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Two‑dimensional Talbot effect 
of the optical vortices and their 
spatial evolution
Denis A. Ikonnikov1, Sergey A. Myslivets1,2, Mikhail N. Volochaev1, Vasily G. Arkhipkin1,2 & 
Andrey M. Vyunishev1,2*

We report on the experimental and theoretical study of the near-field diffraction of optical vortices 
(OVs) at a two-dimensional diffraction grating. The Talbot effect for the optical vortices in the visible 
range is experimentally observed and the respective Talbot carpets for the optical vortices are 
experimentally obtained for the first time. It is shown that the spatial configuration of the light field 
behind the grating represents a complex three-dimensional lattice of beamlet-like optical vortices. 
A unit cell of the OV lattice is reconstructed using the experimental data and the spatial evolution of 
the beamlet intensity and phase singularities of the optical vortices is demonstrated. In addition, the 
self-healing effect for the optical vortices, which consists in flattening of the central dip in the annular 
intensity distribution, i.e., restoring the image of the object plane predicted earlier is observed. The 
calculated results agree well with the experimental ones. The results obtained can be used to create 
and optimize the 3D OV lattices for a wide range of application areas.

Structured light is a key issue of photonics, whose potential is coming to be implemented1. Usually, structured 
light represents the nontrivial intensity, polarization, and phase distributions of the coherent light, which can 
result in extraordinary characteristics capable of transforming the light–matter interactions. One of the brightest 
manifestations of structured light is the beams containing phase singularities also called optical vortices(OVs)2. 
Their feature is the orbital angular momentum (OAM) arising from the helical wavefront imposed by an azi-
muthal phase dependence of exp (ilϕ)3–5, where l is the topological charge (TC) of the phase singularity6. The 
orbital angular momentum of a light beam can be transferred to matter7 and vice versa. Since the date of their 
discovery2,3, the OAM-carrying beams have found wide application in optical manipulations8–11, imaging12,13, 
and quantum key distribution14 and made it possible to implement the Tbit s−1 data transmission rates in opti-
cal communications15–18. The recent progress in this field and future directions were reviewed in5,19. Among 
these directions are complex two- and three-dimensional (2D, 3D) lattices of optical vortices20–22. The forma-
tion of well-ordered spatial arrays of optical vortices is highly attractive, e.g., for micromanipulation in biology, 
medicine, and materials science23, two-dimensional optical trapping (creating arrays of microscale sculpted 
atom optical states in two and three dimensions)1 and sorting24, photolithography25,26, micromachining and 
structuring, etc.27 The most obvious approach to creating a spatial array of optical vortices is the use of division 
of a wavefront of the OAM-carrying beams. In this connection, it is reasonable to examine the near-field diffrac-
tion of the OAM-carrying beams at a 2D amplitude diffraction grating. It should be noted that the diffraction 
of the OAM-carrying beams was studied for the cases of a single slit28,29, sector-shaped diaphragm30, and 1D 
gratings31. It is well-known that a plane wave incident onto a periodic grating is diffracted such that the Talbot 
effect occurs in the near-field32. The physics behind this phenomenon is interference of diffracted waves, which 
results in the intensity distribution (image) self-reproduction at distances multiple of Talbot length ZT = 2�2/� , 
where � is the grating period, � is the wavelength of the incident wave. This phenomenon is well-studied, both 
theoretically and experimentally, for plane waves33 and theoretically investigated for the beams comprising 
phase singularities20,34,35. In the experiment, the Talbot effect of the OAM-carrying beams was observed in the 
1D case31, as well as for the two-dimensional configuration at the THz radiation35,36 and near-infrared single 
photons37. In the 1D case31, the experimental intensity patterns were in the form of a periodic set of stripes, while 
for two-dimensional configuration there is an array of beams with a topological charge. The Talbot effect was 
explored using a superposition of two optical lattices generated by a superposition of two quasi-OAM states in38 
and exploited for generating optical vortex arrays by multiplexing metasurface design22. Till now, no consistent 
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theoretical and experimental study of near-field diffraction of the optical vortices at a 2D amplitude diffraction 
grating in the visible range has been considered. Here, we report the results of observation of the two-dimensional 
Talbot effect of the optical vortices in the visible range and formation of three-dimensional lattices of optical 
vortices consisting of beamlet arrays and demonstrate their spatial evolution.

Experimental and numerical results
In the paper we study a near-field diffraction of the optical vortices at a 2D amplitude diffraction grating. In the 
experiments, the azimuthal phase modulation was imposed onto a Gaussian beam from a He–Ne laser using 
a 2D phase-only spatial light modulator (SLM, PLUTO-NIR-011, Holoeye, a pixel pitch of 8µm ). The laser 
source operated in a single-mode regime and produced the linearly polarized radiation at a wavelength of 632.8 
nm. The laser radiation was expanded by a 3× beam expander before launching onto the SLM. A fork-shaped 
hologram loaded in the SLM provided the phase modulation in the form cos(Gxx + lϕ) , rather than exp(iϕ) , 
where Gx is the reciprocal lattice vector. This allowed us to obtain the high-quality optical vortex in the first 
diffraction order, as shown in Fig. 1a. Then, the topological charge of the resulting vortex was measured by 
the method described in39. The beam with a specific TC was reduced and directed along the sample normal to 
the input facet. The amplitude 2D diffraction grating was located at the opposite side of the sample (the output 
facet) (See Methods for details concerning with the sample fabrication and characterization). Near-field diffrac-
tion patterns were imaged by a 100× objective and measured using a monochrome CCD camera mounted on a 
motorized translation stage. As can be seen in Fig. 2 (top row), the measured intensity distributions (profiles) 
for the TC l = +1 consist of well-ordered 2D annular beamlet arrays with the ring-shaped maxima for all the 
Talbot planes, which differs from 1D case, where linear array of stripes is observed31. These maxima suffer from 

Figure 1.   (a) Experimental setup. Spatial light modulator SLM, mirror M, reducer R, sample S, objective 
O, optical filter F, and CCD camera C. Optical images of a part of the 2D grating in (b) the reflection and (c) 
transmission mode.

Figure 2.   Experimental patterns (top row) and calculated intensity (middle row) and phase (bottom row) 
profiles in specific Talbot planes (columns) for the TC l = +1 . Red and blue circles correspond to the positive 
and negative topological charges, respectively.
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distortions caused by the weak intensity at the center of the incident annular beam. The shape of the maxima 
is different for each unit cells in the beamlet array. The unit cells are defined so that each one contains a single 
beamlet at its center and it approximately corresponds to a hole in the grating structure. The beamlets undergo 
deformations, which strengthen with distance from the center of the image plane and take a semicycle (U-shaped) 
form, as can be clearly seen for the forth Talbot plane. The beamlet positions coincide with the lattice points 
of the object structure for the integer Talbot planes, while the images corresponding to the fractional mZT/2 
planes (see, for instance, the 3/2ZT plane) are shifted by half a period relative to those corresponding to the 
integer planes ZT . Although this property is the same as in the classical Talbot effect, the annular beamlet arrays 
are observed instead of the hole images of the object structure. All the calculated results were obtained using 
the numerical simulation based on the Fresnel–Kirchhoff formalism described in Sec. Methods. The calculated 
intensity ( I(x, y, z) ∼ |E(x, y, z)|2 ) and phase ( ψ(x, y, z) = arg(E(x, y, z)) ) profiles obtained using Eq. (13) are in 
good agreement with the experimental ones (Fig. 2). In the calculation, we used a beam radius of w = 150 µm 
in Eq. (2) to fit the intensity distributions to the experimental ones. Analysis of the phase distributions showed 
phase singularities in each beamlet array cell (Fig. 2, bottom row), which are distinguished by the vortex and 
anti-vortex, depending on the sign acquired. Here, we use the term anti-vortex for the vortex of the opposite sign. 
The phase increases counter-clockwise in the vicinity of the optical vortices with a positive TC. According to5, 
the TC of the optical vortex can be found using the path integral over the closed curve C subtended by a phase 
surface (over the field cross section) containing the singularities

Here, ψ(r,ϕ) is the phase distribution of a scalar wavefield presented in the polar coordinates. Eq. (1) allows 
us to calculate the TC of all optical vortices in the field cross section taking into account their values and signs, 
while their positions are defined by intersections of zero-level contours of both real and imaginary parts of the 
field. Although the optical singularities within each beamlet array cell are grouped in the vortex–anti-vortex 
pairs, the total TC over a single cell calculated using Eq. (1) is zero. This is not surprising and follows from the 
deterministic rule also known as the sign principle40 or nucleation of optical vortices based on the properties 
of the wavefields topology. In addition, there exists an uncompensated optical vortex at the center of the image 
(the so-called global vortex), which is related to the TC of the incident beam. The beamlets become broader and 
smoother with an increase in the propagation coordinate z or the number of a Talbot plane. They fill the entire 
cell area in the fourth Talbot plane and then begin overlapping. This trend is observed for the beamlet phase 
profiles as well.

Similar to the case of l = +1 , the respective experiments were carried out for the incident beams with TC 
values of l = −4,−3,−2,−1,+2, and +3 . As was observed in the experiments and proved by our calculations, 
the beamlet arrays of the optical vortices were observed in all the cases. Figure 3 illustrates the results for TCs of 
l = −1,+1,+2, and +3 at the third Talbot plane. All the distributions exhibit the rotational symmetry and have 

(1)TC =
1

2π

∮

C
dϕ

∂

∂ϕ
ψ(r,ϕ).

Figure 3.   Experimental (top row) and calculated (the second row from the top one) intensity profiles for 8× 8 
periods and respective calculated intensity (the third row from the top one) and phase (bottom row) profiles for 
a single period (white squares in the previous row) for specific TCs of the incident beam ( l = −1,+1,+2 , and 
+3 in columns, from the left to the right) taken in the third Talbot plane. Red and blue circles correspond to the 
positive and negative topological charges, respectively.
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a four-fold symmetry axis. The change in the TC sign leads to the inversion of the observed images, as shown 
in Fig. 3(the first and second columns) for l = −1 and l = +1 . When the TC increases, the light field configura-
tion becomes complicated. For instance, at l = +3 , the unit cell profile of a beamlet array consists of the double 
U-shaped maxima; one of them is embedded into the other and they are opposite to each other. Again, the field 
cross section contains off-axis phase singularities (optical vortices), which are predicted to be bounded by the 
vortex–anti-vortex pairs. The vortices–anti-vortices are connected by the curve pairwise, where the wavefront 
acquires a phase increment of 2π . This circumstance results in zero TC within each unit cell of the image. Despite 
this fact, the resulting TCs of the optical vortices within the area corresponding to round holes are equal to the 
TCs of the incident beam. In most cases, these vortices are spatially separated by signs, depending on the TC of 
the incident beam. The number and sign of the single optical vortices comprising inside the area corresponding 
to a grating hole are determined by the TC of the incident beam. However, this behavior is appropriate for a low 
(lower than 3) TC and a small (smaller than 4) number of the Talbot plane. In other cases, the number and sign 
of the optical vortices can change. For example, as shown in Fig. 3(right column), the phase patterns within the 
area corresponding to a single grating hole contain three vortices with l = +1 and one anti-vortex ( l = −1 ), so 
the resulting TC is +2 , while the TC of the incident beam is l = +3 . It is clarified by Eq. (1) that all the phase 
singularities (over the incident beam cross section) retain the total TC of the incident beam, while the light 
field propagates through the entire grating. In other words, the global optical vortex associated with the TC of 
the incident beam remains in the position corresponding to the center of the structure in a given Talbot plane. 
An increase in the TC results in spreading of the beamlets and their overlap. The latter factor will result in the 
interaction between the beamlets. This complicates the intensity profiles of the beamlet array. It is supposed that 
the optical singularities will penetrate to the neighboring beamlet array cells, so they cannot be related to the 
given cell any more. In spite of such a behavior, the well-ordered diffraction pattern is formed in the far-field, 
as shown in Fig. 4. Individual diffraction orders represent the optical vortices whose TC is equal to the TC of 
the incident beam; in particular, in this case, we have l = +3 . All the diffractive orders have fork-shaped phase 
profiles, except for the zero order, which has a spiral (azimuthal) phase profile.

The results described above are related to the special case of diffraction at the integer and fractional Talbot 
planes. Of special interest is the analysis of the 3D spatial structure of the beamlets, i.e., the configuration of 
the optical vortices inside the area between two neighboring integer Talbot planes. Therefore, we numerically 
analyzed the spatial distribution of the intensity and phase singularities of the OVs. Figure5a shows the calcu-
lated beamlet isointensity volumes between the third and fourth Talbot planes for the 2× 2 central unit cell 
array for l = +1 and the respective top and side views (insets on the left). As can be seen, the beamlets undergo 
spatial evolution; specifically, each annular intensity beamlet is separated into four channels according to the 
number of neighboring lattice sites and then these channels merge with the formation of the annular intensity 
structures at the 3 1

2 Talbot plane placed between the initial beamlet positions in the xy plane corresponding to 
the third Talbot plane. After that, the annular structure is reconfigured back into the four channels and each of 
them contributes to the neighboring annular intensity maxima at the four Talbot planes. The spatial intensity 
profile of the beamlets at the fourth Talbot plane is sufficiently close to the profile corresponding to the third 
Talbot plane. Such a spatial behavior is typical of a rectangular lattice inside the area enclosed by any neighboring 
Talbot planes. To build an experimental beamlet structure, all the transverse profiles taken along the z axis were 
stacked in a single array. Then, the experimental beamlet structures were reconstructed using standard isovolume 
visualization tools. Figure5b shows the reconstructed experimental beamlets isointensity volume taken at the 1/e 
intensity level. Good agreement between the theoretical and experimental results proves our analytical model. 
The numerical analysis allows one to visualize the trajectories of OVs, which are shown in Fig. 5a (insets on the 
right). All optical vortices can be distinguished by the sign of the phase singularity and by its spatial behavior. 
The optical vortices with the positive TC nutate in the vicinity of array lattice points along the z axis, while the 
position of the global OV at the center of the lattice remains constant. The optical vortices with the negative 

Figure 4.   Calculated far-field diffraction pattern (left plot) at the distance 1 m and phase profiles for specific 
diffraction orders (right column) shown by squares in the left plot ( l = +3).
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TC have helical trajectories with the rotation axis coinciding with the intermediate position between the lattice 
points. These OVs are created in pairs and located opposite to each other relative to the rotation axis. The total 
number of positive OVs exceeds the number of negative OVs by a value of the TC of the incident beam.

A natural (intrinsic) manifestation of the Talbot effect is a spatial dependence of the transverse near-field 
intensity distribution previously integrated over the second transverse coordinate32, which is also known as a Tal-
bot carpet. It provides valuable information on the structural parameters and the light illuminating the structure. 
The Talbot carpets can be easily obtained for both 1D structures and plane waves. However, an obstacle arises 
when we refer to the optical vortices diffracted at a 2D diffraction grating. This obstacle concerns the complex 
spatial intensity distribution over the unit cell of a specific image, leading to the dependence of the results on 
the integration limits. Nevertheless, we obtained the Talbot carpets for the configuration under study. To do 
that, we integrated all the intensity profiles corresponding to the coordinates z over two rows of unit cells at the 
image center in the y direction. The results of the integration are presented in Fig. 6 for l = +1 and l = +3 . These 
dependences have the structures well-ordered in both the transverse and forward direction. A number of the 
Talbot planes can be seen in all the cases. The calculated Talbot length ( ZT = 2�2/� ), i.e., the distance between 
the neighboring Talbot planes, was 316µm , which is slightly different from a measured value of 324µm . The 
numerically calculated Talbot carpets are in good agreement with the experimental ones.

Figure 5.   (a) Calculated beamlet isointensity volume and its top (top inset) and side (bottom inset) views (on 
the left). The insets on the right from the beamlets volume show the OV spatial evolution in the transverse 
(xy) plane (on the top) and horizontal (xz) plane (in the bottom). Spatial transformations of the OVs with 
the positive and negative signs are traced by the red and blue curves, respectively. (b) Experimental beamlets 
isointensity volume and its top (top inset) and side (bottom inset) views (on the right).

Figure 6.   Experimental (top row) and calculated (bottom row) Talbot carpets for the incident beams with 
l = +1 (left column) and l = +3 (right column).
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Discussion
The Talbot carpets shown in Fig. 6 manifest themselves in the self-healing effect consisting in flattening of the cen-
tral dip in the intensity distribution related to the optical vortex, i.e., restoring the image of the object plane. This 
effect was predicted for the optical vortices in34. It was attributed to a transverse energy flow from the peripheral 
high-intensity area of the annular beam to the central null intensity area. As can be seen in Fig. 7, the intensity 
profiles in the first Talbot planes have the low-intensity areas at the center, but become more uniform at 4ZT . 
Under the experimental conditions, this effect takes place for a limited number of Talbot planes, specifically, for 
3, 4, 5 Talbot planes at l = +1 and 4− 7 Talbot planes at l = +3 . Our study showed that the self-healing effect is 
manifested in different ways, so the following situations are distinguished by the TC value of the incident beam: 
(i) if the TC is odd ( ±1,±3,±5, . . . ), the intensity profiles in the self-healing area represent a beamlet array of 
ring-shaped maxima whose positions coincide with the lattice points of the grating structure or intermediate 
between the lattice points; (ii) if the TC is multiple of 4 ( ±4,±8,±12, . . . ), the patterns represent a beamlet array 
of round spots of the almost uniform intensity, which resembles a perfect self-image of the object structure; in 
the next Talbot plane, the number of maxima is doubled and a half of them are located at the lattice points of the 
grating structure, while the others hold intermediate positions between them; (iii) if the TC is unevenly even 
( ±2,±6,±10, . . . ), the intensity patterns resemble the patterns for the previous case, but they are shifted by a 
half-period along any single coordinate.

Additionally, the measured intensity profiles in the Talbot planes under illumination by the optical vortices 
experience the angular rotation. In particular, in the case of illumination by the beams with an TC of l = +3 , the 
intensity profiles taken at 4ZT are rotated clockwise by 3 deg. The change in the TC sign will result in the change 
in the rotation direction. This effect is only observed for the optical vortices and predicted by the calculations.

The approach used (see Sec. Methods) can be applied to the gratings of other types, including the phase ones, 
by specifying the grating transmission function T(x0, y0) entering Eq. (3).

Conclusions
In summary, we experimentally and theoretically studied the near-field diffraction of the optical vortices at a two-
dimensional amplitude grating. The Talbot effect for the optical vortices in the visible range was experimentally 
observed and the corresponding Talbot carpets for the optical vortices were observed for the first time. It was 
shown that the complex field distributions in the Talbot planes have the phase singularities (optical vortices), 
whereas the intensity surrounding these singularities has an annular structure. The total TC of these singularities 
within the object area in the integer and fractional Talbot planes is retained and equal to the TC of the incident 
beam. It was numerically shown that the phase distributions within the unit cells of a specific image at the integer 
Talbot planes causes a complex structure of the bounded phase singularities of the opposite signs, i.e., the vortices 
and anti-vortices, so the resulting TC is zero. It was shown that the spatial configuration of the light field is a 
complex three-dimensional lattice of the beamlet-like optical vortices. A unit cell of the lattice of the OVs was 
reconstructed from experimental data and spatial evolution of the beamlet intensity and phase singularities of 
optical vortices was demonstrated. In addition, we observed the self-healing effect for the optical vortices, which 
consists in flattening of the central dip in the annular intensity distribution, i.e., restoring the predicted image of 
the object plane. The calculated results agree well with the experimental ones. The results obtained can be used 
to create and optimize the 3D OV lattices for a wide range of application areas.

Figure 7.   Illustration of the self-healing effect. Experimental intensity profiles for the optical vortex ( l = +1 ) 
at (a) 1ZT and (b) 4ZT and corresponding calculated (green) and measured (blue) intensity distributions in the 
transverse direction. The plots in (c, d) corresponds to the plots in (a, b), respectively.
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Methods
Theoretical model.  We consider the near-field diffraction of a Gaussian laser beam carrying the TC. The 
complex field amplitude of the optical vortex at the entrance of the grating can be written in the Cartesian coor-
dinates (x′, y′) as

where E0 is the maximum amplitude, l is the topological charge and w is the effective beam radius. The parameter 
s = ±1 corresponds to the positive and negative TC, respectively. Further, we assume that l is a positive integer. 
Then, the field amplitude at the entrance of the grating is

where T(x0, y0) is the transmission function of the grating. It is assumed that the grating is sufficiently thin, so 
in Eq. (3) we have x′ ≈ x0 and y′ ≈ y0 . For a 2D grating, T(x0, y0) will be a periodic function of the coordinates 
x and y; therefore, we have T(x0, y0) = T(x0 +m�x , y0 + n�y) , where �x and �y are the grating periods in the 
x and y directions and m and n are integers. The diffracted field amplitude in the near-field behind the grating 
at the distance z is given by the Fresnel–Kirchhoff integral41

Equation (4) can be presented in the form

where α = (1/w2 − ik/2z) = 1/w2(1− ikw2/2z) . Since T(x0, y0) is a periodic function of the coordinates (x, y) 
with the periods �x and �y , then it can be expanded into the Fourier series

where Gx = 1/�x and Gy = 1/�y , tmn are the Fourier coefficients and

Using the binomial distribution, the term (x0 + iy0)
l in Eq. (5) can be rewritten as

where Cl
q =

l!
q!(l−q)! are the binomial coefficients. Accounting for Eqs. (6) and (8), Eq. (5) takes the form

The integrals in Eq. (9) can be calculated using the following reference integral42
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Here, bxm = 2πmGx − (k/z)x and byn = 2πnGy − (k/z)y , a = kw2/2z . It can be shown that

Finally, taking into account Eq. (4) the diffracted field can be represented as

The intensity and phase profiles of the diffracted field in an arbitrary plane at the coordinate z can be calcu-
lated using Eq. (13).

Fabrication and characterization of the sample.  The sample was a transparent quartz plate, which 
was polished to the optical quality and then coated with a silver film with a thickness of about 200 nm. The grat-
ing was fabricated by ion etching using a focused ion beam setup (FB-2100, Hitachi). The structure represents a 
2D regular array of round holes, as shown in Fig. 1b. The structure contains 40 periods along each axis and has 
overall sizes of 400× 400µm2 . The respective periods were 10µm , while the hole diameter was about ∼ 5µm , 
so the duty cycles of the structure were 0.5. The use of a nontransparent silver coating allowed us to achieve the 
high level of the amplitude modulation of the intensity, as can be seen in the optical microscopy image presented 
in Fig. 1c.
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