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Abstract: In this paper, we used an octadecylamine functionalized graphene oxide (ODA@GO) to
induce the confined growth of a polyamide nanofilm in the organic and aqueous phase during
interfacial polymerization (IP). The ODA@GO, fully dispersed in the organic phase, was applied as
a physical barrier to confine the amine diffusion and therefore limiting the IP reaction close to the
interface. The morphology and crosslinking degree of the PA nanofilm could be controlled by doping
different amounts of ODA@GO (therefore adjusting the diffusion resistance). At standard seawater
desalination conditions (32,000 ppm NaCl, ~55 bar), the flux of the resultant thin film nanocomposite
(TFN) membrane reached 59.6 L m−2 h−1, which was approximately 17% more than the virgin TFC
membrane. Meanwhile, the optimal salt rejection at seawater conditions (i.e., 32,000 ppm NaCl)
achieved 99.6%. Concurrently, the boron rejection rate was also elevated by 13.3% compared with the
TFC membrane without confined growth.

Keywords: two-dimensional nanomaterials; confined growth; diffusion control; interfacial polymer-
ization; reverse osmosis membrane

1. Introduction

Polyamide thin-film-composite (TFC) reverse osmosis (RO) membranes have been
widely used in desalination because of their low energy consumption and high separation
efficiency [1,2]. The pursuit of high rejection and high selectivity RO membranes is one
of the development areas that could yield high-quality product water and a more cost-
effective process [3,4]. Secondly, the boron removal of the membrane needs to be further
improved [5,6]. The selective layers in TFC-RO membranes are fabricated by the interfacial
polymerization (IP) process, in which a polyamide (PA) film is formed at the interface of
aqueous amine solution and organic acyl chloride solution. By doping nanomaterials into a
PA matrix during interfacial polymerization (IP), researchers have fabricated various thin-
film-nanocomposite (TFN) RO membranes. A group of nanomaterials can be exploited for
this purpose. Some examples include: zeolites [7], carbon nanotubes (CNTs) [8], polyhedral
oligomeric silsesquioxane (POSS) [9], graphene oxide (GO) [10], metal-organic frameworks
(MOFs) [11], silica nanoparticles, etc. [12].

In recent years, the design and preparation of TFN membranes by combining new
inorganic or organic nanomaterials with a traditional polyamide layer is a new research
direction in the membrane separation field [13,14]. While most of these efforts are directed
towards elevating the performance of the TFN membranes, the effect of the nanomaterials
on the growth of the PA nanofilm, especially on the physicochemical aspects of the resultant
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PA nanofilm, has yet to be explicitly studied. According to recent studies [15–17], the in-
trinsic separation layer of the polyamide layer is the topmost nanofilm that forms the walls
of nodular and leaf-like nanostructures on the polyamide membrane surface. Therefore,
the thickness, surface area, and cross-linking degree of the intrinsic separation layer are
closely related to the performance of the TFN membrane. Therefore, knowledge of the
impact of nanomaterials on polyamide nanofilm formation is the key to well-constructed,
high-performance TFN membranes.

Emerging studies have provided evidence that the growth of the polyamide nanofilm
takes place in the organic phase [18–20], therefore blending nanomaterials in the organic
phase should impact the growth of PA nanofilm by causing resistance to m-phenylene
diamine (MPD) diffusion into the organic phase. Indeed, studies have shown that blending
PIB (polyisobutylene) [21], zeolites [22], or MOFs (metal-organic frameworks) [11] could
benefit the separation performance of the TFN membranes. Later, Yan et al. [23]. discovered
that the ZIF-8 nanoparticles in the organic phase may confine the growth of the PA layer
and therefore produce a PA layer with reduced apparent thickness. In this work, to further
explore the barrier effect of nanomaterials, we have modified single-layer graphene oxide
(GO) nanosheets with octadecylamine (ODA) to disperse the ODA@GO nanosheets into
the organic phase. In this design, the MPD diffusion is largely confined to the molecular
level because of the large lateral dimension of the ODA@GO nanosheets, which should
enrich the MPD concentration at the organic/aqueous interface. Also, because of the
macromolecular nature of the ODA@GO nanosheets, they will hardly diffuse and remain
at the interface until the IP reaction terminates. Hence, this works aims to find out how
the ODA@GO nanosheets impact the IP reaction and therefore the nanoscale structure and
properties of the polyamide nanofilm. Further, we carried out the seawater desalination
tests to reveal how these impacts are related to the performance of the resultant ODA@GO
TFN membrane.

2. Experiments and Methods
2.1. Materials

Single layer graphene oxide powder (GO) was purchased from Hangzhou Gaoxi Tech-
nology Co., Ltd., Hangzhou, China. Octadecylamine (ODA, 97%), m-phenylene diamine
(MPD, 99%), camphorsulfonic acid (CSA, 99%), triethylamine (TEA), 1,3,5-benzenetricarbonyl
trichloride (TMC, 98%) and boric acid were purchased from Shanghai Aladdin Reagent
Co. Ltd, Shanghai, China and used as received. Polysulfone (PSF) substrate membranes
with a MWCO of 35 kDa were used from Huzhou laboratory pilot line, and deionized
(DI) water with the electrical conductivity 1.6–2.3 was taken from the laboratory. Isopar-G
was obtained from ExxonMobil Chemical Company, while n-hexane was from Shanghai
Lingfeng Chemical Reagent CO., Ltd., Shanghai, China. Dehydrated alcohol (EtOH) was
obtained from Anhui Ante Food Co., Ltd., Anhui, China and dimethylformamide (DMF)
was purchased from Wuxi Haishuo Biological CO., Ltd., Wuxi, China. Sodium hydroxide
(NaOH) and sodium chloride (NaCl) were purchased from Xilong Scientific Co., Ltd., Xi-
long, China and Guangdong Guanghua Sci-Tech CO., Ltd., Guangdong, China, respectively.
All reagents were analytical grade unless otherwise stated.

2.2. Preparation of ODA@GO

Functional GO nanosheets were formed by binding octadecylamine (ODA) with
oxygen-containing groups on GO, which can be seen from Figure 1. Briefly, 100 mg GO was
dispersed in 50 mL DI water by bath ultrasound for 1 h. ODA solution (100 mg in 10 mL
EtOH) was added into GO suspension and stirred well to blend. The mixed solution was
poured into the 100 mL hydrothermal reactor and reacted at 90 ◦C for 24 h in a constant
temperature oven. After the reaction, the resultant composite was rinsed with ethanol
several times to remove unreacted ODA, then it was vacuum dried at 50 ◦C for 24 h [24].
The obtained black powder was stored for further usage and named as ODA@GO.
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Figure 1. The fabrication process and mechanism of ODA@GO.

2.3. Characterizations of GO and ODA@GO

The Morphology of GO and ODA@GO was observed by field emission scan electron
microscope (FESEM, SU8010, Hitachi) and atomic force microscopy (AFM, Bruker, Dimen-
sion Icon). First, a few drops of GO aqueous dispersion and ODA@GO hexane solution
were dropped on a silicon wafer, to observe their morphologies by SEM. GO aqueous
dispersion and ODA@GO hexane solution were also dropped on the mica wafer, to test
their sizes and thickness by AFM.

The chemical compositions of the membranes were analyzed by Fourier transform
infrared (FT-IR, ThermoFisher Nicolet-is50, USA) spectroscopy, X-ray diffraction (XRD,
Panalytical-X’Pert Pro, Holland) and X-ray photoelectron spectroscopy (XPS, Kratos AXIS
Ultra DLD, UK). GO, ODA and ODA@GO powder were mixed with KBr (mass ratio was
1:200) and compressed into a tablet to test the transmittance at room temperature by FTIR.
The crystal structure of GO and ODA@GO nanosheets were detected by XRD with Cu Kα

excitation radiation. The component element of GO and ODA@GO was analyzed by XPS
using Al Kα (1486.6 eV) as the radiation source.

2.4. Preparation of RO Membrane

The TFC RO membranes were fabricated by the IP process, wherein 2.2% (w/v) MPD
aqueous phase with CSA and TEA buffer solution (adjusted pH = 10) was reacted with
0.11% (w/v) TMC dissolved in isopar-G. The PSF ultrafiltration porous substrate was
soaked in the MPD solution for 2 min, after which the residue was removed and then it was
dried with sweeping N2. Subsequently, the TMC solution was impregnated for 1 min to
remove the excess organic solution and form a thin layer. Finally, it was heated in an oven
at 95 ◦C for 8 min to form a dense layer of PA that was named the virgin reference group.

The TFN RO membranes were prepared using the same steps above, but a series of
ODA@GO nanosheets with different mass concentrations (0.001%, 0.003%, 0.005%, 0.01%,
and 0.02% (w/v)) were added to the organic solution and mixed under bath ultrasonication
for 1 h before the IP reaction. The sheets act as barriers in the growth process of PA. The
prepared TFN membranes were named TFN-1 to TFN-5, in which a series of concentrations
(from 0.001% to 0.02% (w/v)) of ODA@GO sheets were doped, respectively.

2.5. Characterization of RO Membrane

The fabricated RO membranes were cleaned with DI water and dried in a vacuum
oven at room temperature for 24 h before the analyses were conducted. The top surface and
cross-section of each membrane were examined by FESEM to observe the cross-sectional
morphology. The samples were frozen in liquid nitrogen and then fractured. Before
observation, all samples were coated with gold for 60 s. Transmission electron microscopy
(TEM, HT7700, Hitachi) was conducted at 100 kV to examine the top surface and cross-
section for further observing the morphology and evaluating the apparent and intrinsic
thickness of the membranes. Briefly, after being separated from the PSF layer via DMF, the
PA layer was overlaid on the top surfaces of copper grids thereafter to observe a specific
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morphology. The cross-sectional samples were embedded in resin for 8 h and then cut
into approximately 80 nm-thick sections to place on the copper grids, respectively. AFM
was used to observe the surface roughness of each 5 × 5 µm2 membrane by comparing Ra
values from the obtained three-dimensional morphology images.

XPS was used to analyze the elemental content of the PA top surface within 10 nm of
the PA layer by utilizing Al Kα (1486.6 eV) as the radiation source.

The hydrophilicity/hydrophobicity of each membrane surface was measured with a
contact angle meter (CA, OCA15EC, Germany) using the sessile drop technique with DI
water as the reference liquid. A droplet of DI water of approximately 3 µL was deposited
on the leveled membrane surface to measure the contact angle of each sample. The mean
static contact angle was calculated from six different positions.

A solid-surface zeta potentiometer (Zeta potential, Anton Paar SurPASS 3, Austria)
was used to characterize the charge on the membrane surface over the pH range of 3–10.
The background electrolyte solution was 1 mmol L−1 KCl. The pH was adjusted with
0.05 mol L−1 HCl and 0.05 mol L−1 NaOH.

2.6. Performance of the RO Membrane

The high-pressure cross-flow RO evaluation setup (Figure 2) was used to test the
separation performance of the prepared membrane under brackish water and seawater
conditions. In the process of our experiment, the flow rate and surface cross-flow velocity
are 3 L/min and 0.31 m/s, respectively. Before the experiment, the device was operated
for 1 h to stabilize the system pressure. First, the system was operated with pure water to
calculate the water permeability coefficient (A value). Then, the system was operated with
brackish water (2000 ppm NaCl solution) to calculate the solute permeability coefficient
(B value) and with seawater water (32,000 ppm NaCl solution) to calculate the solute
permeability coefficient (B′ value). The testing pressure was 16 bar for pure and brackish
water testing and 55 bar for seawater. The other test conditions were constant (pH = 8;
25 ◦C). The A value (L m−2 h−1 bar−1) was calculated according to the equation A = J/∆P,
where ∆P is the operating pressure (bar); and J (L m−2 h−1) (LMH) is the permeate
water flux, which is calculated according to the equation J = V/(A × ∆t), where V (L)
is the volume of the permeate solution, A is the effective membrane area (19.63 cm2

for a single cycle module) and ∆t (h) is the permeation time of the experiment. The B
and B′ value (LMH) is calculated utilizing the equation B = J·(1 − R)/R, in which the
rejection (R (%)) was calculated using the equation R = (1 − Cp/Cf)·100%, where Cp and
Cf denote the concentrations of the permeate solution and feed solution, respectively.
To further analyze the transport process of boron, the permeability (Bs) of boron was
calculated using the equation Js = Bs·∆Cs, where Js is the permeation flux of the solute
(NaCl), and ∆Cs is the concentration difference between the feed and permeate solution.
The NaCl concentration was evaluated by conductivity meter (DDSJ-308A, Shanghai,
China), whereas the boron concentration was measured using an inductively coupled
plasma-optical emission spectrometer (ICP-OES, PerkinElmer, AvioTM 200).
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the fabricated RO membranes.

3. Results and Discussion
3.1. Characterizations of GO and ODA@GO

The physiochemical properties of pristine GO and ODA@GO were characterized by
FESEM, AFM, FTIR, XRD, and XPS (See Figures 3 and 4). Digital photos of GO dispersion in
water and isopar-G and ODA@GO in both solvents are listed from left to right (Figure 4a).
The size of ODA@GO nanosheets was mainly around 1–2 um (Figure 3a,b) [25,26], which
was consistent with the measurements of the AFM images (Figure 3c,d). The sheet size
was calculated by line analysis using Nanoscope software. Meanwhile, the thickness of a
single-layered ODA@GO increased to ~2.7 nm due to alkylation as compared to the virgin
GO nanosheets (~1.3 nm). As shown in Figure 4a, unmodified GO was super-hydrophilic
and dispersed in water instantly and was immiscible with isopar-G. While the modified
hydrophobic ODA@GO was dispersed easily in isopar-G and not dispersible in the aqueous
phase. Such oleophilic and hydrophobic properties render the ODA@GO nanosheets an
ideal medium to inhibit the diffusion of MPD into the organic phase and hence confine the
growth of the PA nanofilm, which is largely dependent on MPD diffusion [18–20].

The chemical compositions of GO and ODA@GO were analyzed using FTIR and
XPS. The FTIR absorption spectra of the GO, ODA, and the ODA@GO were compared
in Figure 4b. In the GO spectrum, bands were observed at 3397, 1719, 1637, 1100, and
683 cm−1, which are associated with the stretching vibrations of -OH, C=O, C=C, C-O, and
C-H, respectively. In the ODA@GO spectrum, the peaks at 2920 cm−1, 2850 cm−1, and
721 cm−1 are attributed to ODA molecules assigning to C-H stretching, while characteristic
peaks of C-N and N-H at 1467 cm−1 and 1577 cm−1 indicate that the epoxy group in
the GO layer experienced a ring-opening reaction due to the nucleophilic substitution of
protonated amino groups [27,28]. The XRD results of Figure 4c showed a diffraction peak
at 2θ = 9◦ for the GO nanosheets, while the peak value of ODA@GO decreased to 2θ = 3.3◦,
which can be explained by the increment of the nanosheet spacing by intercalated alkyl
chains. Meanwhile, a new weak peak of ODA@GO appeared at 21◦, which might be related
to the partial reduction of GO by ODA molecules [26,29]. Figure 4d,e showed the XPS
analysis results of GO and ODA@GO, respectively. Comparing the C1s peak of GO and
ODA@GO, it can be seen that the C-O peak fraction decreased significantly, and a new
fraction attributed to C-N appeared at the same time, indicating that the epoxy group in
the GO went through a ring-opening reaction [30], which agrees well with the FTIR results
in Figure 4b. The above results confirmed the successful modification of GO from the
physical and chemical aspects and the ODA@GO increased single layer thickness due to
the grafting of ODA molecules onto the GO nanosheets.
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3.2. Characterizations of TFC and ODA@GO TFN Membrane
3.2.1. Morphology

The surface morphologies of the TFC and TFN membranes analyzed by SEM and TEM
were shown in Figures 5a–c and 5g–i respectively. The surface of the TFC membrane was
characterized predominantly by a nodular structure. Then, the leaf-like structures, which
are collapsed large-sized nodules [15], gradually appeared as the doping of ODA@GO
increased. From the cross-sectional morphology of SEM Figure 5d–f of the RO membrane,
we can observe that the PA nodular structure showed interconnected hollow voids inside,
with the size of the majority of them less than 50 nm [19], which agreed well with the cross-
sectional TEM images in Figure 5j–l. With more ODA@GO nanosheets doped in the organic
solution, the apparent thickness of the PA layer (namely, the overall thickness of the PA
layer) generally decreased from ~114.9 nm to ~69.2 nm (i.e., virgin membrane and the TFN-
5 membrane, respectively. See Figure 6 and Table 1). In contrast to the apparent thickness,
however, the intrinsic thickness (namely, the thickness of the polyamide nanofilm that forms
the wall of the voids) increased from ~15.93 nm (for the virgin membrane) to ~21.19 nm
(for the TFN-5 membrane). Interestingly, the pure water permeability coefficient A value
of the TFN membranes increased gradually, which could be explained by the enhanced
leaf-like structures on the former membrane favoring the higher water transportation
surface area of the TFN membrane. Under the seawater condition performance test, the B′

values of TFN membranes decreased compared with the virgin TFC membrane, which was
consistent with the increase in the membrane intrinsic thickness and cross-linking degree
(see Figure 6 and Table 2). At the same time, the A/B value, which represents the selectivity
of solvent (water) over the solute (NaCl), increased from 23.9 bar−1 (TFC membrane) to
26.63 bar−1 (TFN-4 membrane), pronouncing the optimizable selectivity of water and salt.
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Table 1. Data comparison of the TFC and TFN RO membranes.

Sample
Intrinsic

Thickness a

(nm)

Apparent
Thickness b

(nm)
Ra (nm) Contact

Angle c (◦)

Zeta
Potential d

(mV)

A e

(LMH
bar−1)

A/B f

(bar−1)
B′ g (LMH)

Virgin 15.93 ± 0.9 114.9 ± 6.1 47.3 ± 3.2 84.0 −34.94 2.84 25.81 0.46
TFN-2 17.69 ± 1.4 93.9 ± 4.4 40.1 ± 2.6 118.1 −31.63 2.93 26.63 0.27
TFN-3 18.09 ± 1.3 87.3 ± 3.9 40.0 ± 3.3 119.7 −26.36 2.99 26.46 0.24
TFN-5 21.19 ± 1.7 69.2 ± 7.0 33.5 ± 3.7 134.4 −27.09 2.93 23.90 0.37

a Based on 10 measurements in TEM images of the wall thickness of PA; b Based on 10 measurements in TEM images of the integral
thickness of PA; c Based on 6 measurements in static water contact angle of top surfaces of membranes; d pH = 8 during the membrane
performance test; e Based on the pure water permeability coefficient; f Based on the water/NaCl selectivity; g Based on the 32,000 ppm
NaCl permeability coefficient.

Table 2. Elemental composition of nanosheets and different RO membranes analyzed by XPS.

Sample Atomic Percent (%) Atomic Ratio

C N O N/C O/C O/N

GO sheets 69.59 - 30.41 - 0.4369 -
ODA@GO sheets 88.11 2.53 9.36 0.0287 0.1062 3.6996

Virgin 74.74 11.55 13.7 0.1545 0.1833 1.1861
TFN-1 75.03 11.48 13.49 0.153 0.1798 1.175
TFN-3 76.58 10.98 12.44 0.1434 0.1624 1.133
TFN-4 76.79 11.07 12.13 0.1441 0.158 1.0958
TFN-5 77.77 11.13 11.09 0.1431 0.1426 0.9964

AFM was used to further explore the surface roughness of membranes (Table 1). The Ra
value of the TFC membrane was ~47.3 nm. After adding ODA@GO into the TMC solution,
the TFN membranes became relatively smoother and the roughness decreased to ~33.5 nm
(for 0.02% (w/v) loading). This is because the nodule characterized surface of the TFC
membrane generally transfers into the leaf-like structure characterized membrane surface of
the TFN membranes. These leaf-like structures are essentially collapsed large nanobubbles
in the dry state. They overlap with each other and conceal the roughness beneath their
flat structures, therefore reducing the surface roughness of the membrane [15,17]. We will
address this phenomenon more systematically by combining other experimental details in
Section 3.3 after addressing the chemical aspects.
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3.2.2. Chemical Analysis

The element composition of the membrane surface was determined by XPS (Figure 7).
Compared to the TFC membrane, the C-C/C=C main peak area observed on the TFN
membrane at 284.2 eV was increased, which should be attributed to the alkyl chains in
ODA@GO. With the increase of the doping amount, two other main peak areas at 285.6 eV
(C-O) and 284.8 eV (C-N) increased progressively, which should be attributed to the ring-
opening of epoxy group in GO and the addition of amine group in ODA [26]. At the same
time, as the elemental composition showed in Table 2, the greater the ODA@GO addition,
the higher the C content was, and the O/C ratio decreased accordingly, which indicates a
more hydrophobic membrane top surface [31]. Also, such analysis was further supported
by the higher water contact angle for the ODA@GO incorporated membranes. Specifically,
the contact angle increased from 84◦ for the virgin up to 134◦ for the TFN-5 membrane
(Figure 8a). These analyses collectively suggest that ODA@GO nanosheets are partially
incorporated in the top surface of the TFN membranes.
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Theoretically, a fully cross-linked polyamide layer should exhibit an O/N value of
~1, and is only linearly-linked with an O/N ratio of 2 [32]. Here, the O/N ratio was 1.19
for the virgin membrane, which is a typical surface O/N ratio when compared with a
serial of commercial RO membranes [17,33]. Interestingly, the O/N ratio instead followed a
decreasing trend as more ODA@GO was added (for TFN-5, the O/N ratio approached ~1).
Although the doped ODA@GO could be observed in the polyamide matrix (Figure 5h,i),
the decrease of the O/N ratio on the membrane surface should not be attributed to the
incorporation of ODA@GO. This is because the O/N ratio of the ODA@GO was ~3.7
(Table 2), a value significantly higher than that of the O/N ratio of polyamide. Rather,
the decreasing O/N ratio reflects a higher crosslinking degree of the bulk PA nanofilm. A
similar conclusion can be drawn from the analysis of zeta potential. As shown in Figure 8b,
the TFC membrane was typically negatively charged in the pH range of about 4.2–9.7,
due to the hydrolysis of the acyl groups to give the carboxyl groups on the membrane
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surface. After the doping of the ODA@GO nanosheets, the negative charge of the TFN RO
membrane surface gradually lessened, which was likely caused by the smaller amount of
free carboxyl groups, therefore implying a higher crosslinking degree [33].

3.3. The Effect of Confined Growth Mechanism on the Resultant PA Layer

As mentioned above, the ODA@GO doped TFN membranes have developed leaf-like
nanostructure characterized surfaces, which are distinctive from the virgin TFC membrane.
Especially at high ODA@GO concentration, ODA@GO nanosheets can be readily observed
at locations where the leaf-like structures are observed (Figure 5h,i). Such a phenomenon
can be explained by the confined growth of polyamide at the interface due to the limiting
effect of the ODA@GO nanosheets to MPD diffusion. Specifically, the limiting effect can be
interpreted in two ways: Firstly, the limited diffusion of MPD molecules into the organic
phase results in higher MPD concentration at the interface [23], therefore resulting in a more
intense IP reaction, hence resulting in a greater occurrence of the leaf-like structures [34].
Secondly, the presence of the ODA@GO nanosheets limit the growth of the nanobubbles
in the z-direction (the direction that is perpendicular to the membrane surface), therefore
the nanobubbles are more inclined to develop laterally and finally into leaf-like structures.
Collectively, the decreasing trend of the apparent thickness, the increasing trend of the
intrinsic thickness and the crosslinking degree of the PA layer agree well with the confined
growth mechanism, as the apparent thickness is mainly governed by the vertical growth of
the nanoscale structures, while the intrinsic thickness and crosslinking degree is mainly
governed by the enhanced intensity of the IP reaction. The above-mentioned confined
growth mechanism of the PA layer is illustrated in Figure 9.
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3.4. Performance Evaluation of the As-Developed Membrane

As can be seen from Figure 10, with the increase in the incorporation amount in
the membrane, water flux generally increased initially. For example, compared with the
virgin membrane, the optimal brackish water flux increased by 11% to 47.9 L m−2 h−1 at a
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doping amount of 0.01% (w/v), and the salt rejection was at approximately the same level
as the virgin membrane (~99.7%). The enhancement of the water flux can be attributed
to the horizontal growth of the leaf-like structures, which enlarged the surface area of
the polyamide nanofilm [17]. The increment of flux was also observed in the case of
seawater desalination conditions. However, the optimal doping amount was 0.005%
(w/v) when an optimum flux of 59.6 L m−2 h−1 was achieved, which had a 17% increase
compared with the virgin membrane at the same testing condition. Simultaneously, the
TFN-3 membrane achieved 99.6% salt rejection, a significant elevation from the ~99.1%
for the virgin membrane. It even reached the rejection of some commercial seawater
desalination membranes, and the flux is much higher than that of partial commercial
membrane (Table 3). It is rather interesting to note that the ODA@GO TFN membranes
had higher salt rejection than the virgin membrane at seawater operation conditions. This
phenomenon can be explained by the solution diffusion mechanism [35,36]. For an ideally
dense RO membrane, the solute flux is mainly dependent on the concentration difference
between the feed and the permeate. Therefore, operating at high water flux (i.e., higher
hydraulic pressure) helps to dilute the solute flux, resulting in lower salt concentration
in the permeate. Therefore, the net result is higher salt rejection at higher operation
pressure [11,12,17,21]. On the other hand, for the looser TFC membrane, operating at high
pressure facilitates both the solute flux (convective diffusion) and the water flux. Hence,
the net result was that its brackish water salt rejection (~99.7%) was significantly higher
than its seawater salt rejection (~99.1%).
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Table 3. Transport properties of RO membranes in this work and the SWRO commercial membrane
at seawater desalination condition a.

Sample J (L m−2 h−1) R (%) RB
b (%)

Virgin 51.1 99.1 59.2
TFN-2 55 99.5 61.9
TFN-3 59.6 99.6 63
TFN-4 53.9 99.3 70.6

SW30HR-380 27.4 99.6 91
a 32,000 ppm NaCl with 5 ppm boron, an operation pressure ~55 bar, T = 25 ◦C and pH = 8; b Boron rejection.

Meanwhile, the boron rejection was also enhanced by the doping of ODA@GO
(Figure 11). The initial boron removal rate of the virgin TFC membrane was 59.2%. This
value could be improved by 13.3% when an optimum ODA@GO amount was doped.
Accompanying this, the coefficient of boron removal Bs decreased significantly over the
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doping of ODA@GO. This decrease in the boron diffusion coefficient and elevation of boron
rejection can be explained by the increased intrinsic thickness and the cross-linking degree
of the PA nanofilm that increased the separation efficiency [17].
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4. Conclusions

In conclusion, we have discovered in this study that the growth of the PA nanofilm
under the confinement effect of the 2D ODA@GO nanosheets during the interfacial poly-
merization can effectively shape the nanoscale structures and customize the properties of
the polyamide nanofilms. The ODA@GO nanosheets dispersed in the organic phase served
as an effective barrier limiting the diffusion of amine molecules into the organic phase.
As a result, the PA nanofilm was shaped with a significant amount of leaf-like structures,
which promoted the horizontal growth of the PA nanofilm. As a net result, the apparent
thickness of the PA layer was decreased but the overall effective surface area was enhanced,
making the PA layer more efficient for water permeation. In the meantime, both the intrin-
sic thickness and the cross-linking degree of the PA nanofilm were enhanced due to the
elevated amine concentration at the interface, rendering the PA nanofilm a better barrier
for salt and neutral molecules such as boron acid. Therefore, we have demonstrated that
proper doping of 2D nanosheets in the organic phase during IP reaction has the potential
to produce more effective PA nanofilms. This interesting finding will pave the road for
further studies to customize higher-selectivity PA-based polymeric TFN membranes for
seawater desalination.
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