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Abstract. pOMD29 is a hybrid protein containing the 
NH2-terminal topogenic sequence of a bitopic, integral 
protein of the outer mitochondrial membrane in yeast, 
OMM70, fused to dihydrofolate reductase. The topo- 
genic sequence consists of two structural domains: an 
NH2-terminal basic region (amino acids 1-10) and an 
apolar region which is the predicted transmembrane 
segment (amino acids 11-29). The transmembrane seg- 
ment alone was capable of targeting and inserting the 
hybrid protein into the outer membrane of intact mi- 
tochondria from rat heart in vitro. The presence of 
amino acids 1-10 enhanced the rate of import, and this 
increased rate depended, in part, on the basic amino 

acids located at positions 2, 7, and 9. Deletion of a 
large portion of the transmembrane segment (amino 
acids 16-29) resulted in a protein that exhibited negli- 
gible import in vitro. Insertion of pOMD29 into the 
outer membrane was not competed by import of excess 
precursor protein destined for the mitochondrial ma- 
trix, indicating that the two proteins may have differ- 
ent rate-limiting steps during import. We propose that 
the structural domains within amino acids 1-29 of 
pOMD29 cooperate to form a signal-anchor sequence, 
the characteristics of which suggest a model for proper 
sorting to the mitochondrial outer membrane. 

T 
HE mechanism of protein insertion into mitochondrial 
membranes is not well understood, other than the ob- 
servations that deletion of predicted transmembrane 

segments in a limited number of such proteins can lead to 
relocation of the protein to soluble mitochondrial compart- 
ments (Liu et al., 1988; Glaser et al., 1990) and, conversely, 
that introduction of a heterologous transmembrane stop- 
transfer segment can result in membrane insertion of an 
otherwise soluble matrix protein (Nguyen and Shore, 1987; 
Nguyen et al., 1988). Studies in this area have been compli- 
cated by a number of issues. For example, the mitochondrion 
contains two translocation-competent membranes; the prob- 
lem of membrane insertion, therefore, is also a problem of 
protein sorting. Also, two pathways may have evolved for 
protein sorting to mitochondrial membranes: the conserva- 
tive sorting pathway, in which cytoplasmically-synthesized 
precursor proteins may be routed first to the matrix and then 
exported to the inner membrane (Hartl et al., 1986; Hard 
and Neupert, 1990; Mahlke et al., 1990), and the stop-trans- 
fer sorting pathway, in which proteins are inserted into either 
the outer or inner membrane during unidirectional import 
into the organelle (Blobel, 1980; Liu et al., 1990; Mahlke 
et al., 1990; Glick and Schatz, 1991). Finally, progress has 
been limited by the fact that some of the best-studied exam- 
pies of mitochondrial membrane proteins exhibit relatively 
complex structures. For example, the major protein of the 
outer membrane, porin, is devoid of uniformly hydrophobic 
transmembrane segments but, like the bacterial porins, may 
intercalate into the membrane as a fl barrel (Jap, 1989). 

To avoid many of these complications, we have focused on 
a simple bitopic integral protein of the outer mitochondrial 

membrane in yeast, OMM70 (Hase et al., 1984) (also called 
MAS70, Hines et al., 1990). The topogenic information in 
OMM70 resides within a stretch of 29 amino acids at the 
NH~ terminus, resulting in a protein that is anchored in the 
outer membrane via a predicted 19 amino acid transmem- 
brane segment (amino acids 11-29) in the Ni~-C~ orienta- 
tion, leaving a large COOH-terminal fragment exposed to 
the cytosol (Hase et al., 1984; Nakai et al., 1989). Evidence 
has been obtained that the Neurospora homolog of OMM70, 
MOM72, employs the same import receptor as proteins des- 
tined for the matrix compartment (S611ner et al., 1990). 
However, proteins that are inserted into the mitochondrial 
outer membrane do not require an electrochemical potential 
across the inner membrane (Freitag et al., 1982; Mihara et 
al., 1982), indicating that routing to the outer membrane 
does not occur via a conservative sorting pathway. 

Earlier studies suggested a model in which OMM70 is 
directed to mitochondria by a matrix-targeting signal located 
at the extreme NH2-terminus (amino acids 1-12), with 
translocation to the matrix being arrested at the outer mem- 
brane by a stop-transfer sequence (amino acids 11-29) (Hurt 
et al., 1985). The efficiency of import to the matrix of 
reporter proteins carrying amino acids 1-12 of OMM70, 
however, was very weak and, as emphasized by Glick and 
Schatz (1991), such findings might arise indirectly from the 
fact that a high percentage of random, positively-charged se- 
quences can function as weak matrix-targeting signals. Also, 
this region of OMM70 is replaced by a very different un- 
charged, proline-rich sequence in MOM72 (Steger et al., 
1990). 

Here, we present evidence that the basic NH2-terminus of 
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OMM70 cooperates with the transmembrane segment to 
form the requisite topogenic sequence for selection of the 
mitochondrial outer membrane, which we term a signal- 
anchor sequence. Comparisons to the functionally analo- 
gous signal-anchor sequences of type II and type III proteins 
(von Heijne, 1988) that are inserted into the membrane of 
the endoplasmic reticulum (Blobel, 1980; Wickner and Lod- 
ish, 1985) suggest a mechanism for correct sorting to the mi- 
tochondrial outer membrane. 

Materials and Methods 

General 
Previous articles describe the routine procedures employed for recombinant 
DNA manipulations (Skerjanc et al., 1990; Sheffield et al., 1990), tran- 
scription of pSP64 constructs (Nguyen and Shore, 1987), translation of 
pSP64-derived mRNA in a rabbit reticulocyte cell-free system in the pres- 
ence of [35S]methionine, and isolation of mitochondria from rat heart 
(Argan et al., 1983). Additional details are provided in the figure legends. 

Recombinant Proteins 
A 650-bp TaqI-BglII fragment was excised from pSV2DHFR and inserted 
between the AccI and BamHI sites of pSP64 (Skerjanc et al., 1990). The 
resulting plasmid was digested with HindlIl and PstI, and two adaptors con- 
taining HindlII and PstI overhangs were inserted between these sites (adap- 
tor I: 5 ' - A C - C T A ~ A T T A ~ C A A G A C A G C C A T T T T -  
GGCTGCA and 3'-TACTTCTCGAAGTAAI~TTCCTTGTTCTGTCGGT- 
AAAACCG; adaptor II: 5'-GTqGCTGCTACAGGTACTC~CATCGGTGC- 
CTACTATTATTACGCTGCA and 3'-ACGTCAACGACGATGTCCATGACG- 
GTAGCCACGGATGATAATAAIGCG). Part of the Pstl site was removed 
by standard PCR techniques. This created the plasmid pSP (pOMD29) 
which encodes amino acids 1-29 of yeast OMM70 (Hase et al., 1984) con- 
nected via a glycine (position 30) to amino acids 4-186 of dihydrofolate 
reductase (DHFR) ~, and in which amino acid 15 was changed from threo- 
nine to alanine. The plasmid pSP(pOMD29A16-29) was created by employ- 
ing only adaptor I in the manipulations described above, pSP(pOMD29A2- 
10) was formed by deleting adaptor I from pSP(pOMD29) and replacing 
it with an adaptor (5 '-AGCTATC~CCAT~qW__rCA and 3'-TACCGG- 
TAAAACCG) that encodes amino acids 1 and 11-15 of pOMD29. Finally, 
adaptor I of pSP(pOMD29) was replaced with the adaptor, 5-AGCTTA- 
TGCAGAGC TTCATTCACAGAAC CAGACAGCCATTTTGGCTGCA and 
3'- ATAC GTC TCGAAGTAATGTGTC ~T CT G T CG G T A A AACCG,  to 
yield pSP(pOMD29KR2,7,9Q), in which amino acids 2, 7, and 9 of pOMD29 
were replaced by glutamine. 

Mitochondrial Import 

Reaction mixtures contained 10% (v/v) rabbit reticulocyte lysate tran- 
scription-translation products labeled with [3SS]methionine, mitochondria 
(0.5 mg protein/ml), 0.125 M sucrose, 40 mM KC1, 1.0 mM MgAc2, 10.0 
mM Hepes, pH 7.5, 0.5 mM dithiothreitol, 0.5 mM ATP, 2.5 mM sodium 
succinate, 0.04 mM ADP, and 0.I mM potassium phosphate, pH 7.5. After 
incubation at 30~ aliquots (50 #1) were removed and layered over 500 #1 
0.25 mM sucrose, 10 mM Hepes, pH 7.5, 1.0 mM dithiothreitol, and mito- 
chondria were collected by centrifugation for 2 min at 12,000 g. 

Alkali Extraction 
After import, mitochondria were recovered by centrifugation, suspended in 
freshly prepared 0.1 M NazCO3, pH 11.5, to a final protein concentration 
of 0.25 mg/ml, and incubated on ice for 30 min, with periodic vortexing. 
Membranes were collected by centrifugation at 30 psi. for 10 min at 4~ 
in a Beckman Airfuge (Beckman Instruments, Carlsbad, CA). 

Results and Discussion 

A hybrid protein, pOMD29, was created by fusing amino 
acids 1-29 of yeast OMM70 (Hase et al., 1984) through a 

L Abbreviation used in this paper: DHFR, dihydrofolate reductase. 

(+)+ + + 

MKSFITRNKTAILAAVAATGTAIGAYYYYGPLNC t D H F R  I oOMD29 (OMM70) 
1 10 �9 29 - -  

(4)+ + + 
MKSFITRNKTAILAA . . . . . . . . . . . . . .  GPLNC ~ D H F R I  pOMD29A 16- 29 

MQSFITONQTAILAAVAATGTAIGAYYYYGPLNC J D H F R  l pOMD29KR2,7,9 Q 
I 10 I 29 - -  

Figure 1. Recombinant proteins. The NH2-terminal sequences of 
the proteins encoded by the various recombinant plasmids described 
in Materials and Methods are shown, using the single-letter code 
for amino acids. The predicted transmembrane segment (amino 
acids 11-29, Hase et al., 1984; Nakai et al., 1989) is underlined; 
e, alanine substitution for threonine at residue 15 of OMM70; 
(dashes) deletions; (asterisks) substitutions of lysine and arginine 
by glutamine; (DHFR) murine dihydrofolate reductase (see Ma- 
terials and Methods). 

glycine (residue 30) to amino acids 4-186 of dihydrofolate 
reductase (DHFR). The NH2 terminal sequence of pOMD29 
and its mutant derivatives are shown in Fig. 1. As documented 
elsewhere (Li and Shore, 1992a), pOMD29 was imported 
into the outer membrane of intact rat heart mitochondria in 
vitro by a process dependent on ATP and protease-sensitive 
mitochondrial surface components, and in which the orien- 
tation of the native OMM70 protein was retained (Nin-C-~yto). 
In common with all other outer membrane proteins exam- 
ined to date, insertion of pOMD29 did not require the mito- 
chondrial electrochemical potential and the protein was not 
proteolytically processed (Li and Shore, 1992a). 

Insertion of pOMD29 into the lipid bilayer of the mito- 
chondrial outer membrane was assayed by its acquisition of 
resistance to extraction at pH 11.5, a property that is com- 
mon to integral membrane proteins (Fujiki et al., 1982). Fig. 
2 A demonstrates that recovery of the alkali-resistant form 
of pOMD29 was dependent on the presence of mitochondria 
during import (compare lanes 2 and 4). However, appear- 
ance of the alkali-resistant form of pOMD29 occurred after 
binding of the protein to mitochondria at 30 ~ (Fig. 2 A, com- 
pare lanes 3 and 4) but much less so at 4 ~ (Fig. 2 A, compare 
lanes 5 and 6), suggesting that alkali extraction can distin- 
guish between pOMD29 that is merely bound to the surface 
of the organelle (4 ~ Fig. 2 A) and that which is inserted into 
the bilayer (30 ~ Fig. 2 A). As expected, after import of a hy- 
brid protein containing the matrix-targeting signal of preor- 
nithine carbamyl transferase fused to DHFR (i.e., pO- 
DHFR, Skerjanc et al., 1990), both the full-length precursor 
that was recovered with the organelle and the processed 
product, previously shown to be located exclusively in the 
matrix compartment (Skerjanc et al., 1990), were com- 
pletely extracted at pH 11.5 (Fig. 3 A, top). As shown in Fig. 
2 B, insertion of pOMD29 into the outer membrane and up- 
take of pO-DHFR to the matrix were both significantly re- 
duced by pretreatment of the intact mitochondria with tryp- 
sin (see also Li and Shore, 1992a). 

Targeting and Membrane-Anchor Domains 
of pOMD29 
Deletions were introduced into pOMD29 to remove either 
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Figure 2. Temperature-dependent and protease-sensitive insertion 
of pOMD29. (A) pSP(pOMD29) was transcribed and translated in 
the presence of [35S]methionine, and import of pOMD29 into 
purified rat heart mitochondria (MITO) was carried out at either 
30 or 4~ Aliquots from the reaction mixtures were removed and 
layered over a cushion of sucrose and centrifuged to recover mito- 
chondria. Pellets were subjected to sodium dodecyt sulfate poly- 
acrylamide gel electrophoresis (SDS-PAGE) either directly (lanes 
2, 3, and 5) or after extraction with 0.1 M Na2CO3, pH 11.5 
(ALKAL/) (lanes 4 and 6), and the products visualized by fluo- 
rography. (Lane 1) 10% of input [35S]pOMD29; (lane 2) [35S]- 
pOMD29 that sedimented in the absence of mitochondria. (B) Be- 
fore import, mitochondria were treated with trypsin (PRE-TRYPSIN) 
in the presence (lanes I and 3) or absence (lanes 2 and 4) of excess 
soybean trypsin inhibitor, exactly as described (Li and Shore, 
1992a). Import was carried out for [35S]pOMD29 and [35S]pO- 
DHFR as described in A and Fig. 3 A, respectively, and mitochon- 
dria were recovered and analyzed either directly (lanes 3 and 4) or 
after extraction with alkali (lanes I and 2) (ALKALI). The positions 
of pOMD29 and of the precursor and mature (m) forms of pO- 
DHFR are indicated. 

the hydrophilic, positively charged NH2-terminus of the 
protein (amino acids 2-10, Fig. 1) or a large portion of the 
predicted (Hase et al., 1984; Glick and Schatz, 1991) trans- 
membrane segment (amino acids 16-29, Fig. 1). As shown 
in Fig. 3 A, pOMD29A2-10, which contains only the trans- 
membrane segment at its NH2-terminus, was capable of 
binding to intact mitochondria in vitro (compare lanes 2 and 
3) and, of the bound fraction, a significant amount was 
alkali-insoluble (lane 4). Like pOMD29, pOMD29A2-10 re- 
quired ATP for import (not shown) and was inserted in the 
N~n-Ccyto orientation, i.e., the bulk of the protein was acces- 
sible to externally-added trypsin (Fig. 3 B). Also, neither 
protein was imported into or across pancreatic ER micro- 
somat membranes when mitochondria were replaced with 
these membranes in the import assay (Fig. 3 C), as judged 
by resistance to external trypsin (lane 4) or resistance to ex- 
traction by alkali (lane 5). These microsomes efficiently 
translocated and processed a major histocompatibility class 
1 protein, HLA-2A; the predicted 3 kD cytoplasmic COOH- 

terminal tail of the polypeptide (Ennis et al., 1990) was ac- 
cessible to external protease whereas the bulk of the poly- 
peptide in the lumen was protected (Fig. 4, lane 2), except 
in the presence of detergent (Fig. 4, lane 3). In contrast 
to pOMD29A2-10, removal of a large portion of the trans- 
membrane segment of pOMD29 resulted in a protein 
(pOMD29A16-19, Fig. 1) whose import was below the levels 
of detection in the heterologous system described here (mito- 
chondria from rat heart) (data not shown). Taken together, 
therefore, these findings suggest that the transmembrane seg- 
ment of pOMD29 makes an important contribution to target- 
ing, as well as to membrane insertion. 

Role of the Positively-Charged NH2 Terminus 
of pOMD29 

Despite the fact that amino acids 1-15 of pOMD29 
(OMM70) on their own cannot support import of DHFR into 
rat heart mitochondria in vitro, the possibility that the 
hydrophilic NH2-terminus of pOMD29 cooperates with the 
membrane-anchor segment to give optimal import was ex- 
amined. A helical wheel projection of the NH2 terminus of 
pOMD29 predicts that such a helix would be amphiphilic, 
with the basic residues at positions 2, 7, and 9 clustered on 
the hydrophilic face (Fig. 5). As a further consideration, 
therefore, the lysine residues at positions 2 and 9 and the ar- 
ginine at position 7 were mutated to glutamine (Figs. 1 and 
5). Like lysine and arginine, glutamine is compatible with 
an o~-helix (Chou and Fasman, 1974), but its side chain amide 
is uncharged. The mutant was designated pOMD29KR2,7,9Q 
and was found to be competent for import (Fig. 3 A, bottom). 

In Fig. 6, the rates of import and acquisition of alkali- 
insolubility for pOMD29, pOMD29A2-10, and pOMD29- 
KR2,7,9Q were analyzed by SDS-PAGE, and the results 
quantified by determining the radioactive content of gel slices 
containing the [35S]-labeled proteins. The data show that 
the NH2 terminus of pOMD29 makes a significant contri- 
bution to import, to the extent that pOMD29A2-10 was im- 
ported at a rate that was approximately five times slower than 
the rate of import of pOMD29, pOMD29KR2,7,9Q, on the 
other hand, exhibited a rate of insertion into the outer mem- 
brane that was approximately threefold lower than that of 
pOMD29 (Fig. 6). Thus, the positive charges at positions 2, 
7, and 9 ofpOMD29 contribute significantly, though not com- 
pletely, to the optimal rate of import that is conferred by the 
hydrophilic NH2 terminus of the protein. Like pOMD29 and 
pOMD29A2-10, pOMD29KR2,7,9Q was inserted into the 
outer membrane in the Nin-Ccy,o orientation (Fig. 3 B). 

Effects of a Bacterial-expressed Mitochondrial Matrix 
Precursor Protein on Import and Insertion of pOMD29 
into the Outer Membrane 

As reported earlier (Sheffield et al., 1990), the hybrid pro- 
tein pO-DHFR (Fig. 3 A, top) has been expressed in bacteria 
and purified in a form that is efficiently imported into the ma- 
trix compartment of mitochondria in vitro. When the 
purified bacterial expression product was added to reticulo- 
cyte lysate containing [3~S]pO-DHFR produced by in vitro 
transcription-translation of the recombinant plasmid, pSP 
(pODHFR) (Skerjanc et al., 1990; Fig. 3 A), import of the 
radioactive precursor was effectively competed by bacterial 
pO-DHFR at concentrations of 1-6/~M (Fig. 7). This con- 
centration range is very similar to the amount of a synthetic 
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Figure 3. Import of pO-DHFR and normal and mutant forms of 
pOMD29. (A) Translation products containing [35S]pO-DHFR 
(amino acids 1-36 of preomithine carbamyl transferase fused to 
DHFR, Skerjanc et al., 1990), [35S]pOMD29, [35S]pOMD29A2-10, 
and [35S]pOMD29KR2,7,9Q were incubated with (lanes 3 and 4) 
or without (lane 2) mitochondria (M/TO) under standard import 
conditions. Recovery of mitochondria, extraction with 0.1 M 
Na2CO3, pH 11.5 (lane 4) (ALKAL/), and analysis by SDS-PAGE 
and fluorography were as described in Fig. 2 and Materials and 
Methods. (Lane 1) 10% of input [35S]precursor protein; (lane 2) 
[35S]precursor protein that sedimented in the absence of mitochon- 
dria. (B) As in A, except that, after import, reaction mixtures were 
treated either with (lanes 2, 4, 6, and 8) or without (lanes 1, 3, 5, 
and 7) trypsin (POST-TRYPSIN) (Li and Shore, 1992a). Mitochon- 
dria were recovered and analyzed by SDS-PAGE and fluorography. 
(C) As in A except that mitochondria were substituted with dog 

peptide corresponding to the preornithine carbamyl transfer- 
ase signal sequence of pO-DHFR that is required to block 
import of proteins to the matrix under similar conditions 
(Gillespie et al., 1985). Control experiments (data not 
shown) revealed that mitochondrial A't' was unaffected by 
the bacterial precursor, as judged by the A~-dependent up- 
take of [3H]triphenylmethylphosphonium (iodine sal0 (Bak- 
ker, 1978) into mitochondria in the import reaction. In con- 
trast to the competition of import of pO-DHFR by itself, 
import and insertion of pOMD29 into the outer membrane 
was relatively unaffected by concentrations of bacterial pO- 
DHFR up to 6 #M, the highest concentration tested (Fig. 7). 
This was the case for import at 30 ~ (Fig. 7), and as well for 
import after combining the two proteins with mitochondria 
at 4 ~ for 10 min, followed by a chase at 30 ~ (not shown). At 
higher levels, pO-DHFR tended to aggregate and, therefore, 
was not examined for its ability to compete for import of 
pOMD29. 

Because the two proteins, pO-DHFR and pOMD29, differ 
only in their NH2-terminal topogenic sequence (either 36 
amino acids from pre-ornithine carbamyl transferase or 29 
amino acids from OMM70 fused to DHFR, respectively), 
it is presumably these topogenic sequences alone that ac- 
count for the differences in the competition profiles seen in 
Fig. 7. It is important to note, however, that the Neurospora 
homolog of OMM70 (MOM72) may employ the same mas- 
ter import receptor on the surface of mitochondria as do pro- 
teins that are imported to the matrix (Stllner et al., 1990). 
We conclude, therefore, that bacterial pO-DHFR at the con- 
centrations examined competes for import of itself but not 
for pOMD29 because the rate-limiting step for import ofpO- 
DHFR is at a point on the import pathway that is distal to 
translocation across the outer membrane. Such a distal rate- 
limiting step may explain why translocation intermediates in 
transit to the matrix can be detected that simultaneously span 
both the outer and inner mitochondrial membranes at trans- 
location contact sites (Schleyer and Neupert 1985; Vestwe- 
ber and Schatz, 1988). pOMD29, on the other hand, may in- 
sert into the outer membrane without penetrating into 
contact sites, a view that is compatible with the recent evi- 
dence that the translocation machineries of the two mem- 
branes are not permanently coupled (Glick et al., 1991; 
Pfanner et al., 1992). 

Concluding Remarks 

Our results indicate that the positively-charged NH2 termi- 
nus of pOMD29 (OMM70) cooperates with the transmem- 
brahe segment to create the requisite topogenic domain for 
insertion of pOMD29 into the outer membrane. By analogy 
to the topogenic sequences of type II and type HI proteins 
(von Heijne, 1988) inserted into the endoplasmic reticulum 
(Wickner and Lodish, 1985), we term this domain a signal- 
anchor sequence, in which the targeting domain is coinci- 

pancreas microsomes (Walter and Blobel, 1981) in import reactions 
containing pOMD29 and pOMD29A2-10 and the reaction mixtures 
subsequently subjected to trypsin treatment as in (A) (lane 4) or ex- 
traction with alkali (Materials and Methods) (lane 5). The amount 
of ER membrane protein and mitochondrial outer membrane pro- 
tein in A and C were the same (40 #g/mi). 
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Figure 4. Insertion of HLA-2A into microsomal membrane. Human 
HLA-A2 cDNA (Ennis et al., 1990) was transcribed and translated 
in the presence of [35S]methionine and dog pancreas stripped mi- 
crosomes (Walter and Blobel, 1981). Microsomes were recovered, 
treated with (lanes 2 and 3) or without (lane 1) 100 #g proteinase 
K per ml in the presence (lane 3) or absence (lanes I and 2) of 1% 
(w/v) Triton X-100, and subjected to immunoprecipitation with 
W32 antibody (Barnstable et al., 1978). Immunoprecipitates were 
analyzed by SDS-PAGE and fluorography. 

dent with, or overlaps, the membrane anchor domain. An 
important consequence of a signal-anchor function is that the 
domain that specifies targeting and initial translocation 
across the membrane is also the domain that abrogates this 

N @0 D 

.k 

pOMD29 
1-12 

Figure 5. Helical wheel projection of amino acids 1-12 ofpOMD29 
(OMM70). Asterisks denote residues mutated to glutamine in 
pOMD29KR2,7,9Q. Hydrophobic amino acids are circled. Amino 
acids are designated by the single letter code. 

100"] e pOMD29 
80"I �9 pOMD29KR2,7,9Q 

2 

0 5 1'0 1'5 2'0 2'5 30 3'5 40 
TIME (min.) 

Figure 6. Rates of import and membrane Lnsenion of pOMD29, 
pOMD29A2-10, and pOMO29KR2,7,9Q. Impo~ reactions comain- 
ing the various [35S]-labcled precursor proteins were carded out 
for 4, 8, 16, 20, 25, 30, and 40 rain., at which times mitochondfia 
were recovered by centfifugadon through a sucrose cushion, and 
alkali-insoluble protein obtained and subjected to SOS-PAGE and 
fluorograpby as described Ln Fig. 2 and Materials and Methods. 
Radioactive precursor proteins were located on the dried gel by 
aligning with an exposed x-ray film, and the bands were excised, 
dissolved in H202 and 0.7 M NH4OH, and radioactivity dcteP 
mined by scimiUation counting. The input amounts of the three 
[35S]precursor proteins were normalized, and the results for each 
time point expressed as a percentage of the maximal import that was 
observed for pOMD29 (set at 100). 

process and results in release of the segment into the sur- 
rounding lipid bilayer (Blobel, 1980; Singer, 1990). If these 
principles extend to mitochondrial membranes, the presence 
of a signal-anchor sequence may result in selection of the mi- 
tochondrial outer membrane for insertion, simply because 
this is the first membrane encountered by the incoming 
precursor protein. Similarly, the combination of a matrix- 
targeting signal followed immediately by a stop-transfer do- 
main may also select the outer membrane for insertion if, 
again, the stop-transfer segment enters the outer membrane 
translocation machinery and abrogates translocation before 
the protein is committed for import into the interior of the 
organelle (Nguyen et al., 1988; Singer and Yatfe, 1990), It 
is interesting in this regard that the Neurospora homolog of 
OMM70, MOM72, may employ the same import receptor 
as do matrix-destined proteins (S6Uner et al., 1990). What 
we have demonstrated, however, is that the transmembrane 
segment of pOMD29 specifies targeting and insertion, 
whereas the positively-charged NH2-terminus affects only 
the efficiency of this process. When amino acids 1-10 of 
pOMD29 were replaced with a strong matrix-targeting sig- 
nal (from preornithine carbamyl transferase), the protein 
was inserted into the outer membrane, but in an inverted 
orientation compared to pOMD29 (Li and Shore, 1992b). 
Both MOM72 (Steger et al., 1990) and MOM19 (Schneider 
et al., 1991), which are inserted into the outer membrane 
of Neurospora mitochondria with the same topology as 
pOMD29 (OMM70), lack a basic region upstream of the 
predicted transmembrane segment. It remains to be deter- 
mined if the predicted transmembrane segments in these pro- 
teins, which are located at (MOM19) or toward (MOM72) 
the NH2 terminus, function as signal-anchor sequences. Fi- 
nally, certain proteins destined for the mitochondrial inter- 
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Figure 7. Insertion ofpOMD29 into the mitochondrial outer mem- 
brane in the presence of bacterial-expressed pO-DHFR, pO-DHFR 
was expressed in bacteria, purified, and kept in 10 mM Hepes, pH 
Z4, 7 M urea, and 1.0 mM dithiothreitol until use (Sheffield et al., 
1990). Various concentrations of pO-DHFR in this mixture were 
rapidly diluted 50-fold into standard import reactions containing 
[35S]pO-DHFR or [35S]pOMD29 obtained by transcription-trans- 
lation in reticulocyte lysate, and mitochondria were added to ini- 
tiate import. After 10 rain., reactions containing [35S]pOMD29 
were subjected to alkali extraction (Materials and Methods) and 
those containing [3SS]pO-DHFR were treated with trypsin (Li and 
Shore, 1992a). The products were recovered, analyzed by SDS- 
PAGE and fluorography, and the relative amounts of alkali-resistant 
pOMD29 and trypsin-resistant, processed pO-DHFR were quanti- 
fied by laser densitometry (LKB2202 UltroScan) of bands on 
exposed x-ray film. Values obtained in the absence of bacterial 
pO-DHFR were arbitrarily set at 100. e, [35S]pO-DHFR; ,t, 
[3~S]pOMD29. 

membrane space contain an apolar segment located toward 
the NH2-terminus, immediately downstream of a matrix- 
targeting signal. However, whereas these sequences contrib- 
ute to sorting, they probably do not function as membrane 
anchor sequences, i.e., these proteins do not appear to be- 
come embedded, even transiently, into the lipid bilayer 
(Glick et al., 1992; Koll et al., 1992). Characteristics other 
than simple hydrophobicity alone, therefore, contribute to 
the signals that specify sorting to the outer membrane and 
intermembrane space. 
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