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Abstract: It is evident that regions within tumors are deprived of oxygen, which makes the
microenvironment hypoxic. Cancer cells experiencing hypoxia undergo metabolic alterations and
cytoprotective adaptive mechanisms to survive such stringent conditions. While such mechanisms
provide potential therapeutic targets, the mechanisms by which hypoxia regulates adaptive
responses—such as ER stress response, unfolded protein response (UPR), anti-oxidative responses,
and autophagy—remain elusive. In this review, we summarize the complex interplay between
hypoxia and the ER stress signaling pathways that are activated in the hypoxic microenvironment of
the tumors.
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1. Introduction

Cancers are often challenged by their typical microenvironment, termed tumor microenvironment
(TME), which has a major impact on cancer progression. The understanding of TME is gaining
importance for identifying ways to control cancer cells. TME can be subdivided into a chemical
microenvironment and a cellular microenvironment, wherein the former encompasses pH, pO2,
and a concentration of metabolites such as glucose, glutamate, and lactate [1]. The tumor cellular
microenvironment is comprised of blood vessels, immune suppressor cells, fibroblasts, lymphocytes,
bone marrow-derived inflammatory cells, extracellular matrix (ECM), and stromal cells, which
influence the growth of cancerous cells [2,3]. TME has been shown to regulate cell growth and
determine the potential of metastasis, and it also impacts the therapeutic outcome [4]. The stromal
cells are not malignant, but their role in supporting the growth of cancer cells is found to be very
important for tumor progression. Malformed tumor vasculature contributes to acidosis and tumor
hypoxia and increases the interstitial fluid pressure. Reciprocally, the tumor responds by expressing a
unique repertoire of genes that alter cellular growth, invasion, and ultimately metastasis [4].

One of the key impediments for therapies that prevent tumor progression is the hypoxic
environment in which the cancer cells thrive [5–7]. Tumor hypoxia arises as a result of imbalance
between oxygen demand (high metabolic demand) and its supply to the tissue, which is associated with
poor structural and functional vasculature. This correlates with the aggressive phenotype of tumors and
their resistance to conventional therapies [4]. Hypoxic cells in a tumor mass undergo a metabolic shift
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from oxidative phosphorylation to rapid glycolysis and also accumulate free radicals, resulting in the
development of metabolic stress. In order to cope with such stress and maintain cellular homeostasis,
hypoxic cells activate adaptive responses, such as alternate metabolic pathways, autophagy, and
anti-oxidative responses [8]. Additionally, hypoxia is also known to stress the endoplasmic reticulum
due to the accumulation of misfolded proteins, which activates an unfolded protein response (UPR).
These adaptive responses are pro-survival mechanisms that are not induced in normal healthy tissues,
hence these pathways can provide potential targets for anti-cancer therapy. In this review, we focus
on the role of UPR in hypoxia-induced tumor progression and the molecular links between hypoxia
and UPR.

2. Hypoxia in Tumor Progression

Solid tumors are often exposed to different gradient levels of oxygen, and as they develop, some
regions receive low oxygen levels, leading to the generation of hypoxic regions because of the extreme
energy demands of rapidly dividing cells. A hallmark of cancer is the induction of angiogenesis,
which provides a vascular network to supply both oxygen and nutrients [9]. Tumor vasculature is
disorganized, irregular, and is less efficient in the transport of oxygen and other nutrients. Thus, tumor
cell exposure to hypoxia correlates with the advanced stages of malignancy, which ultimately results in
resistance to both chemotherapy and radiotherapy. A major mechanism mediating adaptive responses
to hypoxia is the transcriptional program activated by hypoxia-inducible factor 1 (HIF-1) [10]. While
it is well established that hypoxia can trigger apoptosis or necrosis, it can also prevent cell death
by stimulating adaptive responses that promote cell proliferation, survival, and angiogenesis, thus
contributing to cancer progression [11]. One of the vital pathways mediating this response is allied
with the activation of HIF-1, which was first described by Wang and Semenza in 1995 [12]. It is evident
that activation of HIF-1 activates pro-survival as well as pro-death decisions under hypoxia [11,13].
Therefore, it is vital to understand the decision-making processes that regulate cell death, adaptation,
and resistance to therapy, and the tumor properties that impact these.

Expression of HIF-1 and associated pathways is linked to the development and pathophysiological
aspects of many human diseases [14]. Likewise, intratumoral hypoxia leads to the sustained expression
of HIF-1α, resulting in genetic instability and phenotypic diversity in solid tumors including prostate,
breast, bladder, brain, colon, ovarian, and pancreatic tumors, but it is not expressed in the surrounding
normal tissue [15,16]. Within the solid tumors, the interior mass turns hypoxic during its quick
expansion until sufficient blood vessels are formed by the tumors. Thus, the hypoxic conditions within
the tumor can lead to enhanced stability and activation of HIF-1α. Immunohistochemical studies
have shown appreciable expression of HIF-1α in some benign tumors. However, it is enhanced in
primary malignant tumors and further increased in metastatic tumors, while being absent in normal
healthy tissues [16,17]. In addition to this, overexpression of HIF-1α has been detected in 69% of the
metastatic breast cancers. However, the significant role of HIF-1α on the metastatic potential and
cancer progression is studied only in gastric cancer [18] but is yet to be investigated in other metastatic
cancers. Furthermore, a noticeable frequency of genetic alterations in tumor cells is associated with the
enhanced expression of HIF-1α [19,20]. In clinical studies, expression of HIF-1α has been suggested
as a marker of a highly aggressive disease associated with poor prognosis and treatment failure in
numerous cancers [21–24]. HIF-1α has been used as a marker to identify lymph node-negative breast
cancer patients who are at increased risk of treatment failure and death even though their tumors are
histopathologically classified as low grade [23]. Similarly, in oropharyngeal cancers, patients with
an increased expression of HIF-1α in more than 10% of their tumor cells were found to be thrice
more likely to fail radiation therapy [24]. HIF-1α levels are also increased in tumors with activated
PI3K/AKT signaling; this mechanism is well understood in prostate cancer cells where the inactivation
of PTEN facilitates the HIF-1-mediated gene expression, leading to increased tumor vascularity and
growth compared to cells expressing PTEN [25]. However, it is important to note that the correlation
between the overexpression of HIF-1α, resistance, and poor prognosis is not universal. For example,
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in a lung cancer study, the overexpression of HIF-1αwas found to be correlated with apoptosis and
patient survival; however, this finding was not established in another study [21–25]. In acute myeloid
leukaemia (AML) and other hematologic malignancies, the situation is also complex. While there is
good evidence supporting the role of HIF in adaptation to hypoxia by primitive hematopoietic stem
and progenitor cells, there is still an incomplete understanding of the role of HIF-1α (and HIF-2α) in
AML development, and the role of HIF may depend on a number of parameters in this heterogeneous
disease setting [26].

3. Regulation of HIF-1

HIF-1 is a heterodimer consisting of two functional subunits—HIF-1α and HIF-1β (ARNT—aryl
hydrocarbon receptor nuclear translocator) [12]. HIF-1α has an oxygen domain, which is highly
regulated by oxygen concentration and has a short half-life (approximately 5 min) [23,27]. It controls
the expression of a variety of genes that play crucial roles in acute and chronic adaptation to
oxygen deficiency, such as erythropoiesis, glycolysis, angiogenesis, inhibition of apoptosis, and
cell differentiation [28–31]. HIF-1α undergoes multiple modes of post-translational modifications
during normoxia, as it is expeditiously downregulated in an oxygen-dependent manner. In normoxia
(Figure 1), HIF-1α is rapidly degraded by the proline hydroxylases-pVHL-proteasome system, but
during hypoxia, HIF-1α is stabilized and translocated into the nucleus, where it dimerizes with
HIF-1β and forms a transcriptionally active HIF complex [32,33]. The proteostasis of HIF-1α is
critically regulated by ubiquitination mediated by the protein von Hippel-Lindau (pVHL). It directly
binds to the oxygen degradation domain of HIF-1α facilitated by prolyl-4-hydroxylase (PHD), which
hydroxylates two specific proline residues—Pro402 and Pro564—in humans [34,35]. VHL recruits a
ubiquitin ligase protein complex consisting of elongin B, elongin C, and cullin, which ultimately results
in ubiquitination and degradation of HIF-1α by the 26S proteasome [36,37]. PHDs are dioxygenases
that require molecular oxygen, Fe2+, and 2-oxoglutarate as substrates [38]. Among the four identified
PHDs that have distinct functions, PHD2 is found to be the critical oxygen sensor that maintains
steady-state levels of HIF-1α under normoxia. Thus, PHDs provide HIF-dependent auto-regulatory
mechanisms driven by oxygen concentrations (Figure 2).
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(FIH-1), respectively, in an O2-dependent manner, followed by ADP-ribosylation factor domain
protein-1 (ARD1) dependent Acetylation of K532 lysine residue. Hydroxylated HIF-1 then binds
to VHL E3 ubiquitin ligase complex, leading to its proteasomal degradation. Hydroxylated N803

blocks the recruitment of the CBP/P300 transcriptional coactivator, whereas during hypoxia, PHDs
and FIH-1 are blocked, thus inhibiting the hydroxylation of proline and asparagine residues. Lack of
hydroxylation prevents the binding of VHL, thus stabilizing HIF-1alpha, which translocates into the
nucleus, allowing the recruitment of CBP/P300 and gene transcription.
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Figure 2. Hypoxia induced ER stress. Endoplasmic reticulum is the central organelle responsible for
protein translational modifications, wherein the formation of protein disulphide bond is mediated by
protein disulphide isomerase (PDI), an ER chaperone. During protein synthesis, protein disulphide
bond is independent of oxygen, but protein folding is dependent on oxygen. Hence, in solid tumors,
decreased availability of oxygen (hypoxic regions/fraction) causes perturbations in protein folding and
results in the accumulation of misfolded/unfolded proteins. These changes disturb the ER proteostasis,
leading to “ER Stress” and activation of unfolded protein response (UPR) as an adaptive mechanism.

The stability of HIF-1α is also known to be regulated by VHL-independent mechanisms. MDM-2
mediated ubiquitination and proteasomal degradation of HIF-1α has been reported, wherein MDM2
is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on
HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling
axis [39]. Heat shock protein 90 (Hsp-90)-dependent degradation of HIF-1α has also been reported,
in which HSP90 directly interacts with HIF-1α, causing a conformational change in response to
dimerization with HIF-1β [40,41]. The PI3K/AKT pathway and the mammalian target of rapamycin
(mTOR)-dependent phosphorylation of eukaryotic initiation factor 4E (eIF4E) under normoxic
conditions have also been shown to increase HIF-1α. However, under hypoxia, mTOR increases
the levels of HIF-1α by a mechanism that does not involve eIF4E [42]. Additionally, asparagine
hydroxylase decreases the binding of the p300 transcriptional co-activator, thus reducing the activity
of HIF1α [43–45]. Given the multiple mechanisms that regulate HIF1α, it is likely that alternate
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mechanisms will be identified across different cancer types, and hence further studies are needed to
explore approaches for targeting HIF1 in specific cancer settings.

4. Stress Responses Regulated by HIF-1 in Response to Hypoxia

The hypoxic microenvironment in solid tumors is a result of rapid consumption of available
oxygen within 70-150µm of tumor vasculature by rapidly proliferating cells, thus restraining the
amount of oxygen available to diffuse into tumor tissue. In order to support uninterrupted growth and
proliferation in the hypoxic environment, cancer cells have evolved to survive and multiply by altering
their metabolism [3,46]. In hypoxic cells, mitochondrial oxidative phosphorylation is downregulated
and taken over by aerobic glycolysis. This metabolic shift is termed as the “Warburg effect”, which
enables rapid generation of ATP at the expense of large amounts of glucose [47]. The breakdown of
glucose enhances lactic acid levels, which may further cause acidosis [11]. Hypoxia combined with
acidosis induces adaptive stress responses in cancer cells, which interestingly promotes aggressive
cancer phenotypes with the enhanced ability to invade and metastasize. It is becoming increasingly
evident that hypoxia exerts significant effects on cellular metabolism via HIF-1α and is found to be the
common link between hypoxia, metabolic adaptation, and tumor progression [48]. HIF1α critically
regulates the switch to glycolysis by activating the transcription of genes encoding for glycolytic
enzymes, such as Lactate dehydrogenase A (LDHA), phosphoglycerate kinase 1 (PGK-1), hexokinase-1
(HK1), and the glucose transporter, glucose transporter 1(GLUT1) [49]. During hypoxia, glucose entry
to the TCA cycle is prevented by HIF-1α, which indirectly regulates pyruvate dehydrogenase (PDH)
enzyme activity through pyruvate dehydrogenase kinase 1 (PDK1). PDK1 is upregulated during
hypoxia, which further inhibits PDH and thereby prevents the conversion of acetyl coenzyme A from
pyruvate [48].

It is also observed that NAD+ dependent deacetylase Sirtuin 1 (SIRT1) plays a role in maintaining
the redox balance. SIRT1 and HIF-1α are coregulated, where the former acts as a redox sensor
and the latter acts as an oxygen sensor [50]. Lim et al. [50] reported that SIRT1 modulates cellular
responses to hypoxia by deacetylating HIF-1α. In normoxic cells, SIRT1 inactivates HIF-1α by
deacetylating the Lys674 residue, thus preventing p300 recruitment and repressing HIF-1 target genes.
However, during hypoxia, SIRT1 is downregulated, which allows acetylation of HIF-1α at Lys674 by
p300/CBP-associated factor (PCAF) and thus the activation of HIF-1α [50]. These results suggest that
the crosstalk between oxygen- and redox-responsive signaling occurs through the interaction between
SIRT1 and HIF-1α.

The redox signaling necessary for various cellular functions is mediated by reactive oxygen
species (ROS). In normal cells, increased levels of ROS can cause cell death. However, a range of
adaptive changes reported in cancer cells allow modulation of redox homeostasis such that tumor cells
survive in the presence of elevated ROS. Mitochondria are one of the major sources of intracellular
ROS [51,52]. Electron transport chain complex I and III are the important sites of mitochondria, which
have significant roles in redox signaling [51,53]. Several factors augment the production and release
of mitochondrial ROS (mROS), among which tumor hypoxia is an important driving factor [54–57].
In most cancers, ROS activates pro-tumorigenic signaling pathways, such as PI3K/AKT, MAPK/ERK,
and HIF-1α, and this is often associated with the inactivation of negative regulators for these pathways,
such as PTEN, MAPK phosphatase, and PHD-2, which also promote proliferation, survival, and
metastasis. In addition to tumor hypoxia, downregulation of antioxidant systems in breast cancer cells
further potentiates ROS production through the loss of SIRT-3 function induced by the accumulation
of mROS and the stabilization of HIF-1α [58]. Nuclear factor E2-related factor 2 (NRF2) is another
transcription factor that plays a critical role in redox homeostasis by transcriptionally activating
antioxidative responsive genes. Under physiological conditions, NRF2 is present in low levels, as it is
ubiquitinated and degraded in the proteosome by kelch-like ECH associated protein 1 (KEAP1)-E3
ubiquitin ligase complex. However, during oxidative stress, ROS disrupt the KEAP1-NRF2 interaction,
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resulting in the accumulation and activation of NRF2. A large body of evidences suggest that NRF2
accumulates and is transactivated in various cancers [59].

Finally, autophagy plays a key role as an adaptive response in tumor cells associated with high
levels of stress pathway activation and allows tumors to maintain metabolic homeostasis [60,61].
Autophagy is an important process in healthy cells that is responsible for mitochondrial turnover
and removal of damaged mitochondria. Impaired autophagy is implicated in tumor-initiation
through defective mitophagy and de-regulated ROS. The precise role of autophagy in cancer is
still a subject of intense debate; autophagy has been shown to support tumor cell survival and to
lead to death-promoting signals in response to microenvironmental stress factors [62]. Thus, the
role of autophagy in cancer remains complex and accumulating evidence shows that autophagy is
critical in tumor responses to therapy by leading to chemotherapeutic resistance [62]. For instance,
it has been shown that the inhibition of glycolysis by 2-deoxyglucose results in ER stress, which
causes active conversion of LC3-I/II and confers autophagy-dependent cell survival [63]. On the
other hand, autophagy can also induce caspase-dependent cell death in cancer cells. In 2010, Norman
et al. showed that cleavage of autophagic proteins is observed when cells switch to apoptosis over
autophagy. For example, it has been revealed that the autophagic protein, Atg5, is cleaved by calpain,
resulting in caspase activation [64]. In response to metabolic stress in cancer cells, the balance between
cell growth and autophagy is regulated primarily by the mammalian target of rapamycin (mTOR) [65].
mTOR is inhibited by the product of the BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)
gene, which is regulated in response to hypoxia [66]. It has also been reported that induction of
hypoxia induces mitochondrial autophagy, which is regulated by HIF-1-dependent expression of
BNIP3 [67]. Nevertheless, an intriguing question remains regarding the function of the cell death
promoting protein (BNIP3) induced under hypoxic conditions, where HIF-1α is shown to promote
cell survival. Conversely, BNIP3 expression is found to reach maximum during severe hypoxia and is
observed close to the necrotic tumor areas. Indeed, Bellot et al. also showed that hypoxia-induced
autophagy is mediated by HIF-1α –induced BNIP3, which was demonstrated to promote tumor cells
survival and progression [68]. In addition, mTOR has been reported to be regulated by hypoxia via
Regulated in Development and DNA Damage 1 (REDD1) [69], which also regulates mTOR and autophagy
in response to ER stress [70]. Despite these insights, much remains to be elucidated with regard to
the signaling pathways that lead to ER stress-mediated autophagy in hypoxic tumors. A much more
complete understanding of the molecular mechanisms at play between hypoxia-induced ER stress and
autophagy will provide insights for development of new anti-cancer therapies.

5. ER Stress Response Regulated upon Hypoxia

The ER is the largest organelle besides the nucleus and has an extensive membranous network of
tubules, vesicles, and a sac that surrounds the nucleus and expands to the cytosol [71,72]. The ER is a
compartment enriched in calcium, which orchestrates protein folding, assembly, and is also a site for
lipid and sterol biosynthesis [73,74]. Inside the ER, posttranslational modifications including disulfide
bond formation and N-linked glycosylation play major roles in the protein folding and assembly.
Properly folded proteins in the lumen of the ER are transported out, while unfolded/misfolded
proteins are retained in the ER and eventually degraded [73]. However, a number of biochemical,
physiological, and pathological stimuli—which can cause oxidative stress, ER calcium depletion,
nutrient deprivation, altered glycosylation, DNA damage, or energy perturbations—can disrupt the
protein folding and subsequently cause an accumulation of unfolded/misfolded proteins in the ER.
This is a condition referred to as “Endoplasmic Reticulum stress–ER stress” [74–79]. The cells respond
by modulating signaling pathways that activate a transcriptional program to alleviate ER stress, termed
as the unfolded protein response (UPR) [74,78].

Cancer cells experiencing hypoxia display extensive protein modification in the ER, which leads
to the accumulation of misfolded/unfolded proteins. During protein synthesis in the ER, formation of
disulphide bonds is the major post-translational modification step, catalyzed by the protein disulphide
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isomerase family of enzymes. It is evident from recent studies that disulphide bond formation during
protein synthesis is independent of oxygen, in contrast to that which occurs during post-translational
protein folding/isomerization, which is oxygen-dependent [80]. Thus, under hypoxic conditions,
there is an accumulation of misfolded/unfolded proteins in the ER, and this triggers UPR, which
promotes survival of cancer cells as well as mediates resistance to available anti-cancer therapies [81,82]
(Figure 3). UPR may also lead to the up-regulation of several PDI family members, which promote
cell death. For instance, upregulation of PDIA3 and PDIA19 in neuroectodernal tumors results in the
induction of cell death under ER stress [83]. Also, inhibition of PDI sensitizes neuroectodermal cells to
ER stress-induced apoptosis, thus demonstrating the vital role played by PDI during ER stress [84,85].
Similarly, dysregulation of PDI expression and activity has been observed in other cancers [86]. PDI
inhibition was also found to sensitize hepatocellular carcinoma cells to apoptosis upon the induction
of ER stress [87]. Hence, PDI may offer a potential novel target for sensitizing tumor cells to therapy,
and therefore it is critical to better understand the specific role played by PDI in cancer progression
and the cancer types where this pathway is activated.Int. J. Mol. Sci. 2019, 20, x 8 of 17 
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Figure 3. Hypoxic stress induced unfolded protein response (UPR) and autophagy. Hypoxia causes
perturbations in the ER activity, resulting in UPR activation. UPR has three signaling arms, which play
differentially in different tumors and also in different stages of tumor development and progression.
UPR-activation induces autophagy through IRE1 and PERK signaling. Activated IRE1 phosphorylates
JNK by recruiting TRAF2 and ASK1, which phosphorylate two autophagy inhibitor proteins, BCL-2
and BCL-XL, leading to their dissociation from BECN1, the key autophagy inducer. In addition to this,
activated PERK drives the downstream expression of both ATF4 and CHOP, where ATF4 drives the
expression of ATG12, and in combination with CHOP, ATF4 regulates the expression of TRB3, which
blocks mTOR by inhibiting AKT, thus inducing autophagy.
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UPR activation serves as a survival strategy for the transformed cells, as cancer usually arises and
progresses in a stressful microenvironment. Recently, it has been established that in-vivo activation
of UPR is critical for cancer development. Activation of UPR causes transient attenuation of protein
synthesis, increased capacity for protein trafficking through ER, proper folding of the proteins, and
augmented protein degradation through ER-associated degradation (ERAD) and autophagy. Failure of
cells to respond through these adaptive mechanisms undergoes cell death. Therefore, depending on the
context, UPR activation contributes to enhanced survival and also induces apoptosis in cancer cells [71].
UPR pathways in mammalian cells consist of three main signaling cascades that are initiated by three
primarily ER-localized protein stress markers—namely PKR-like ER kinase, IRE1α (inositol-requiring
enzyme 1 alpha), and ATF6 (activating transcription factor 6) [71]. Under physiological circumstances,
the luminal domains of PERK and ATF6 are bound to BiP (binding immunoglobulin protein), the
ER resident chaperone, and remain inactive [88]. Upon proteotoxic stress, BiP is released from these
complexes to enable proper folding of misfolded proteins [89–91].

BiP has been reported to be overexpressed in several cancers [92,93]. It is a chaperone that
enhances cancer cell adaptation to hypoxic microenvironments and confers resistance against
anti-cancer therapy [94,95]. In several cancer types, BiP regulates cell proliferation, invasion, apoptosis,
inflammation, and immunity [96]. Additionally, BiP has been shown to be involved in angiogenesis,
metastasis, and tumorigenesis [89,97,98]. In human cancers including breast, liver, gastric, prostate,
and colon, enhanced BiP levels have been correlated with higher pathologic grade, recurrence risk, and
poor patient survival [89]. In human breast cancer cells, Grp78 interacts physically and functionally
with BIK and inhibits apoptosis mediated by BIK. [99]. It has also been observed that increased
expression of BiP decreases sensitivity of glioma cells to etoposide and cisplatin [100]. Thus, BiP is as
an effective biomarker indicating aggressive behavior and poor prognosis in cancer [101–104].

The type I transmembrane serine/threonine kinase PERK is enriched at mitochondria associated
ER membranes (MAMs) and has kinase activity in the cytosol [105]. Under basal conditions, HSP90
binds to cytoplasmic domain of PERK while BiP binds to the ER luminal domain to stabilize and
prevent its activation [106]. Upon ER-stress, BiP binds to misfolded/unfolded proteins, which
facilitates the release of PERK, resulting in homodimerization followed by autophosphorylation
and the activation of PERK [107,108]. Activated PERK phosphorylates eIF2α at the serine51 residue to
attenuate translation initiation [109]. This transitory inhibition of protein synthesis possibly promotes
polysome disassembly to increase the number of ribosomes available for binding to newly transcribed
mRNAs encoding UPR adaptive functions. In contrast, PERK-dependent phosphorylation of eIF2α
upregulates genes that promote amino acid sufficiency and redox homeostasis, thereby promoting
cell growth. Phosphorylated eIF2α increases the translation of a number of mRNAs, including those
encoding ATF4, ATF5, and amino acid transporters [110,111]. ATF4 translocates into the nucleus
to activate UPR genes via binding to amino acid starvation response element (AARE) in genes that
are important for antioxidant response, amino acid biosynthesis, and transport, thus promoting cell
survival [110]. Under chronic stress, constitutive PERK-mediated phosphorylation of eIF2α can also
lead to apoptosis. Hence, it is understood that depending on the severity of stress, activation of PERK
promotes both adaptive and apoptotic responses [112–114]. In colorectal carcinoma, PERK signaling
is crucial for the adaptation of cells to hypoxic stress [115], and activation of the PERK-eIF2α-ATF4
pathway is critical for promoting tumor dormancy, which contributes to chemoresistance in human
epidermoid carcinoma cells [116]. It has also been reported by Diane et al. that the PERK-eIF2α-ATF4
pathway confers a survival advantage for hypoxic cells in the tumor mass [117].

Another branch of the UPR pathway that contributes to tumor progression is activated by the
type I transmembrane protein IRE1α. IRE1α has a cytosolic serine/threonine kinase domain, which
binds both HSP90 and HSP72 while maintaining its stability. BiP binds to the luminal domain of IRE1α
to prevent dimerization [106,118]. Upon ER-stress, the accumulation of unfolded proteins in the ER
stimulates the release of IRE1α, which oligomerizes and undergoes autophosphorylation, leading
to the activation of its kinase and endoribonuclease activities [107,108]. More recently, mammalian
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IRE1 has been shown to bind peptides and unfolded proteins directly, similar to yeast, resulting in the
activation of IRE1 α. Activated IRE1α cleaves XBP1 mRNA to initiate the removal of a 26-base intron
in the cytoplasm to produce a translational frameshift that generates a transcriptionally active form of
XBP1 (sXBP1) that translocates into the nucleus and binds to promoters of several genes involved in
UPR and ERAD [119,120]. Romero–Ramerez et al. showed that hypoxia activates the IRE1–XBP1 arm
of UPR, and inhibition of XBP1 inhibits tumor growth [121], which is consistent with other studies
suggesting that the loss of XBP1 inhibits tumor growth [122]. Furthermore, hypoxia increases the levels
of sXBP1 mRNA and protein [121,123]. Thus, XBP1 acts as an essential survival factor for hypoxic
stress and tumor growth [121]. Elevated levels of XBP1 have been observed in many human cancers
including breast, hepatocellular, and pancreatic [93,124,125]. IRE1α, on the other hand, promotes
apoptosis by stimulating the downstream activation of JNK and p38 MAPK. Apoptosis-inducing
substrates of JNK are Bcl-2 and Bim, whereas p38 MAPK activates the transcription factor CHOP
[C/EBP homologous protein, also known as growth arrest- and DNA damage-inducible gene 153
(GADD153)], which increases the expression of Bim and DR5 while decreasing the expression of Bcl-2.
Acute ER stress activates IRE1α, whereas IRE1α activation is mostly attenuated upon chronic ER
stress [126–128] through undefined mechanisms.

ATF6 (activating transcription factor 6) is a type II transmembrane protein that is also a
leucine zipper (bZIP) domain containing a transcription factor dependent on cyclic AMP. Under
normal conditions, ATF6 is retained and stabilized in the ER through its interaction with BiP. Upon
accumulation of misfolded proteins, ATF6 is released from BiP and traffics to the Golgi apparatus,
where it undergoes regulated membrane proteolysis by S1P and S2P proteases (also known as MBTPS1
and MBTPS2) [129] to generate an active transcription factor. Cleaved ATF6α mediates the UPR by
increasing the transcription of genes that increase ER capacity and the expression of XBP1 [130,131].
To date, no substantial evidence supports the role of ATF6α in ER stress-induced apoptosis. The gene
encoding BiP is a transcriptional target of ATF6α and is reported to serve as a marker of malignancy [71].
Upon induction of ER stress, unfolded/misfolded proteins bind to BiP, which results in activation of
ATF6α, which in turn ameliorates ER stress [132].

All of the above described arms of the UPR are found to be implicated in different tumor types at
different stages of tumor progression. For instance, in the case of hepatocellular carcinoma (HCC),
IRE1α-XBP1 signaling was found to be important during the initiation of tumor growth, while once
the tumor is established, PERK activation is required [133]. In the context of colorectal carcinoma,
PERK signaling was found to be crucial in the adaptation of cancer cells to hypoxic stress, whereas in
squamous cell carcinoma, PERK was shown to promote dormancy under adverse microenvironmental
conditions [115,116]. In prostate cancer, all three UPR signaling pathways were found to be co-activated
and concurrently involved in the malignant progression [134].

6. Autophagy: A Cellular Stress Response Regulated by HIF-1

During UPR, autophagy sustains cell survival by re-establishing ER homeostasis by digesting
the misfolded/unfolded ER proteins. Upon ER-stress, autophagy is stimulated by the IRE1-XBP1
and PERK-eIF2α arms of the UPR [135]. Active IRE1 activates JNK by recruiting TRAF2 (tumor
necrosis factor receptor-associated factor 2) and ASK1 (apoptosis signal-regulating kinase). In turn,
JNK phosphorylates BCL-2 and BCL-XL, the two autophagy inhibitor proteins, which then dissociate
from Beclin 1 [136]. PERK signaling also induces autophagy by activating the expression of ATF4
and CHOP, which drive the expression of the autophagy protein ATG12. ATF4 in combination with
CHOP also regulates the expression of TRB3, which inhibits AKT and mTOR, thus inducing autophagy.
Calcium released from the ER also activates enzymes such as DAPK (death-associated protein kinase),
PKCθ (protein kinase Cθ), or AMPK, which can positively regulate autophagy [135]. Autophagy
can also induce apoptosis under ER stress conditions; for example, the inhibition of autophagy has
been reported to prevent Caspase-8-mediated cell death [137,138]. Autophagy has also been found
to degrade anti-apoptotic factors such as IAPs (inhibitor of apoptosis proteins). PERK was found
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to degrade XIAP [139]. These reports show that UPR and autophagy are closely associated and can
regulate both pro-survival and pro-apoptotic mechanisms. However, there are still important questions
to be answered regarding how UPR-induced autophagy and apoptosis are linked.

7. Conclusions

ER stress is critical for the induction of pro-survival mechanisms through the UPR, which allows
the adaption to a stressful microenvironment. Recent studies have shown that hypoxia activates the
UPR as a mechanism of tumor cell adaptation to low oxygen availability, promoting tumor growth
and increased resistance to chemotherapy and radiotherapy. This provides an important mechanism
by which hypoxia drives pro-tumorigenic changes and tumor progression. A deeper understanding
of the role of hypoxia in inducing ER stress and UPR and the interplay between the two will lead
to therapeutic opportunities. Also, it is important to determine the nature of the crosstalk between
UPR-induced pro-survival mechanisms (such as autophagy) and cellular death pathways (such as
apoptosis). Moreover, UPR markers show different signaling in different cancer types and at different
stages, emphasizing the heterogeneity of these responses and the need to consider approaches in
specific settings. Finally, it must be considered that, to date, there are no UPR modulators approved
for clinical use, thus an important area of study for future research must be approaches for targeting
this important stress response pathway to provide novel approaches to cancer therapy.
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