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The term ocular microbiota refers to all types of commensal and pathogenic
microorganisms present on or in the eye. The ocular surface is continuously exposed
to the environment and harbors various commensals. Commensal microbes have been
demonstrated to regulate host metabolism, development of immune system, and host
defense against pathogen invasion. An unbalanced microbiota could lead to pathogenic
microbial overgrowth and cause local or systemic inflammation. The specific antigens that
irritate the deleterious immune responses in various inflammatory eye diseases remain
obscure, while recent evidence implies a microbial etiology of these illnesses. The purpose
of this review is to provide an overview of the literature on ocular microbiota and the role of
commensal microbes in several eye diseases. In addition, this review will also discuss the
interaction between microbial pathogens and host factors involved in intraocular
inflammation, and evaluate therapeutic potential of targeting ocular microbiota to treat
intraocular inflammation.

Keywords: ocular microbiota, ocular surface microbiome, intraocular inflammation, eye, ocular
inflammatory disease
INTRODUCTION

As the term microbiota refers to all types of microorganisms present in or on human body, the term
ocular microbiota refers to all types of microorganisms present in or on the eyes. Ever since the
launch of the HumanMicrobiome Project, our understanding toward the diversity and composition
of commensal microbiota has been expanding. It has been evidenced that commensal microbiota
plays fundamental roles in regulating host physiology, induction and development of immune
Abbreviations: AMD, age-related macular degeneration; DR, diabetic retinopathy; CNS, central nervous system; RGC, retinal
ganglion cell; BD, Behcet’s disease; rRNA, ribosomal RNA; ITS, internal transcribed spacer; PMNs, polymorphonuclear
leukocytes; ACAID, anterior chamber-associated immune deviation; cfu, colony-forming unit; HLA-B27, human leukocyte
antigen-B27; MHC, major histocompatability complex; EAU, experimental autoimmune uveitis; IRBP, interphotoreceptor
retinoid binding protein; TCR, T cell receptor; CF, complement factor H; ARMS2, age-related maculopathy susceptibility 2;
TIMP3, tissue inhibitor of metalloproteinases-3; MMP9, matrix metallopeptidase 9; APOE, apolipoprotein E; LIPC, lipase C;
CETP, cholesteryl ester transfer protein; ABCA1, ATP-binding cassette transporter; RPE, retinal pigment epithelium; LPS,
lipopolysaccharide; TLR, Toll-like receptor; PAMP, pathogen-associated molecular pattern; DAMP, damage-associated
molecular pattern; APC, antigen presenting cells; PRR, pattern recognition receptors; TIR, Toll/IL-1 receptor; MyD88,
Myeloid differentiating factor 88; TRIF, TIR domain containing adaptor inducing interferon b; TIRAP, TIR domain-
containing adaptor protein; TRAM, TRIF-related adaptor molecule; IRF, interferon regulatory factor; MAPK, mitogen-
activate protein kinase; AAU, acute anterior uveitis; DC, dendritic cells; VCAM-1, vascular cell adhesion molecule-1; ICAM-1,
intercellular cell adhesion molecule-1; MIP, macrophage inflammatory protein; MCP-1, monocyte chemotactic protein-1.
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system, as well as host defense against pathogen invasion, albeit
dysbiosis (unbalanced microbiota) could lead to pathogenic
microbial overgrowth and cause local or systemic
inflammation (1). The ocular surface is directly exposed to the
external environment and endangered by various pathogenic
microorganisms. These facts combined with our recent findings
of intraocular microbes raise intense research interest in
clarifying the role of ocular microbiota in ocular health
and diseases.

The ocular immune system is composed of a complex
network of innate and adaptive components. Infection or
autoimmunity could lead to intraocular inflammation which is
associated with a multitude of sight-threatening diseases, which
include but may not be limited to endophthalmitis, uveitis, age-
related macular degeneration (AMD), glaucoma, and diabetic
retinopathy (DR). Intraocular inflammation exerts deleterious
effects on vision integrity since the delicate ocular components,
such as the retina and the cornea, are unable to regenerate. The
eye is an immunologically privileged organ. Up to date, the
specific antigens that irritate the deleterious immune responses
in the immune privileged site in those diseases remain obscure. A
growing body of research has shown that commensal microbes
might be the trigger of intraocular inflammation. Here, we
discuss evidence for the relationship between microbes and
ocular diseases, discuss microbial pathogen and host factors,
including the molecular and cellular interactions, involved in
non-infectious intraocular inflammation, and evaluate
therapeutic potential of targeting ocular microbiota to treat
intraocular inflammation.
THE OCULAR MICROBIOTA

The ocular surface is the interface between the eye and the
environment which comprises the cornea, the conjunctiva, the
tear film, and the eyelids. It has been much debated whether
the microorganisms in our environment are able to adhere to
Frontiers in Immunology | www.frontiersin.org 2
and colonize the ocular surface, because during eye blinking,
tears secreted from the lacrimal gland of the eyes contain
lysozyme that could kill bacteria and wash the ocular surface
(1). Supporting evidence for the existence of ocular surface
microorganisms arises from microbial cultivation studies
documented first in 1930 (2). Many subsequent results from
similar studies are in line with the first discovery. Swabs from
different parts of the ocular surface were incubated in bacteria
growth media (mostly blood and chocolate agar). The
incubations occur in aerobic, anaerobic, or 5% CO2 for up to
14 days at body temperature (3). These culture-based methods
are invaluable in a historical perspective in confirming the
existence of a microbiota and identifying microorganisms. The
common bacteria isolated from these sites of the eye are Gram-
positive genera, including coagulase-negative Staphylococcus,
Streptococcus, Propionibacterium, Diphtheroid bacteria and
Micrococcus (4). Some genera that are abundant in the gut
flora, such as Escherichia, Enterococcus, Lactobacillus, and
Bacillus are less common on the normal ocular surface (4).
Gram-negative genera, such as Haemophilus, Neisseria,
Pseudomonas, and fungal isolates are even rarer but can also
be isolated and cultured from the surface of eyes without obvious
signs of inflammation or infection (4, 5). The most common
ocular surface bacteria are coagulase-negative Staphylococci
which present in 20–80% of the swabs from the conjunctiva
and 30–100% of the swabs from the lids (4). The density of
microbes recovered are usually lowest from tears while higher
from conjunctiva and eye lid (3). Types of the ocular surface
microbes identified are consistent with results from studies of
cultivable microbiota from contact lenses, which also suggest that
coagulase-negative Staphylococcus is the most common genera,
and less commonly Bacillus, Micrococcus, and fungi (3).

The ocular surface and the sclera enwrap the interior ocular
cavity. The cavity enclosed by the ocular outer compartments
mainly consists of the anterior chamber, the posterior chamber,
the ciliary body, and the vitreous body (Figure 1). Historically,
the intraocular environment has been deemed sterile on account
of its closed anatomical structure as well as protection provided
FIGURE 1 | Anatomy of the eye.
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by the tight and restrictive blood-retina barrier unless it is
invaded by pathogens due to unnatural circumstances.
Contamination could occur when the outer ocular
compartments are damaged during an intraocular surgical
procedure or following an injury caused by a penetrating
foreign object (6, 7). For example, post-operative infectious
endophthalmitis is a rare but serious vision-threatening
complication of ocular surgery (e.g., cataract extraction) which
involves inflammation of both the anterior and posterior
segments of the eye. Post-operative endophthalmitis is
presumably attributed to the diffusion of microorganisms from
the patient’s conjunctival or skin flora into the sterile intraocular
compartments of the eye during surgery and cause
overwhelming inflammation (8). Besides, diseased conditions
that are associated with retinal vascular lesions could introduce
microbial invasions from the circulating blood as normal human
blood contains appreciable numbers of microorganisms (9–12).
For example, one of the early pathological features of DR, a
common diabetes complication in the eye, is retinal vascular
leakage (13). Coincidently, DR has been demonstrated to be
affected by microbiome (14, 15). Furthermore, some microbes
(mainly viruses) could spread along the nerves. Cases of
infections occurred in the central nervous system (CNS) by
neurological spread are not sparse. Ocular infection could be
secondary to a CNS infection. For instance, it has been reported
that rabies virus infected in the hind limbs of mice could travel
along the peripheral nerve and the axon to the brain and then
spread to the eye through the optic nerve where it infects the
retinal ganglion cell (RGC) but not the photoreceptors (16).

The vitreous humor and aqueous humor contain a variety of
organic and anorganic components that form an excellent
cultivating medium for microorganisms (17, 18). In the late
19th century, researchers found that microorganisms, such as
Bacillus Subtilis and Bacillus Megaterium grew extremely well in
the aqueous humor withdrawn from living body (18). In some
studies by others, Propionibacterium acnes (P. acnes) was
detected in the granuloma of the retina in patients with ocular
sarcoidosis where accumulated CD4+ cells and CD68+ cells were
also nearby, suggesting that P. acnes could be associated with
sarcoid uveitis (19, 20). In line with their findings, we were able
to detect the expression of P. acnes mRNA in most aqueous
humor specimens we collected from patients undergoing cataract
surgeries who were free of active or history of intraocular
inflammation and infection, raising the question of whether P.
acnes is a benign resident or a pathogenic intraocular
microorganism and whether there is a community of
microorganisms living inside the human eye. So far, there is no
direct documentation of the existence of intraocular microbiome.
This is possibly because the intraocular materials from healthy
human eye are difficult to acquire. In our preliminary study, the
intraocular microbial communities were significantly different
among patients with distinct ocular diseases. Whether the
intraocular microbiome lives in symbiosis with the host just as
the intestinal microbiome and whether alteration of intraocular
microbiome contributes to the ocular health and the etiology of
ocular diseases in general remain to be examined.
Frontiers in Immunology | www.frontiersin.org 3
DEFINING THE OCULAR MICROBIOTA

Methods to define a microbiota can be generally divided into
culture-based techniques and non-culture-based techniques. The
culture-based techniques depend on phenotypic characteristics
of microbes to estimate the microbial load, for example, the
ability of microbes in a sample to proliferate in or on a specified
growth medium under a specified growth condition (21, 22).
Although it provides a rough evaluation of microbial density and
diversity in specimens, these measures are often inaccurate and
biased. The cultivable species may only represent a small
proportion of the real microbial populations in the samples
which are prone to grow under the applied cultivation
conditions (23, 24). In addition, the estimation of microbial
density in a certain sample also varies according to a wide range
of factors that may affect the proliferation ability of microbes.
Some microbes are even uncultivable on traditional laboratory
medium. Currently, only half of the bacterial phyla have
cultivated representatives (25). Indeed, variations in types and
density of microorganisms that can be cultured from the ocular
surface exist in many published studies (23, 26).

The more advanced non-culture diagnostic methods are
immunoassays, which target microbe-secreted peptides or
microbial antigen, and metagenomic sequencing, which target
microbial RNA or DNA. Both methods allow study of the
community of the microbes present without obtaining pure
cultures. Methods targeting microbial nucleic acids do not
require specific antibodies making them more readily available
for laboratory study. 16S ribosomal RNA (rRNA) is commonly
used for taxonomic purposes for bacteria, while 18S rRNA and
internal transcribed spacer (ITS) are used for fungi. To define
microbial species, the 16S/18S/ITS gene amplicons are usually
sequenced and the sequence will be matched with the repository
of existing sequence to yield taxonomic information. Nowadays,
more than 9,000 16S rRNA gene sequences have been deposited
in GenBank, rendering 16S rRNA gene sequence analysis a better
tool to identify those rarely isolated, poorly described, and
uncultivable bacteria (27). Another sequencing method called
shotgun metagenomics can achieve species- and strain-level
resolution. It examines the entire genome as opposed to only
the 16S/18S/ITS amplicons, but its high costs and heavy
demands on bioinformatic analyses precluded its extensive use
for microbiome study (28).

The first high-throughput study to explore the diversity of
healthy human ocular surface microbiome was published in 2007
by Graham et al. in which they identified Staphylococcus,
Rhodococcus, Corynebacterium, Propionibacterium, Klebsiella,
Bacillus, and Erwinia as the main bacterial genera on healthy
human ocular surface (2). However, the composition of the “core
ocular surface microbiota” has been highly contested. Dong et al.
proposed that 12 genera—Pseudomonas, Propionibacterium,
Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas,
Staphylococcus, Aquabacterium, Sphingomonas, Streptococcus,
Streptophyta, and Methylobacterium—represented the putative
“core” of conjunctival microbiota (29). Another study claimed
that Corynebacterium, Streptococcus, Propionibacterium, Bacillus,
December 2020 | Volume 11 | Article 609765
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Staphylococcus, and Ralsontia were detected in 80% of the 105
samples tested and together accounted for more than a third of
the entire bacterial community characterized (30). The core
conjunctival microbial communities were later shown to be
composed of Corynebacterium, Pseudomonas, Staphylococcus,
Acinetobacter, Streptococcus, Millisia, Anaerococcus, Finegoldia,
Simonsiella, and Veillonella (31). Doan et al. applied three
different techniques to explore the healthy human conjunctiva
microbiome: bacterial culture, 16S rDNA gene deep sequencing,
and biome representational in silico karyotyping. They found
that Corynebacteria, Propionibacterium, and coagulase-negative
Staphylococcus were the predominant organisms (32). A study by
Ozkan et al. reported that Corynebacterium, Acinetobacteria,
Pseudomonas, Sphingomonas, Streptococcus, Massilia, and
Rothia accounted for 80% of the operational taxanomic
units (OTUs) and microbial genera on the ocular surface
(24). The metagenomic data collected from our laboratory
revealed that Propionibacterium, Staphylococcus, Escherichia,
and Micrococcus were the most abundant ocular surface
microbial genera in healthy humans (33). Li et al. found the
predominant genera to be Pseudomonas, Acinetobacter, Bacillus,
Chryseobacterium, and Corynebacterium (34). The more recent
study carried out by Suzuki et al. demonstrated that the ocular
surface was typically dominated by Propionibacterium in the
young subjects and by Corynebacterium or Neisseriaceae in the
elderly subjects (35).

Although metagenomic sequencing offers substantial
information about the diversity of the ocular microbiome and
reveal previously unidentified microbial species by the traditional
culture-based methods, inconsistency remains between several
studies using similar sequencing techniques (Table 1). Therefore,
culture-based methods are sometimes combined with non-
culture-based methods to prove the existence of a microbe.
Most of the metagenomic sequencing results support
Corynebacterium, Propionibacterium, and Staphylococcus as the
dominant taxons of healthy ocular surface. This expands the list
of the most common genera recovered by culture-based
methods, i .e. the coagulase-negative Staphylococcus .
Noteworthy, metagenomic sequencing results could also be
complicated by several factors, such as small sample size (36),
depth of swabs (37, 38), and contaminations from DNA
Frontiers in Immunology | www.frontiersin.org 4
extraction kit and PCR reagents (39, 40) and so forth.
Nonetheless, it remains the best state-of-the-art tool for in situ
profiling of a microbiota. Utilizing this powerful metagenomic
sequencing tool, we have also characterized the intraocular
microbiota of the aqueous humor from patients with ocular
diseases that required surgical intervention. We found that each
disease has a unique intraocular microbial signature, suggesting a
potential link between intraocular microbiota and ocular health
and diseases.
FACTORS CHANGING THE OCULAR
MICROBIOTA

The ocular surface microbiota can be influenced by environmental
conditions, age, gender, personal habits, contact lens wear, disease
states, antibiotics, and infection etc (41). Understanding toward the
factors that alter the intraocular microbiota is still in its infancy. As
the intraocular space is relatively separated from the outer
environment, it is reasonable to speculate that the intraocular
microbiota is more imaginably associated with host factors.

Age and sex hormone have significant impacts on immune
regulation and ocular health (33). Our study showed that age
groups differs significantly in bacterial composition and
metabolic functions, and that gender factor only affects b but
not a diversity of bacterial composition. Our data suggest that
age and gender can collectively shape the ocular surface
microbiome, while age appears to be a stronger factor in
reshaping the ocular surface microbiome (33). However, some
earlier studies showed contradictory findings: Ozkan et al (24).
found no effect of age on the microbial a diversity and a higher
Shannon diversity index in males; Zhou et al. found no effect of
sex on the microbial diversity and a higher richness and Shannon
diversity index in children less than 10 years old (30). This
inconsistency may be explained by the fact that the techniques
used were different in these studies. We used metagenomic
sequencing approach which may detect a much broader range
of microbes (33).

Dry eye syndrome is a multi-pathogenic factorial disease of
the ocular surface characterized by loss of homeostasis of the tear
film which results in excessive evaporation of tears in most of the
TABLE 1 | Core ocular surface microbiome in healthy adults.

Genera of bacteria Number of
samples

Reference

Staphylococcus, Bacillus, Rhodococcus, Corynebacterium, Propionibacterium, Klebsiella, and Erwinia 57 (2)
Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococcus, Aquabacterium,
Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium

4 (29)

Corynebacterium, Streptococcus, Propionibacterium, Bacillus, Staphylococcus, and Ralsontia 105 (30)
Corynebacterium, Pseudomonas, Staphylococcus, Acinetobacter, Streptococcus, Millisia, Anaerococcus, Finegoldia, Simonsiella, and
Veillonella

31 (31)

Corynebacteria, Propionibacteria, and Staphylococcus
Corynebacterium, Acinetobacteria, Pseudomonas, Sphingomonas, Streptococcus, Massilia, and Rothia
Propionibacterium, Staphylococcus, Escherichia, and Micrococcus
Pseudomonas, Acinetobacter, Bacillus, Chryseobacterium, and Corynebacterium
Propionibacterium, Corynebacterium, and Neisseriaceae

107
45
90
54
36

(32)
(24)
(33)
(34)
(35)
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cases. Meibomian glands located in the eyelids are responsible
for the secretion of oily components for the tear film to protect
the ocular surface from overt dryness, discomfort, or damage.
Meibomian gland dysfunction often leads to evaporative dry eye
syndrome. Inconsistencies in the microbial species that changed
by dry eye syndrome and meibomian gland dysfunction remain
in several studies (34, 42, 43). This may again be explained by
sample size, sequencing approach, and different diagnostic
criteria. For example, it has been reported that some cases of
meibomian gland dysfunction overlap with not only dry eye
syndrome but also blepharitis (44). No conclusive results have
been achieved by these analyses, yet the results hinted that the
ocular surface “resident microbiota”, Corynebacterium, is likely
associated with these diseases. However, it is still unclear that
whether the change of the ocular surface microbiota is a cause or
a consequence of the ocular surface disorders.

Patients with other diseases such as diabetes, high cholesterol
and triglycerides, conjunctivitis, autoimmune diseases like
Behcet’s disease (BD), rheumatoid arthritis, and Sjögren’s
syndrome, which are linked with meibomian gland dysfunction
and dry eye syndrome have also been reported with altered
ocular surface microbiota (45–53). These suggest that
endogenous host factors other than age and gender may be
equally important in shaping the ocular surface microbiome, or
the change of ocular surface microbiome may be secondary to
meibomian gland dysfunction or dry eye syndrome. Further
investigations are needed to dissociate data of patients with
meibomian gland dysfunction or dry eye syndrome from those
without in order to provide insights into finding the endogenous
host factors that alter ocular surface microbiome.
Frontiers in Immunology | www.frontiersin.org 5
INTRAOCULAR INFLAMMATION

Intraocular inflammation has two types: acute and chronic. The
acute intraocular inflammation as observed in post-operative or
post-traumatic endophthalmitis is normally caused by
pathogenic microbes and is capable of inducing robust changes
in blood-retina barrier permeability and subsequent infiltration
of non-resident immune cells, such as polymorphonuclear
leukocytes (PMNs) and macrophages (Figure 2) (54). The
chronic form accounting for most intraocular inflammation
appears to arise from a combination of predisposing genetic
and environmental factors. A break of immune tolerance against
endogenous antigens, followed by autoantibody production,
dysregulation of effector and regulatory T cells, and infiltration
of T lymphocytes and macrophages, is usually the mechanistic
basis for chronic intraocular inflammation associated with
inflammatory ocular diseases, particularly uveitis.

The eye is an immunologically privileged organ. The anterior
chamber, the vitreous cavity, and the subretinal space of the eyes,
are immune privileged sites where multiple mechanisms work
together to inhibit overt immune responses (55). The
conjunctiva and the interior of the eye are highly vascularized
and home to many immune cells, suggesting that the eyes are
under sophisticated regulation by immune system. Presumably
due to an evolutionary adaption, our immune system uses several
strategies to avoid intraocular inflammation, for example,
immunological ignorance of eye-derived antigens, immune
tolerance, and a local immunosuppressive or anti-
inflammatory microenvironment created by blood-retina
barriers and immunosuppressive/anti-inflammatory molecules
FIGURE 2 | Potential mechanisms of intraocular microbiome-mediated intraocular inflammation. Unbalanced intraocular microbiota can lead to overgrowth of
pathogenic microbes which are surveyed by resident ocular APCs, such as ocular DCs. Immature APCs take up either the microbe as a whole or the microbial
antigens in the eye to become mature. Through afferent lymphatic vessels, mature APCs migrate to the closest draining lymph nodes where they are recognized by
CD4+ T cells. Activated retina-specific T cells migrate into the eyes to secret proinflammatory cytokines and chemokines which may disrupt the blood-retina barrier
and recruit additional inflammatory cells and mediators to the eyes to cause intraocular inflammation.
December 2020 | Volume 11 | Article 609765
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in ocular fluids or constitutively expressed by ocular
parenchymal cells (55). These strategies are collectively known
as ocular immune privilege. By virtue of ocular immune
privilege, transplants into the eyes are not subjected to sight-
destroying immune responses and inflammation. Antigen
injected into these places induces peripheral tolerance to that
antigen (56). A classic phenomenon is the anterior chamber-
associated immune deviation (ACAID) in which injection of an
antigen to the anterior chamber of the eye induces systemic
immunoregulatory responses that are believed to protect the eye
from future immune-mediated damage (57). Similarly, adeno-
associated virus delivery to the subretinal space elicits only
limited immune response (58, 59). However, in the face of
antigen overload, the mechanisms of immune privilege cannot
always effectively restrain the immune cells from infiltrating and
responding. The C56BL/6 mice eyes intravitreally injected with
500 colony-forming unit (cfu) of Staphylococcus aureus were
observed to reach 107 cfu 24 hours post injection and eventually
reduced the number to 5×103 cfu by 72 hours. During the 3 day
course, mice had few infiltrating inflammatory cells and no
microscopic retinal damage. By contrast, eyes intravitreally
injected with 5,000 cfu of the same microbes resulted in
massive infiltration and severe damage to ocular structures (60).
OCULAR INFLAMMATORY DISEASES ARE
ASSOCIATED WITH NON-OCULAR
MICROBIOTA

The microbiota was once considered to be inert in immune
homeostasis. However, over the past decades, pivotal roles of
dysbiosis (changes in the gut commensal microbiota) in human
health have been established. Dysbiosis has been implicated in
various diseases associated with systemic inflammation,
including rheumatoid arthritis, multiple sclerosis, inflammatory
bowel disease, and type 1 diabetes (61–67). In recent years, gut
commensals have also been involved in the pathogenesis of
several non-infectious eye diseases like autoimmune uveitis,
AMD, and glaucoma.

The eye is protected by a prompt immune response to clear
pathogens or antigens. However, inappropriate intraocular
inflammation, such as those occurs in various forms of uveitis
could be fatal to the eye and its visual function. Uveitis is a group
of eye diseases characterized by acute or chronic intraocular
inflammation of infectious or non-infectious origin.
Autoimmune uveitis arises without known infectious stimuli.
In humans, uveitis has been associated with human leukocyte
antigen-B27 (HLA-B27), a prominent major histocompatibility
complex (MHC) class I‐allele expressed on the white blood cell
surface, suggesting innate etiology (68). Patients with acute
anterior uveitis have distinct intestinal microbial signature
(69). Animal models have provided tremendous insights into
its mechanistic basis. HLA-B27 transgenic rats exhibited altered
cecal microbiota compared to healthy controls (70). Other
mouse models of induced or spontaneous uveitis also showed
Frontiers in Immunology | www.frontiersin.org 6
ameliorated inflammation when commensals were removed or
reduced. A classic mouse model of autoimmune uveitis is the
experimental autoimmune uveit is (EAU) in which
interphotoreceptor retinoid binding protein (IRBP) and heat-
killed Mycobacterium tuberculosis are co-administered in
complete Freund’s adjuvant and ocular inflammation begins
around day 10. Fecal microbiota transplantation with feces
from BD patients significantly exacerbated EAU and increased
the production of inflammatory cytokines (71). In EAU, an
intestinal dysbiosis accompanies a disruption in intestinal
homeostasis was demonstrated (72). Microbial ablation by
raising mice in germ-free environment or microbial reduction
by the treatment of a combination of broad-spectrum antibiotics
in EAU reduce the severity of ocular inflammation (73). The
direct connection between intestinal microbiota and the eye was
confirmed in a spontaneous uveitis mouse model in R161H mice
which are engineered to express a transgene for T cell receptor
(TCR) specific for IRBP. In these mice, retina-specific T cells are
first activated by intestinal commensals in the gut through the
autoreactive TCR and then trigger inflammation in the retina,
implying that a commensal microbial antigen may mimic a
retinal antigen to trigger autoimmune uveitis (Figure 2) (74).
In line with this evidence, another study demonstrated that
broad-spectrum oral antibiotics could attenuate EAU by
increasing Tregs and decreasing effector T cells in the gut and
extraintestinal tissues (75).

AMD is a progressive retinal degeneration and often
associated with chronic low-grade intraocular inflammation. A
substantial genome-wide association studies revealed that genetic
variants in complement and various inflammatory pathway such
as complement factor (CF) H, CFI, age-related maculopathy
susceptibility 2 (ARMS2), tissue inhibitor of metalloproteinases-
3 (TIMP3), and matrix metallopeptidase 9 (MMP9), as well as
in lipid pathway such as apolipoprotein E (APOE), lipase C
(LIPC), cholesteryl ester transfer protein (CETP), and ATP-
binding cassette transporter (ABCA1) were associated with the
disease (76, 77). The identified variants, however, explain only
46–71% of the genomic heritability of AMD (78). This may be
attributed to additional variation not identified, or to genetic
interaction with environmental factors such as smoking, diet or
sunlight exposure (76). Commensal bacteria as one potential
environmental influence could play a role in AMD development.
There are several reasons for such presumption: (i) Microbes are
involved in the regulation of host immunity and lipid
metabolism both of which have profound effects on chronic
low-grade inflammation and are important in the pathogenesis
of AMD. (ii) Drusen in AMD eyes contain anti-infectious
components such as complement components, apolipoprotein
E, amyloid b, vitronectin, immunoglobulins and C1Q (79). (iii)
As discussed earlier, gut microorganisms could send signals that
exert distal effects on a remote organ like the eye. Indeed, several
studies have linked commensal microbiota to AMD
pathogenesis. Patients with AMD have shown distinct
intestinal, oral, nasal, and pharyngeal microbial communities,
highlighting potential role of mucosal surface microbes in the
pathogenesis of AMD (80–82). Mice fed a high-glycemic diet
December 2020 | Volume 11 | Article 609765
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developed hallmarks of AMD, such as retinal pigment
epithelium (RPE) hypopigmentation and atrophy, lipofuscin
accumulation, and photoreceptor degeneration, whereas mice
fed the lower-glycemia diet did no (83, 84). High-fat diet feeding
in mice significantly influenced gut microbiota composition and
exacerbated laser-induced model of neovascular AMD, also
known as choroidal neovascularization (85). In our
preliminary study, we observed that several intraocular bacteria
were associated specifically with AMD and significantly enriched
in soft drusen from AMD patients implying that bacterial
infection may be a previously unappreciated etiology of
early AMD.

Gut and oral commensals have been implicated in glaucoma
which involves local inflammatory response. Astafurov et al.
demonstrated that patients with glaucoma had higher oral
bacterial load than patients without glaucoma, and that low-
dose subcutaneous lipopolysaccharide (LPS) in two separate
animal models of glaucoma resulted in enhanced glaucomatous
neural degeneration (86). DBA/2J mice, which spontaneously
develop high intraocular pressure, mild intraocular
inflammation and glaucoma by 6–8 months of age, have been
frequently used as a murine model for glaucoma (87).
Interestingly, DBA/2J mice raised in germ-free environment do
not display typical axonal degeneration and neuronal loss at 12
months of age (88). The study demonstrated that T cells at least
partially mediated the glaucomatous pathology in DBA/2J mice
raised under specific-pathogen-free conditions (88). A more
recent study found that compared to healthy subjects, the gut
microbiota of patients with primary open-angle glaucoma had a
different gut microbiota profile (89).

The molecular mechanisms underlying the altered gut
microbiota and the progression of these ocular inflammatory
diseases remain obscure. Further investigations are required to
elucidate whether translocation of microbes and/or microbial
products (e.g., LPS, peptidoglycan, short-chain fatty acids, and
microbial DNA) from the gastrointestinal tract or other mucosal
surfaces to the eye through blood circulation or ocular
lymphatics occurs during the progression of diseases.
MICROBIAL PATHOGENS AND HOST
FACTORS IN INTRAOCULAR
INFLAMMATION

Duringaneventof intraocular inflammation, the immunosuppressive
environment of the eye is compromised when pathogens or antigens
are detected by local immune surveillance. An immune response is
usually initiated by innate receptors, such as Toll-like receptors
(TLRs), located in the retina. TLRs generally recognize pathogen-
associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs). The former comprise microbial
structures/nucleic acid sequences, while the latter are usually
molecules released from host cells following tissue injury or damage.
The complex interactions between PAMPs/DAMPs and host
immune system are mediated through multiple host factors
Frontiers in Immunology | www.frontiersin.org 7
including antigen presenting cells (APCs), MHCs, and
inflammatory mediators (Figure 2).

Toll-Like Receptors
The activation of an innate immune response is followed by the
recognition of PAMPs on the surface of microbes by a group of
receptors called pattern recognition receptors (PRRs). Of the
several different families of PRRs which includes TLRs, NOD-
like receptors, and mannose receptors, TLRs are the most
important members and have been extensively researched in
the field of intraocular inflammation. The TLRs are type 1
integral membrane receptors with an N-terminal extracellular
domain for ligand binding composed of leucine rich repeats and
a C-terminal cytoplasmic Toll/IL-1 receptor (TIR) domain for
intracellular signaling (90). Bacterial structural components such
as LPS, peptidoglycan, lipids, and lipoproteins can be detected by
TLRs on RPE cells, retinal microglia, astrocytes, and Müller cells.
As of today, 10 functional TLRs have been identified in humans,
while 12 TLRs have been identified in mice (91). TLR1, 2, 4, 5
and 6 are expressed on the cell surface and mainly recognize
PAMPs derived from bacteria, fungi and protozoa. In contrast,
TLR3, 7, 8 and 9 are expressed in the cytoplasmic compartment
and primarily recognize nucleic acids derived from virus and
bacteria (91). Upon ligand-receptor interactions, TLRs recruit
adaptor molecules including Myeloid differentiating factor 88
(MyD88) and TIR domain containing adaptor inducing
interferon b (TRIF), TIR domain-containing adaptor protein
(TIRAP) and TRIF-related adaptor molecule (TRAM).
Stimulation of TLR signaling further induces nuclear factor
kappa-B (NF-kB) nuclear translocation, or activation of
interferon regulatory factors (IRFs), or mitogen-activate
protein kinases (MAPKs) pathways to promote the expression
of inflammatory mediators (92).

Previous studies have linked TLR signaling to inflammatory
eye diseases (93–96). Significantly higher expression of TLR 2, 3,
4, and 8 has been observed in BD patients as compared with
healthy controls (93). A selective perturbation in the expression
and function of TLR2 and 4 was observed on the neutrophils and
monocytes of patients with acute anterior uveitis (AAU) (96),
suggestive of microbial triggers and TLRs in the pathogenesis of
AAU, as TLR2 or TLR4 stimulation by their ligands results in
internalization of the cell surface receptors (97, 98). The
activation of TLR4 by endotoxin induces a standard model of
uveitis in rats, referred to as endotoxin-induced uveitis (99),
although the molecular mechanisms by which endotoxin induces
uveitis remain unknown. Injection of different TLR agonists into
iris/ciliary body explants increased production of inflammatory
cytokines TNF-a, IL-6, IP-10/CXCL10, MCP-1. Intraocular
injection of TLR agonist increased leukocyte interactions with
the endothelium of the iris vasculature and chemotaxis into the
iris tissue (100). Contradictorily, studies utilizing genetic mouse
models demonstrated that TLR2, 3, 4, and 9 are highly redundant
in the adjuvant effect needed to induce EAU and that diverse
microbial infections may contribute to the pathogenesis of
uveitis (101). TLRs may partially explain the experimental and
clinical manifestations of immune-mediated uveitis implicating
microbial triggers (102, 103).
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Antigen-Presenting Cells
Professional APCs include dendritic cells (DCs), macrophages
and B cells. APCs express and use antigen-specific surface
receptors, such as PRRs, to recognize and bind their targets,
such as PAMPs or DAMPs. Binding of surface PRRs to microbial
PAMPs or whole bacteria induces phagocytosis of microbial
pathogens by DCs or macrophages. A previous study
demonstrated that the protein expression of functional
endotoxin receptor TLR4 and its associated LPS receptor
complex (CD14 and MD-2) was restricted to resident APCs in
the normal human uvea, consisting mainly of HLA-DR+ DCs.
These APCs appeared to be strategically located in perivascular
and subepithelial sites to detect and respond to blood-borne or
intraocular LPS of Gram-negative bacteria (104). These
observations were confirmed by another study showing the
expression of the functional TLR4 and CD14 in human ciliary
body and TLR4 in human iris endothelial cells (105), supporting
the notion that microbial triggers, in particular LPS of Gram-
negative bacteria may trigger AAU by activating TLR4-
expressing resident uveal APCs. RPE cells in vitro display
many characteristics typical of APC yet are poor inducers of
lymphocyte proliferation (106). RPE cells express proteins for
TLR1-6 and 9, and are capable of secreting IL-8 after stimulation
by PAMPs (107). APCs themselves may release cytokines to
directly influence the development of uveitis (108) or may
pathogenically link to uveitis through regulating the function
of T cells (109, 110).

Major Histocompatibility Complexes
After binding to respective PRR ligands, APCs internalize and
degrade their targets by initiating phagocytosis or clathrin-
mediated endocytosis, and then display the epitope by MHCs
for recognition by immunologic structures like TCRs on
appropriate T cells. MHCs are cell surface proteins essential
for adaptive immune response. Two types of MHCs display
antigens: class I MHCs and class II MHCs. Class I MHC
receptors are produced by all nucleated cells and display
endogenous antigens to activate CD8+ cytotoxic T cells. Class
II MHC receptors normally express only on professional APCs
(111). HLA-B27 is present in about 50% of all patients with AAU
and is the strongest genetic factor for AAU. Both HLA-B27
transgenic Lewis rats and HLA-B27 transgenic Fischer rats
developed gut inflammation (112). The rats develop diarrhea,
peripheral arthritis, and spondylitis, while removal of microbiota
significantly reduces the symptoms, however, these rats do not
develop uveitis (68, 113). Similarly, in humans, the majority of
individuals who are HLA-B27-positive do not develop AAU or
other autoimmune diseases, implying the involvement of other
genes or environmental factors in the development of uveitis.
Some literature suggests the involvement of microbial triggers in
disease development, in particular Gram-negative bacteria
(114, 115).

Inflammatory Mediators
Proinflammatory mediators released by retinal microglia,
endothelial, or Müller cells are critical for recruiting PMNs and
macrophages to sites of inflammation or infection. In addition to
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pathogen clearance, PMNs and macrophages produce cytokines
and chemokines to increase blood-retinal barrier permeability,
facilitate migration of cells, and recruit additional inflammatory
cells and mediators to the inflammatory sites. Many of the
proinflammatory mediators increased in experimental animal
models of intraocular inflammation are also diagnosed with
increased levels in the aqueous and vitreous humor of humans
with inflammatory eye diseases (116). Several inflammatory
mediators play essential roles in mounting an inflammatory
response. TNFa is a pleiotropic cytokine that rapidly
upregulates following tissue injury and can be produced by
activated macrophages, T cells, and natural killer cells (117). In
the eye, TNFa appears to mediate the pathogenesis of intraocular
inflammation, neovascular and retinal degeneration by
stimulating other retinal cells to produce cytokines, such as
interferon g, IL-1b, IL-2, IL-4, IL-6, IL-8, and IL-10, and other
proinflammatory molecules, such as vascular cell adhesion
molecule-1 (VCAM-1), intercellular cell adhesion molecule-1
(ICAM-1), and macrophage inflammatory protein (MIP)-1a,
MIP-2, monocyte chemotactic protein-1 (MCP-1), and CXCL1
(117–120). During an intraocular inflammation, elevated levels
of TNFa correlated with worsen visual acuity (120). TNFa-/-

mice were subjected to greater bacterial growth, intraocular
inflammation, and ocular structural damage after an infection
(121). While bacterial growth was similar between wild-type
controls and IL-6-/- and CXCL1-/- mice, the intraocular
inflammation was attenuated in mice lacking CXCL-1, but not
IL-6 (122).
TARGETING OCULAR MICROBIOTA AS
NOVEL THERAPIES FOR INTRAOCULAR
INFLAMMATION

Current treatment for intraocular inflammation includes steroids,
anti-cytokine biologics, and non-biologic immunosuppressive
agents therapies. While corticosteroids remain the most potent
and efficacious drug for treating intraocular inflammation, results
from the corticosteroids use are not optimal and poor control in
some cases (123). Patients diagnosed with uveitis require prolonged
repeated intravitreal injections which usually leads to many side
effects, such as hyperglycemia and dysregulated bone metabolic
homeostasis (124). The drugs most commonly used in replacement
of corticosteroids are non-biologic immunosuppressive agents
including azathioprine, methotrexate, mycophenolate and
cyclosporine, all of which have been reported with potentials for
significant side effects (123). The more recent anti-cytokine
biologics have greatly changed the therapeutic options for non-
infectious uveitis. In 2016, adalimumab as the first anti-TNFa
biologic, was approved by the FDA in the treatment of non-
infectious intermedia uveitis, posterior uveitis, and panuveitis.
Similar anti-TNFa biologics, such as infliximab and golimumab,
could also exert significant anti-inflammatory effects. In TNFa-/-

mice, the intraocular inflammation and cytokine production was
dramatically reduced in the experimental model of endophthalmitis.
Unfortunately, TNFa-/- mice displayed poor retinal function
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retention, presumably due to increased bacterial load (121),
providing rationale for the development of novel and more
targeted therapies.

R161H mice which spontaneously developed uveitis or EAU
mouse models are devoid of disease phenotypes when raised in
germ-free environment or treated with broad-spectrum
antibiotics (73, 74). Mechanistic basis to these phenomena has
been proven by Horai et al. to be originated from gut microbe-
activated T cells (74). Our recent findings of the existence of
intraocular microbes imply that intraocular commensals might
also contribute to the pathogenesis of uveitis, as germ-free
environment and antibiotics theoretically also remove
intraocular commensals, although direct evidence for this
notion is still lacking. Therapies manipulating commensal
microbiome have been emerged as a novel strategy to prime
the host immune system to counteract several inflammatory
diseases, such as inflammatory bowel disease, graft-vs.-host
disease, HIV infection, and psychological-stress-induced
inflammation (125–127). This is presumably due to the reason
that host microbiota could shape the host immune system to
dictate the proinflammatory effects of other proinflammatory
stimuli (128). A recent study demonstrated that the combination
of remodeling of gut microbiome and microglia inhibition
significantly attenuate the progression of EAU after
inflammation onset (129). A potential explanation is that
antigens from commensals reprogram naïve CD4+ T cells to
the regulatory T cells lineage to restrain lymphocyte response
(130). Nonetheless, it remains to be determined whether the
clinical intervention targeting gut microbiome is efficacious in
improving uveitis humans.
CONCLUSION

Commensals are a large source of intrinsic antigens that are
continuously sensed by the immune system but typically do not
elicit inflammation. Since the discovery of ocular surface
microbiota, their interactions with the innate immunity of the
ocular surface have been explored by many researchers. Up to
Frontiers in Immunology | www.frontiersin.org 9
date, the intraocular microbiota could be considered a black box.
The interior of the eye is highly vascularized and contains
miscellaneous types of immune cells or immune mediators.
How the intraocular microbiota and intraocular immune
environment interplay to modulate inflammatory eye diseases,
such as uveitis, remains an open question. Most of the
microorganisms that constitute the intraocular microbiome are
sparse in number, anaerobic, and extremely difficult to culture.
Our laboratory has employed state-of-the-art metagenomic
sequencing, combined with cultural technique and
micrographical analysis to unveil the mask of intraocular
microbiota, which may advance our understanding toward the
mechanisms of intraocular inflammation. However, puzzles as to
how commensals occupy the inside of the eye, whether the
intestinal microbiota contribute to or modulate the intraocular
commensals, and how intraocular commensals regulate the
innate and adaptive ocular immune responses await to be
answered. This process is most likely involved roles of TLRs,
APCs, MHCs, and many inflammatory mediators. Further
delineation of the commensal types that altered in ocular
inflammatory diseases, and clarification of the question that
whether the commensals as a whole or specific commensal
epitopes are mainly responsible for disease progression are of
significant importance to expand our knowledge of the ocular
immune system and intraocular inflammation.
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