. The latter suppressed prolifera-
tion of conventional CD4+ T cells in vitro, and appeared
to exert immunosuppressive effects in both CD4+ and
CD8+ T cell driven immunopathologies [15].

We recently found MR positive interstitial cells in the thy-
roid, pancreas and salivary gland: secretory organs which
bear endogenous ligands of the CRDs of MR [16]. Thy-
roglobulin was identified as the major MR ligand in the
thyroid. Since this glycoprotein is an autoantigen, we pos-
tulated that APC in the thyroid may use MR for antigen
capture. As a basis for experiments to determine the role
of MR in antigen handling in vivo, especially in secretory
organs, we surveyed naive murine non-lymphoid organs
for MR positive APC and report here on their phenotypic
characterisation. We also provide further evidence for the
existence of distinct ligands of MR in pancreas and sali-
vary gland. In light of the immunosuppressive function of
immature DC in non-inflammatory conditions, a role for
MR in antigen capture by APC for the purposes of mainte-
nance of T cell tolerance to its ligands is credible.

http://www.biomedcentral.com/1471-2172/6/4

Results

We previously characterised the expression pattern of MR
in the adult mouse by immunohistochemistry using a
polyclonal Ab raised against MR, and by in situ hybridisa-
tion [6]. MR positive cells detected by immunohistochem-
istry in lymphoid organs were distinguished from the
most well characterised DC subsets by their location and
morphology, and by comparison with expression of DC
markers in adjacent sections. Here, the MR-specific mAb
MRG6F3 [17] has been used in immunofluorescence and
confocal microscopy to identify and characterise MR pos-
itive APC in non-lymphoid organs.

MR expression by MHC class Il positive cells in non-
lymphoid organs

The specificity of MRGF3, 45, Was verified by observation
of the expected expression pattern of MR in the spleen.
Expression was restricted to the red pulp and did not over-
lap in dual-labeled specimens with the CD11c positive
immature DC located at the border of the white and red
pulps (figure 1). No non-specific binding of the isotype
matched control antibody, 1gG2a,,s5 was detected. The
lack of expression of MR by DEC-205 positive DC in the
thymus was also confirmed (not shown).

To detect the scattered interstitial DC of non-lymphoid
organs, sections were labeled for MHC class II (figure 1).
Although other APC such as M¢ can express MHC class 1I,
constitutive expression by non-DC is absent in most
organs of naive mice. In the skin, almost complete coex-
pression of MR and the pan-M¢ marker macrosialin
(FA.11) was found, but only a minor subset of MHC class
IT positive cells in the dermis coexpressed MR. DC of the
hepatic portal triads are known to express MHC class II
(reviewed in [18]). A proportion of such cells in the liver
were found to coexpress MR. MHC class II positive cells in
the tongue and heart also expressed MR, as did those in
skeletal muscle (Table 1). In summary, expression of MR
by MHC class II positive cells in non-lymphoid organs of
naive mice is not uncommon.

MR expression by novel APC in secretory organs

We previously showed that secretory cells in the salivary
gland, thyroid and exocrine pancreas were rich in ligands
of the CRDs of MR, and expression of MR by adjacent
interstitial cells was particularly intense [16]. In adjacent
sections, we noted expression of MHC class II by intersti-
tial cells. Here a further examination of the phenotype of
MR positive interstitial cells in these organs was made.
Essentially all MR positive cells coexpressed macrosialin
(FA.11) (figure 2). Many if not most also expressed MHC
class 11, although the relative fluorescence intensities of
MR and MHC class II in individual cells were often very
different. In the submandibular salivary gland, MHC class
IT was also expressed by other interstitial cells that were
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Mannose receptor positive and negative APC subsets identified by immunofluorescence microscopy. Tissues
were examined by immunofluorescence microscopy for MR expression and other APC phenotypic markers in dual-labeled
specimens as indicated. MR was detected using MR6F3 4455 MAb. Images of each antigen labelling are shown separately in gray-
scale, and merged in colour, in some cases with nuclear counterstaining shown in blue. Colocalisation of red and green is indi-
cated by yellow. Examples of MHC class ll-positive APC which coexppress MR are indicated with arrows. These constitute a
subset of APC in the skin, liver, tongue and heart. No background was detected with an irrelevant IgG2a, g4 negative control
(shown in the spleen inset of MR-labelling only). Background labelling due to secondary Abs alone was also not detected in
control sections (shown for anti-hamster IgG in the spleen inset of CD | c labelling only). Scale bars are indicated in MR-
labelled panels only, and are 100 um.
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Table I: Expression of Mannose receptor by DC and APC differentiated in vivo

Organ or Tissue Cell type Expression of MR Species Reference
Lymphoid organs

Spleen Immature and mature DC - Mouse [6]

Lymph node Interdigitating cells - Mouse [6]

Lymph node T cell area APC + Human [23]
Lymph node Follicular border APC + Mouse [6]
Peyer's patch APC - Mouse [6]
Thymus Interdigitating cells - Mouse [6]
Non-lymphoid organs

Skin Langerhan's cells - Mouse, Human [6, 22-25]
Skin (atopic dermatitis and psoriasis)  Inflammatory dendritic epidermal cells + Human [25]

Skin Dermal APC Minor subset + Mouse This study
Lung Immature DC Endocytose MR ligand Human [31
Peritoneum DC - Mouse [44]
Blood DC - Human [45]
Thyroid Immature DC / APC + Pig, Mouse [27]; This study
Pancreas APC + Mouse This study
Salivary gland APC + Mouse This study
Liver Hepatic portal triad APC Subset + Mouse This study
Muscle (cardiac and skeletal) APC Subset + Mouse This study
Tongue APC Subset + Mouse This study

probably epithelial cells. Further phenotypic analysis
revealed that MR positive cells coexpressed sialoadhesin
(not shown), a myeloid marker expressed by some M¢
subsets, and also some DC. Expression of DEC-205 was
not detected on any MR positive cells in any of the secre-
tory organs (not shown). Although there were CD11c pos-
itive cells in the salivary gland and thyroid, MR positive
APC were negative for this marker. It was not possible to
assess whether the interstitial cells of the exocrine pan-
creas expressed CD11c as unexpected and abundant
expression of this integrin by adjacent secretory cells was
found.

Since the MR positive cells of secretory organs exhibited a
strongly myeloid phenotype but lacked expression of tra-
ditional DC markers, the possibility that they may be acti-
vated M¢ was considered. IFNy is the most potent
activator of M¢, leading to expression of MHC class II, so
the phenotype of interstitial cells in the secretory organs of
IFNy -/- mice was examined. Constitutive expression of
MR and MHC class II was retained (not shown). In sum-
mary, MR positive interstitial cells displayed a novel APC
phenotype, and constitutively expressed MHC class II in
the absence of stimulation with IFNy.

Characterisation of MR ligands in salivary gland and
pancreas by lectin blotting
We previously identified thyroglobulin as an abundant

Confocal microscopic analysis of MR positive APC in
secretory organs

The coexpression of MR and MHC class II in secretory
organ APC implied that these cells may have immuno-
logic functions. The distribution of these markers were
examined by confocal immunofluorescence microscopy,
in cells that expressed comparable levels of the two pro-
teins (figure 3). In some cells, considerable pixel to pixel
overlap of MR and MHC class II, which was not restricted
to individual optical sections within z-series, was
observed. The resolution of the microscope was inade-
quate to resolve individual vesicles, but regions of higher
and lower detection of one marker were frequently paral-
leled by similar variations in fluorescence intensity of the
other. In other cells, MR and MHC class II were not seen
to colocalise, demonstrating that the resolution of the
microscope and preservation of the tissues were adequate
to allow different intracellular compartments to be distin-
guished in these cells (not shown). Furthermore, MR did
not colocalise with the endosomal marker macrosialin in
confocal microscope images (not shown). The results are
therefore highly suggestive that MR and MHC class II are
located in the same subcellular compartments within a
proportion of APC.

ligand of MR present in the thyroid, and showed that
CRD4-7Fc, an Fc-fusion protein bearing four of the CRDs
of MR, which retains the same ligand specificity as MR,
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Figure 2

Mannose receptor positive APC in secretory organs co-express macrosialin and MHC class Il. Secretory organ
sections were probed for MR and either macrosialin (FA.I1) or MHC class Il as indicated. They are shown separately and as
merged images that include a nuclear counterstain in blue. In merged images of MR and FA.11 labelling, there are many yellow
cells, indicating colocalisation of these markers. In merged images of MR and MHC class |l labelling, there are fewer yellow
cells, because the fluorescence intensities of the two labels are usually very different in individual cells. However, visual com-
parison of singly labelled images indicates that many cells do express both markers. Examples in each tissue are indicated with
arrows. The scale bar is indicated in the first panel only and is 100 um.
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Figure 3

Mannose receptor and MHC class Il colocalise in confocal microscope images of secretory organ APC. The sub-
cellular distribution of MR and MHC class Il in secretory organ APC was examined by confocal microscopy as indicated. A
nuclear counterstain in blue is included in merged images. Single optical planes showing a high degree of colocalisation of MR
and MHC class |l were selected from z-series in which colocalisation was also observed in adjacent optical sections. Boxed
regions of each image are shown at three-fold higher magnification in insets. The scale bar is indicated in the first panel only and
is 5 um.
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A Mannose receptor-fusion protein recognises distinct bands in blots of salivary gland and pancreas tissue
lysates. Tissue lysates were separated by SDS-PAGE and examined by Coomassie protein staining and western and lectin blot-
ting as indicated. The doublet of bands recognised by the antibody directed against the putative MR ligand, salivary amylase, did
not correspond to the bands recognised by the MR-fusion protein, CRD4-7Fc. The specificity of this probe was confirmed by
loss of all bands in blots probed with CRD4-7Fc in the presence of the competitor, mannose. Binding to mannose-BSA is
shown as a positive control. Protein loaded per lane was 10 g of salivary gland and pancreas lysates in each application except
western blotting of pancreas in which 200 ng was used. 5 ng mannose-BSA was used per lane in lectin blotting. The migration
pattern of molecular weight markers is indicated on the left of the image.

bound specifically to sections of salivary gland and pan-
creas [16]. Here, further evidence for the existence of dis-
tinct ligands of CRD4-7Fc in the salivary gland and
pancreas is shown, and estimates of their Mr. Tissue
lysates were separated by SDS-PAGE, transferred to nitro-
cellulose membranes and probed for ligands of CRD4-7Fc
by lectin blotting (figure 4). Bands of approximate Mr of
55,100, 120, 130 and >250 kD were identified from sali-
vary gland, and bands of 60, 145, 215 and 250 kD from
pancreas lysates. Binding specificity was confirmed by
probing with CRD4-7Fc in the presence of mannose.

Under these conditions, all binding was lost. The distribu-
tion of bands in CRD4-7Fc probed blots was compared
with gels stained for protein with Coomassie. The 55 kD
ligand in salivary gland may correspond to a particularly
abundant fraction in the Coomassie stained gel, but other
ligand bands from either organ did not appear to be asso-
ciated with major protein fractions. Human salivary amy-
lase has been shown to be a ligand of rat MR [19], so a
comparison was made between the size of ligand bands
and bands in blots probed for alpha amylase. Amylase
was a minor component of salivary gland, although a
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major component of pancreas, giving rise to a doublet of
bands in both with Mr of 49 and 50 kD, distinct from all
bands detected in lectin blots with CRD4-7Fc. The identi-
ties of the ligands of MR in salivary gland and pancreas
therefore remain unknown.

As a control, equivalent quantities of lung, thymus and
spleen tissue lysates were subjected to lectin blotting with
CRD4-7Fc as described above, but defined bands were not
detected (not shown). We previously showed that M¢
within lung and thymus tissue sections contained ligands
of CRD4-7Fc, as did M¢ and other cells within spleen [16].
The absence of defined bands in lectin blots of lysates of
these tissues indicates that ligands generally present
within tissue are heterogeneous in size, and that no single
species is sufficiently abundant to be detectable after sep-
aration by SDS-PAGE. This is in stark contrast to the
defined tissue-specific bands detected in lectin blots of
salivary gland and pancreas tissue lysates.

Discussion

The MR was the first non-opsonic C-type lectin receptor
shown to be expressed and mediate adsorptive endocyto-
sis in DC [7,20], properties it shares with a growing family
of such receptors (reviewed in [21]). Expression of MR by
DC appears to be tightly regulated. In human peripheral
blood monocyte-derived DC, MR expression is down-reg-
ulated by inflammatory stimuli, and for this reason it has
been considered a prototype marker of immature DC [7].
However, human epidermal Langerhans cells which are
functionally immature, do not express MR in situ [22-25],
although have been found to be positive for MR after a
short isolation procedure [26]. In fact, many DC subsets
that have differentiated in vivo do not express MR; a sum-
mary of MR expression by APC is shown in table 1. Here,
the expression of MR by APC in non-lymphoid organs of
the naive mouse is described. Cells were analysed in situ,
circumventing the problem that isolation or culture of
cells for ex vivo analysis may affect expression of MR.

In contrast to our earlier observation that MR is not
expressed by well-characterised subsets of DC in lym-
phoid organs [6], many APC in peripheral tissues
expressed MR, including a proportion of MHC class 11
positive cells in skin, liver, tongue and heart. Whilst a lim-
ited phenotypic analysis is not sufficient to prove that
these cells are DC, in the case of MR positive cells in the
thyroid, pancreas and salivary glands, this designation
appears to be a strong possibility. DC are normally distin-
guished from monocytes and macrophages by phenotype,
morphology and function, properties which are most
amenable to study after cell isolation. MR is expressed by
interstitial cells in situ in pig thyroids, and MR positive
cells have been successfully isolated from this source, and
maintained in co-culture with thyrocytes in the presence

http://www.biomedcentral.com/1471-2172/6/4

of thyroid stimulating hormone [27]. Isolated cells
expressed MHC class II, S100 protein and had a high
endocytic capacity, characteristic of DC. They also exhib-
ited morphological features of DC including a plasma
membrane with numerous processes, a reniform nucleus
and intracellular annular structures. In response to a stim-
ulator of DC maturation, TNFa, the cells detached from
the culture substratum and lost the ability to endocytose
the MR ligand, FITC-dextran. By extension, the MR posi-
tive APC detected in the murine thyroid may also be
immature DC. MR positive APC in the pancreas and sali-
vary gland were phenotypically indistinguishable from
the thyroid cells, according to the markers used in this
study. APC in all three secretory organs exhibited a
strongly myeloid phenotype, expressing macrosialin and
sialoadhesin, but were unlikely to be activated M¢ since
they were also present in IFNy -/- mice. MR positive imma-
ture DC or other APC at peripheral sites are likely to
down-regulate MR when they mature and migrate to
lymph nodes, in accordance with in vitro models [7,27],
since the mature interdigitating cells of tissue-draining
lymph nodes do not express MR [6].

The function of MR in relation to antigen handling in vivo
is poorly understood, in part because most studies have
used glycosylated Ag that are now known to be ligands of
other receptors in addition to MR (reviewed in [28]).
However, a specific role for MR in enhancing uptake and
presentation to both CD4+ and CD8* T cells by DC has
recently been shown using Ag fused to mAb specific for
MR [29,30]. Surprisingly, reports of any ability of MR to
enhance primary immune responses in vivo have not
been forthcoming, but since MR is not expressed by
splenic DC or epidermal Langerhans cells (figure 1; [6]),
MR may not play a role in DC capture of antigen admin-
istered intravenously or by skin absorption. Isolated
human lung DC exhibit a high endocytic capacity for the
MR ligand, FITC-dextran [31]. Therefore, MR may play a
role in handling of inhaled antigens, such as the house
dust mite allergen, Der p 1, whose endocytosis by DC is
dependent on MR [32]. A link between MR and allergy has
been suggested based on the finding that monocyte-
derived DC from allergic patients expressed more MR and
endocytosed Der p 1 more efficiently than did DC derived
from healthy donors [32].

Antigen uptake by MR on cultured DC promotes presen-
tation to T cells of antigen-derived peptides on MHC class
I1 [7]. The colocalisation of MR and MHC class II in con-
focal microscope images of APC in thyroid, pancreas and
salivary gland described here implies a role in antigen
uptake for presentation. Interestingly, in mouse bone
marrow-derived DC and a MHC class II-expressing fibrob-
last cell line, MR did not colocalise with MHC class 11 [33].
However, the structurally similar receptor, DEC-205, did
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target MHC class II compartments, and this was found to
depend on the presence of an EDE triad within the recep-
tor's cytoplasmic tail, which MR lacks. When fused to the
extracellular domain of the Fc receptor, the cytoplasmic
tail of DEC-205 directed endocytosed human IgG to a
compartment from which MHC class II loading and sub-
sequent presentation of IgG-derived peptides was 100-
fold more efficient than that driven by the cytoplasmic tail
of MR. In another study, efficiencies of processing and
presentation of ribonucleases A and B by a fibroblast cell
line expressing MR and MHC class II IAK were compared
[34]. These model Ag differ only by the presence of a high-
mannose oligosaccharide on RNAse B. Although RNAse B,
a ligand of MR, was endocytosed more efficiently than the
non-ligand RNAse A, efficiencies of presentation of the
two Ag were indistinguishable [34]. Therefore, MR does
not constitutively enhance Ag presentation of its ligands.
To do so, it may need to target MHC class II compart-
ments. The apparent colocalisation of MR and MHC class
II in secretory organ APC implies that the intracellular
locations of MR or MHC class II molecules in these cells
may be distinct from those in bone marrow-derived DC
and transfected fibroblasts, perhaps permitting MR to tar-
get Ag to these compartments with greater efficiency. Unu-
sually for immature DC, those cultured from pig thyroid
were characterised by plasma membrane expression of
MHC class 11 [35].

If MR is poised to direct Ag to the MHC class II compart-
ments of secretory organ APC, the question of which Ag
are captured in these environments must be raised. We
previously showed that thyroglobulin, a major auto-anti-
gen in murine autoimmune thyroid diseases, is a ligand of
MR, and suggested that MR expressed by interstitial cells
in the thyroid may be involved in maintaining tolerance
to this Ag in normal mice [16]. Here, further evidence is
presented that the pancreas and salivary glands also bear
abundant MR ligands. A high molecular weight fraction in
salivary gland lysate (>250 kD) may correspond to secre-
tory IgA. This Ab inhibits adhesion of microbes to the gut
wall, but is a non-inflammatory isotype, to avoid
unwanted immune reactions against indigenous micro-
flora and dietary Ags (reviewed in [36]). Uptake of secre-
tory IgA by cultured human DC could be partially blocked
by mAb against MR and this pathway has been suggested
to allow modulation of mucosal immune responses [37].
The MR ligands in pancreas lysate were of different Mr to
those in salivary gland, and remain undefined. A role for
MR in maintenance of immune tolerance to its ligands in
this organ is credible since pancreatic DC of naive mice
are believed to be tolerogenic [38]. DC isolated from the
lymph node draining the pancreas, but not from other
lymph nodes, were able to confer protection against dia-
betes when transferred to the nonobese diabetic (NOD)
mouse strain [38].

http://www.biomedcentral.com/1471-2172/6/4

In light of the location of MR positive APC in secretory
organs, the abundance of endogenous ligands, and the
positive identification of one ligand as thyroglobulin, the
available data could suggest a tolerogenic role of MR is
more likely than an immunostimulatory role in these
organs in the steady-state. Such a mechanism may repre-
sent a physiological correlate of the experimentally
induced immune tolerance achieved by targeting Ag to
DEC-205 in naive mice [12,14,15]. Further studies will be
required to address the significance of MR to immune
homeostasis.

Conclusions

MR positive APC are present in non-lymphoid organs of
the naive mouse, but in most organs examined, only a
subset of MHC class II positive cells express MR, in con-
trast to the ubiquitous expression of MR described in cul-
tured DC. This information will inform the design of
experiments to test the function of MR in antigen han-
dling in vivo. An immuno-regulatory role for MR in rela-
tion to its endogenous ligands in salivary gland, pancreas
and thyroid is suggested by the finding that MR positive
APC are abundant in these organs, they co-express MHC
class I and appear to have an overlapping subcellular dis-
tribution of MR and MHC class II.

Methods

Mice

IFNy -/- mice [39] were backcrossed for 14 generations
onto the C57BL/6 background at the Sir William Dunn
School of Pathology, Oxford, UK. IFNy -/- and WT C57BL/
6 mice were bred and used at 8 to 12 weeks of age in
accordance with Home Office legislation. No differences
in phenotype or abundance of MR positive APC were
noted between male and female mice.

Antibodies and Fc-fusion protein

Rat mAb were prepared in our laboratory and used at opti-
mal concentrations for immunolabelling. They were
directed against MHC class II (clone TIB120; ATCC); mac-
rosialin (clone FA.11; [40]) and sialoadhesin (clone 3D6;
[41]). Rat mAb against DEC-205 (clone NLDC-145; [42])
and hamster mADb against CD11c (clone N418; [43]) were
purchased from Serotec (Kidlington, UK). MRG6F3
directed against MR [17], and rat IgG2a were conjugated
to Alexa,gs (Molecular Probes, Leiden, The Netherlands)
according to the manufacturer's instructions. Goat anti-
amylase was from Santa Cruz Biotechnology Inc (Santa
Cruz, CA). CRD4-7Fc was prepared as described [16]. Sec-
ondary Abs were goat F(ab'), anti-rat IgG, and goat F(ab'),
anti-Armenian hamster IgG, both cy3 conjugated, and
horseradish peroxidase conjugated mouse F(ab'), anti-
human IgG Fc (Jackson ImmunoResearch Labs; West
Grove, PA). Horseradish peroxidase conjugated donkey
F(ab'), anti-goat IgG was from Chemicon (Harrow, UK).
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Immunofluorescence labelling and microscopy

For immunofluorescence microscopy, 6 pm cryosections
were prepared from unfixed frozen tissues. They were per-
meabilised in an incubation buffer consisting of 0.5%
BSA and 0.05% saponin in PBS, then blocked with 5%
normal rabbit serum in incubation buffer. Sections were
subsequently incubated with rat or hamster mAb specific
for APC antigens for 1 hr, then the appropriate cy3-conju-
gated secondary Ab for 30 min. Sections were blocked
with 100 pg/ml rat IgG for 30 min, before being probed
with Alexa, g conjugated MRGF3 mAD or isotype matched
control. Nuclei were labeled with Hoechst 33342 dye
(Molecular Probes). Sections were mounted in Aqua Pol-
ymount (Polysciences, Inc., Warrington, PA). Slides were
examined by fluorescence microscopy and 12-bit digital
images captured using a CCD camera attached to a Zeiss
Axioplan photomicroscope. Slides were prepared in the
same way for confocal microscopy, except that cryosec-
tions were cut at 20 pm. Confocal microscope z-stack
images were collected using a Bio-Rad Radiance 2000 MP
laser scanning confocal microscope, with lasers exciting at
367, 488 and 543 nm. Images corresponding to each
fluorophore were collected using individual lasers
sequentially to eliminate bleed-through. Immunofluores-
cence and confocal images were processed using Meta-
Morph version 4.5 software.

Western and lectin blotting

Mouse tissue lysates were prepared in lysis buffer (2% v/v
Triton X-100, 10 mM Tris pH 8.0, 10 mM NaNj;, 150 mM
NaCl, 10 mM EDTA, 5 mM iodoacetamide, 1 mM PMSF,
1 mg/ml pepstatin, 1uM leupeptin). Proteins were quan-
tified in duplicate using Bicinchoninic acid protein assay
kit (Pierce Chemical Company, Chester, UK). Samples
were electrophoresed by SDS-PAGE, transferred to nitro-
cellulose membranes and subjected to western or lectin
blotting using standard methods [16]. CRD4-7Fc was
used at 1 pug/ml, with or without 100 mM D-mannose as
a specificity control. Membranes were probed with the
appropriate horseradish peroxidase-conjugated secondary
Ab, and signal was developed using enhanced chemilumi-
nescence (Amersham Life Science Ltd., Bucks., UK). A cal-
cium containing buffer was used in lectin blotting
throughout (150 mM NaCl, 10 mM Tris pH 7.4, 10 mM
CaCl,) and mannose-BSA (Sigma, St. Louis, MO) was
used as positive control. Gels were also stained with
Coomassie R-250 to detect protein.

Abbreviations
CRD, carbohydrate recognition domain; DC, dendritic
cell; MR, mannose receptor
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