Research Articles

Porous Materials Hot Paper

How to cite: Angew. Chem. Int. Ed. 2022, 61, e202116145 doi.org/10.1002/anie.202116145 International Edition: German Edition: doi.org/10.1002/ange.202116145

The First Sulfate-Pillared Hybrid Ultramicroporous Material, **SOFOUR-1-Zn, and Its Acetylene Capture Properties**

Debobroto Sensharma, Daniel J. O'Hearn, Amin Koochaki, Andrey A. Bezrukov, Naveen Kumar, Benjamin H. Wilson, Matthias Vandichel, and Michael J. Zaworotko*

Abstract: Hybrid ultramicroporous materials, HUMs, are comprised of metal cations linked by combinations of inorganic and organic ligands. Their modular nature makes them amenable to crystal engineering studies, which have thus far afforded four HUM platforms (as classified by the inorganic linkers). HUMs are of practical interest because of their benchmark gas separation performance for several industrial gas mixtures. We report herein design and gramscale synthesis of the prototypal sulfate-linked HUM, the fsc topology coordination network $([Zn(tepb)(SO_4)]_n)$, SO-FOUR-1-Zn, tepb = (tetra(4-pyridyl)benzene). Alignment of the sulfate anions enables strong binding to C_2H_2 via $O \cdots HC$ interactions but weak CO2 binding, affording a new benchmark for the difference between C_2H_2 and CO_2 heats of sorption at low loading ($\Delta Q_{st} = 24 \text{ kJmol}^{-1}$). Dynamic column breakthrough studies afforded fuel-grade C_2H_2 from trace (1:99) or $1:1 C_2 H_2/CO_2$ mixtures, outperforming its SiF_6^{2-} analogue, SIFSIX-22-Zn.

Introduction

The amenability of metal-organic materials (MOMs) to design from first principles has afforded families of porous coordination networks (PCNs) with excellent properties for physisorptive separations.^[1] In this context, hybrid ultramicroporous materials (HUMs) have emerged as an especially attractive class of PCNs. HUMs are typically comprised of an organic linker, an anionic inorganic linker, and a metal node. Their combination of ultramicropores (<7 Å diameter) and pore chemistry (strong electrostatics from the inorganic pillars that line pore walls) can afford highly selective binding sites for gaseous adsorbates.^[2] The inherent modularity of HUMs is advantageous since it enables first generation HUMs to be systematically developed into sorbent families (platforms) with optimised pore sizes and chemistries. Such a crystal engineering approach offers insight into structure-function relationships and means that second generation HUMs can offer a degree of control over binding sites and energies that is not readily available in traditional classes of sorbent such as zeolites and porous carbons.^[3]

Most HUMs follow a simple structural blueprint in which divalent metal cations are 4-connected at their equatorial positions by four neutral ditopic organic linkers, thereby forming a cationic square lattice (sql) topology coordination network. The axial positions of the metal centres are further linked by inorganic dianion "pillars" to yield a neutral primitive cubic, pcu, topology network. For example, in the archetypal HUM, SIFSIX-1-Zn, the metal cation is Zn^{2+} , the organic linker is 4,4'-bipyridine, and the inorganic pillar is $SiF_6^{2-.[4]}$ These building blocks can be substituted to produce new HUMs in a highly modular fashion: Zn^{2+} can be substituted by other M^{2+} cations (e.g. Cu^{2+} , Ni^{2+} , Cd^{2+}); 4,4'-bipyridine can be replaced by longer (e.g. N,N'-di(4-pyridyl)-1,4,5,8-naphthalene diimide, 15.4 Å) or shorter (e.g. pyrazine, 2.8 Å) organic ligands; distinct platforms are then defined by the type of inorganic pillar used, e.g. **MFSIX** (e.g. TiF_6^{2-} , SnF_6^{2-}), **FOXY** (e.g. NbOF₅²⁻), **M'FFIVE** (e.g. AlF₅²⁻), and **DICRO** (Cr₂O₇²⁻), can replace SiF₆^{2-.[5]} Although most HUMs are constructed in this manner, other topologies can exist: the mmo ([Cu₆(Tripp)₈](MF₆)₃platform;^[6] **Tripp-Cu-MFSIX** $(\mathbf{MF}_6)_3]_n$, $\mathbf{Tripp} = 2,4,6$ -tris(4-pyridyl)pyridine) is based upon a tritopic ligand;^[7] the fsc networks CPM-131 and fsc-2-SIFSIX are sustained by tetratopic ligands.^[8] The recently reported fsc network ZJU-280 exploited the tetratopic ligand tetra(4-pyridyl)benzene (tepb) and was found to exhibit promising C_2H_2/C_2H_4 separation capabilities.^[9]

HUMs are particularly amenable to crystal engineering, even compared to most MOFs,^[3] enabling systematic finetuning of pore size and pore chemistry and optimisation of key properties such as selectivity and working capacity. Indeed, the current top-performing sorbents for several industrially important gas mixtures are HUMs: SIFSIX-18-Ni-β, NbOFFIVE-1-Ni and TIFSIX-3-Ni for CO₂/N₂;^[10] NbOFFIVE-1-Ni and TIFSIX-3-Ni for CO2/CH4;[11] SIFSIX-**14-Cu-i** for $C_2H_2/C_2H_4^{[12]}$ **DICRO-4-Ni-i**, **TIFSIX-2-Cu-i**, UTSA-300, SIFSIX-21-Ni and BSF-3 for C₂H₂/CO₂;^[13] and CROFOUR-1-Ni for Xe/Kr.^[14] The selection of the inorganic pillar is crucial since it is more than a structural

^[*] Dr. D. Sensharma, D. J. O'Hearn, A. Koochaki, Dr. A. A. Bezrukov, Dr. N. Kumar, Dr. B. H. Wilson, Dr. M. Vandichel, Prof. M. J. Zaworotko Department of Chemical Sciences, Bernal Institute University of Limerick, Limerick V94 T9PX (Republic of Ireland) E-mail: xtal@ul.ie A. Koochaki, Prof. M. J. Zaworotko Advanced Materials and Bioengineering Research (AMBER) Centre Dublin D02 R590 (Republic of Ireland)

^{🕤 © 2021} The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

component; pillars form the binding site that enables selective sorption. The use of such anionic pillars to form binding sites sets HUMs apart from other classes of porous coordination networks such as MOFs, which tend to rely upon coordinatively unsaturated metal centres (UMCs) to provide selective adsorbate binding. Importantly, the noncovalent sorbate-sorbent interactions in HUMs tend to be weaker than UMCs and can lie in a thermodynamic "sweet spot" that allows benchmark selectivity to be combined with low energy desorption. Nevertheless, despite their ability to generate highly selective binding, fluorinated anion pillars can present challenges in terms of synthesis methodology (e.g. use of HF in production), cost and corrosivity (e.g. hydrolytic or thermal decomposition).^[15] Other pillars, such as $Cr_2O_7^{2-}$, CrO_4^{2-} , and MoO_4^{2-} comprise toxic metals, and the boron oxyanions used in BSF-3 and the recently reported ZNU-1 are relatively intricate and costly.^[6a, 13e, 16]

There is therefore a need to generate HUMs using earth-friendly inorganic anions while retaining sorption performance. The sulfate anion (**SOFOUR**) is cheap, divalent, and metal/fluoride free, making it an ideal candidate for such studies. Herein, we report the first example of a **SOFOUR** HUM along with its gas sorption properties and separation performance for C_2H_2 , acetylene, over CO₂.

We chose to study C_2H_2/CO_2 as it is among the most challenging of gas separations. Since its discovery in Ireland in the 1830s, acetylene has become a very widely produced chemical commodity with industrial utility as a chemical feedstock and fuel.^[17] Fuel applications require >98 % pure C₂H₂ and use as a feedstock requires even higher purities. However, the predominant processes by which acetylene is produced utilize partial oxidation of alkanes, in which CO2 is produced as a by-product and a persistent contaminant.^[17b,c,18] In such processes, the absence of oxygen leads to soot formation, and thus the production of CO and CO₂ necessarily accompanies C₂H₂ production. Although most C₂H₂/CO₂ separation studies focus on 1:1 and $2:1 C_2 H_2/CO_2$ mixtures, the yields of the production routes are variable and depend on several factors including feedstock type and purity, oxygen content, temperature, and process considerations.^[17b,c] For instance, high temperature plasma pyrolysis techniques using CH₄ feeds may have C₂H₂ yields as high as 80-90%, coal-based processes can show yields between 20 and 80%, the BASF controlled partial oxidation process has yields of 10-33%, whereas other methods may have even lower yields, e.g. propane cracking yields only 2% C₂H₂.^[17c,18] Typically, higher yields are achieved under more demanding conditions and higher temperatures. Therefore, studies considering equimolar mixtures serve as representative examples of C₂H₂/CO₂ separations, but may not address the greater challenge of viably capturing and purifying acetylene from lower-yield outputs.

Although the by-product profiles in each case are different, CO_2 is an important and persistent contaminant, especially in production routes involving partial combustion. The separation of CO_2 from C_2H_2 is challenging due to similar physicochemical properties such as boiling point (194.7 K for CO₂, 188.4 K for C₂H₂) and quadrupole moment $(4.3 \times 10^{-26} \text{ esu cm}^2 \text{ for } \text{CO}_2, 3.0 \times 10^{-26} \text{ esu cm}^2 \text{ for }$ C₂H₂). In addition, they have similar molecular dimensions $(3.32 \times 3.34 \times 5.7 \text{ Å}^3 \text{ for CO}_2, 3.18 \times 3.33 \times 5.36 \text{ Å}^3 \text{ for C}_2\text{H}_2)$ and kinetic diameters (3.3 Å for both CO₂ and C₂H₂).^[19] Further, C₂H₂ is explosive, so it is unsafe to liquefy in cryogenic purification processes such as those used for C₂H₄ and other hydrocarbons. Consequently, energy-intensive gas-liquid absorption methods are used for the purification of C₂H₂, e.g. with solvents such as N-methyl pyrrolidone, N,N-dimethyl formamide, methanol, and acetone or alkaline scrubbing agents for chemical removal of CO₂. There is a large environmental cost and owing to the scale of C2H2 production (projected market value of 6.9 billion USD in 2025), even minor improvements to the economics and ecological footprints of these processes could result in major savings.^[20] In addition, the extremely low flammability limit of acetylene in mixtures (2.5%) discourages the recirculation of partially separated mixtures and can necessitate the trace removal of acetylene from gas streams for safety reasons.^[21] In order to address the problem of separations in acetylene-poor mixtures and feeds below the flammability limit, a number of recent studies have examined the viability of trace C_2H_2/CO_2 separations (1:99) by dynamic column breakthrough (DCB) studies.^[2,22] However, the physisorptive recovery of acetylene of commercial grade from low concentration mixtures of C₂H₂ with CO₂ has not previously been demonstrated.

The thermodynamic "sweet spot" for C₂H₂/CO₂ selective HUMs arises from arrangements of fluorinated inorganic anion pillars. Optimised geometries can enable molecular recognition of C₂H₂ via H-bonding as seen for HUMs like SIFSIX-21-Ni, TIFSIX-2-Cu-i and ZNU-1.^[13b,d,e] However, when C₂H₂ is preferentially adsorbed, the production of pure C₂H₂ requires desorption of C₂H₂ from the adsorbent and is operationally challenging. Sorbents with "inverse" selectivity, in which CO₂ is adsorbed preferentially over C_2H_2 , have been studied as they can produce a pure C_2H_2 effluent stream (eg. SIFSIX-3-Ni, Tm(OH-bdc), Cd-NP, and **CD-MOF-2**).^[13b,23] Unfortunately, trace C_2H_2 streams present a limitation due to the rapid saturation of the adsorbent bed with CO2. The optimum adsorbent for capture of C2H2 from dilute feeds would therefore exhibit high C_2H_2 uptake at low partial pressures, preferential C_2H_2 binding, and facile regeneration allowing the recovery of high-purity C_2H_2 during desorption. In this contribution, we address both the challenge of efficient trace C₂H₂/CO₂ separation and the need for a cheap, green alternative inorganic pillar for HUMs.

Results and Discussion

Among the possible divalent anion pillars for possible utility as HUM pillars, sulfate anions stand out as they are exceptionally cheap, non-toxic, and amenable for use at large scale. Further, the related tetrahedral dianions CrO_4^{2-} and MoO_4^{2-} form HUMs that exhibit 6-connected 4⁸.6⁷ **mmo** topology.^[6] In order to generate a HUM based on pillared

Angewandte

sqls with channels comparable to those in **pcu** topology HUMs, we selected the tetratopic ligand **tepb** (tetra(4-pyridyl)benzene) and Zn^{2+} nodes. Single crystals of the target HUM, [**Zn(tepb)(SO₄)**]_n, **SOFOUR-1-Zn**, were obtained by layering and studied by single crystal X-ray diffraction. In addition, the SiF₆⁻² pillared analogue, SIF-SIX-22-Zn, was prepared using the same methodology to serve as reference point for performance evaluation.

SOFOUR-1-Zn crystallised in the orthorhombic space group *Cmm2*. Its structure is a (4,6)-connected **fsc** topology network (Figure 1a, b) in which each octahedral Zn^{2+} moiety serves as a 6-c node and each tepb ligand serves as a 4-c node. Each $Zn^{2+}\xspace$ moiety is coordinated by two ditopic bridging sulfate anions at the axial positions whereas the equatorial positions are occupied by four tetratopic tepb ligands. Notably, the SO₄²⁻ anions serve as pillars between Zn-tepb 2-dimensional sqls to afford an fsc topology net (Figure S1). The sulfate anions are disordered over two positions, suggesting they can rotate and modify the pore environment (see Supporting Information for refinement details).^[24] Figure 1e reveals the outcome of a Cambridge Structural Database (CSD version 5.41 (2019+3 updates)) survey that plots pillaring angle (pillar = SiF_6^{2-} or SO_4^{2-}) vs. M... bridging distance of the pillar.^[25] The pillaring angle for SOFOUR-1-Zn is close to linear, at 173.5(3)°, higher than 98% of the pillaring angles for SO_4^{2-} (Figure 1e). As expected, for SO_4^{2-} there is a positive correlation between pillaring angle and M.M distance; SOFOUR-1-Zn fits this trend, having a relatively large M.M distance of 6.5163 (2) Å, higher than 90% of previously reported Zn-based structures. Further details of the CSD survey and analysis are presented in the Supporting Information.

SIFSIX-22-Zn, $[Zn(tepb)SiF_6]_n$, crystallised in the orthorhombic space group *Cmma* and is isostructural to the recently reported Cu-based **ZJU-280**.^[9] The pyridyl rings of the **tepb** ligands in both **SOFOUR-1-Zn** and **SIFSIX-22-Zn**

(Figure 1a, b and c, d, respectively) are arranged in a propeller conformation around the Zn²⁺ metal centre. The dihedral angle between opposite rings for SOFOUR-1-Zn is 70.72(17)° and 59.10(14)° for adjacent rings whereas for **SIFSIX-22-Zn**, the angles are 59.08(9)°, and 64.65(8)°, respectively. Similarly, the pyridyl rings are also arranged in a propeller conformation around the phenyl ring of the tepb ligand with dihedral angles with the phenyl ring of $49.4(2)^{\circ}$ and 51.8(2)° for the two crystallographically distinct pyridyl rings in SOFOUR-1-Zn, and 56.02(8)° for the one crystallographically distinct pyridyl ring in SIFSIX-22-Zn. Despite the differences in dihedral angles, the ligands from both SOFOUR-1-Zn and SIFSIX-22-Zn overlay closely with overlap of the atomic ellipsoids drawn at the 50% probability level for every atom (Figure S2). The interlayer distance is 7.5678(9) Å is SIFSIX-22-Zn vs. 6.5163(2) Å in SOFOUR-1-Zn.

A CSD survey revealed that 1479 SO₄²⁻ bridged coordination polymers have been reported.^[25] Of these, only 136 were found to have four nitrogen atoms coordinated to a metal centre (Figure S5, S6, Table S2). Permanent porosity was demonstrated experimentally through gas sorption experiments in just five: $[Cd(Tppa)(SO_4)(H_2O)], [Cd_2(tpim)_4(SO_4)(H_2O)_2] \cdot (SO_4)],$ $[Co_2(bpy)_3(SO_4)_2(H_2O)_2](bpy)]$, $[Cd_2L_4(SO_4)(H_2O)] \cdot (SO_4)]$ and $[Zn_2L_4(SO_4)(H_2O_2)] \cdot (MeOSO_3)]$ (Tppa = tris(4-(pyridyl)phenyl) amine, tpim, L = 2,4,5-tri(4-pyridyl)imidazole, bpy = 4,4'bipyridine), each of which is distinct in terms of structure.^[26] Additionally, the 3,5-connected net of formula [Cu(tepb)(SO₄)] has been reported without sorption data and is also distinct from the 4,6-connected fsc net reported herein.^[27] To our knowledge, SOFOUR-1-Zn is not only prototypal for a new HUM platform, it is the first SO₄²⁻-based porous coordination network of any type to be studied for gas separations.

Gram-scale quantities of **SOFOUR-1-Zn** were synthesised by stirring zinc(II) sulfate and **tepb** in MeOH at room temperature. The resulting microcrystalline white powder was

Figure 1. a) Crystal structure of **SOFOUR-1-Zn** viewed along the crystallographic *a*-axis; b) viewed along the crystallographic *b*-axis; c) viewed along the crystallographic *a*-axis; d) **SIFSIX-22-Zn** viewed along the crystallographic *b*-axis; e) a scatter plot of the results for a CSD search of $M \cdot M$ distances for $SO_4^{2^-}$ and $SIF_6^{2^-}$ pillars versus the angle between one of the coordinating atoms (X=O, F) and the bridged metals (M=Mn, Fe, Co, Ni, Cu, Zn, Cd).

Angew. Chem. Int. Ed. 2022, 61, e202116145 (3 of 8)

characterised by powder X-ray diffraction and thermogravimetric analysis, which indicated phase purity and thermal stability up to ca. 300 °C (Figure S3, S4). An initial solvent loss of 10.5 wt.% was observed below 100 °C, corresponding to loss of MeOH from the as-synthesized structure. CO₂ sorption at 195 K enabled determination of BET surface areas, $612.1 \text{ m}^2 \text{g}^{-1}$ for **SOFOUR-1-Zn** and $641.0 \text{ m}^2 \text{g}^{-1}$ for **SIFSIX-22-Zn** (Figure 2a). Pore-size distributions calculated from these isotherms by the Horvath–Kawazoe method indicated maximum pore widths for **SIFSIX-22-Zn** and **SOFOUR-1-Zn** at 4.1 Å and 4.0 Å respectively, validating them as ultramicroporous (Figure 2b).

Isotherms measured on SIFSIX-22-Zn at 298 K showed type I characteristics with uptakes for CO_2 of 95 cm³g⁻¹ and $127 \text{ cm}^3 \text{g}^{-1}$ for C_2H_2 . Whereas **SOFOUR-1-Zn** exhibited a lower 1 bar uptake for C_2H_2 (69 cm³g⁻¹) than CO₂ (81 cm³g⁻¹), its high C₂H₂ uptake at lower pressures is indicative of strong C₂H₂ binding sites. Specifically, at 298 K and 0.01 bar, **SOFOUR-1-Zn** had uptakes of $1.65 \text{ mmol } g^{-1}$ of C_2H_2 and 0.20 mmol g^{-1} of CO₂ (Figure 2c). This low pressure C₂H₂ uptake is comparable to top-performing acetylene sorbents such **MUF-17** $(1.40 \text{ mmol g}^{-1}),$ NKMOF-1-Ni as $(1.74 \text{ mmol g}^{-1})$, **TIFSIX-2-Cu-i** $(1.78 \text{ mmol g}^{-1})$, and **UTSA-200a** $(1.83 \text{ mmol g}^{-1})$.^[12,13b,22a,28] Experimentally determined isosteric heats of adsorption (Q_{st}) for **SOFOUR-1-Zn** $(33 \text{ kJmol}^{-1} \text{ for } \text{CO}_2, 57 \text{ kJmol}^{-1} \text{ for } \text{C}_2\text{H}_2 \text{ at low loading,}$ Figure 2d), S7-S10 are consistent with experimental uptakes at low pressures. The difference in Q_{st} values between C_2H_2 and CO_2 (ΔQ_{st}), 24 kJ mol⁻¹, is to our knowledge the highest yet reported for a physisorbent (**NKMOF-1-Ni**=19.4 kJ mol⁻¹, **CPL-1-NH**₂=17.6 kJ mol⁻¹, **BSF-3**=17.2 kJ mol⁻¹, **sql-16-Cu- NO**₃- α '=13.0 kJ mol⁻¹).^[13e,28,29] Low-loading Q_{st} values for **SIFSIX-22-Zn** were determined to be 36.5 kJ mol⁻¹ for C₂H₂ and 25 kJ mol⁻¹ for CO₂, a ΔQ_{st} of 11.5 kJ mol⁻¹.

Ideal Adsorbed Solution Theory (IAST) calculations using 298 K isotherms indicated that SOFOUR-1-Zn and SIFSIX-22-Zn display similar C_2H_2/CO_2 selectivities (S_{AC}) of ca. 6.60 and 6.49 respectively for equimolar mixtures at 1 bar (Figure 2e). The calculated selectivity is nearly constant for SIFSIX-22-Zn for compositions of 10% (7.08), 5% (7.23), and 1 % C₂H₂ in CO₂ (7.36). Conversely, selectivity values increase for SOFOUR-1-Zn (9.55 for 10%, 10.85 for 5% and 13.00 for 1%), indicating potential for trace removal. The differences between SOFOUR-1-Zn and SIFSIX-22-Zn in terms of their sorption characteristics can be attributed directly to the use of the SO_4^{2-} pillar and its effects on interlayer distance and pore electrostatics. Temperature swing cycling experiments conducted gravimetrically under C₂H₂ and CO₂ flow conditions revealed that the adsorption performance of SOFOUR-1-Zn and SIFSIX-22-Zn was retained in successive cycles. Further, the sorbents were regenerated through a 303 K to 363 K temperature swing (Figure S11). Initial adsorption rates indicated that both SOFOUR-1-Zn and SIFSIX-22-Zn exhibited faster uptake kinetics for C_2H_2 than for CO_2 , favouring **SOFOUR-1-Zn** over SIFSIX-22-Zn (Figure S12). Specifically, in the first 2.5 minutes of adsorption, SOFOUR-1-Zn adsorbed C₂H₂ equivalent to 20.0% of its 1 bar saturation uptake, but only

Figure 2. a) The 195 K CO₂ sorption isotherms of **SOFOUR-1-Zn** and **SIFSIX-22-Zn**; b) Horvath–Kawazoe pore-size distributions of **SOFOUR-1-Zn** and **SIFSIX-22-Zn** calculated from the 195 K CO₂ sorption isotherms; c) 298 K C_2H_2 and CO₂ isotherms of **SOFOUR-1-Zn** and **SIFSIX-22-Zn**; d) coverage-dependent isosteric heats of C_2H_2 and CO_2 for **SOFOUR-1-Zn** and **SIFSIX-22-Zn**; e) C_2H_2/CO_2 IAST selectivities of **SOFOUR-1-Zn** and **SIFSIX-22-Zn**; and **SIFSIX-22-Zn** at 298 K for various compositions vs. pressure; f) gravimetric kinetics of C_2H_2 and CO_2 sorption on **SOFOUR-1-Zn** and **SIFSIX-22-Zn** plotted as uptake vs. time.

Angew. Chem. Int. Ed. 2022, 61, e202116145 (4 of 8)

1.2% of its CO₂ uptake. Kinetics of adsorption in **SIFSIX-22-Zn** are faster but less discriminatory, with 2.5 minute loading equal to 31.5% and 4.1% of C₂H₂ and CO₂ saturation uptakes, respectively (Figure 2f).

These properties suggest **SOFOUR-1-Zn** as a candidate for trace C_2H_2/CO_2 separations. Indeed, comparison with leading C_2H_2/CO_2 -selective sorbents ($S_{AC} > 5$) that do not use chemisorptive or UMC binding sites revealed that **SOFOUR-1-Zn** is one of just four MOMs with a $C_2H_2 Q_{st}$ value in the "sweet spot" between 45 and 60 kJ mol⁻¹ that allows both strong binding and energy-efficient regeneration.^[2] Among these, **SOFOUR-1-Zn** is the only adsorbent with a ΔQ_{st} greater than 20 (Figure 3). Therefore, despite its modest S_{AC} value, when this is coupled with a kinetic preference for C_2H_2 over CO_2 , **SOFOUR-1-Zn** is highly suited to C_2H_2/CO_2 separation at low partial pressures of C_2H_2 .

In order to experimentally validate the separation performance of **SOFOUR-1-Zn** under mixed-gas conditions, we conducted dynamic column breakthrough (DCB) experiments using a fixed bed and gas mixture compositions between 50% C_2H_2 and 1% C_2H_2 at ambient conditions (Figure 4). Identical experimental conditions were used for **SIFSIX-22-Zn** as a reference point. We indeed determined that **SOFOUR-1-Zn** separated an equimolar C_2H_2/CO_2 mixture at a combined flow rate of 1 sccm and ambient

Figure 3. a) 1 bar C_2H_2 uptake versus low loading ΔQ_{st} ($C_2H_2-CO_2$) for leading C_2H_2/CO_2 selective physisorbents; b) low loading ΔQ_{st} ($C_2H_2-CO_2$) vs. low loading C_2H_2 Q_{st} for leading C_2H_2/CO_2 selective physisorbents; **SOFOUR-1-Zn** is the only sorbent with $\Delta Q_{st} > 20$ and C_2H_2 Q_{st} from 45–60 kJ mol⁻¹.

Figure 4. C_2H_2/CO_2 DCB curves for **SOFOUR-1-Zn** with inlet flows of a) $1:1 C_2H_2:CO_2$, 1 sccm; b) $1:99 C_2H_2:CO_2$, 7 sccm; c) C_2H_2/CO_2 TPD curves for **SOFOUR-1-Zn** after saturation with an inlet flow of c) $1:99 C_2H_2:CO_2$, 7 sccm; C_2H_2/CO_2 DCB curves for **SIFSIX-22-Zn** with inlet flows of d) $1:1 C_2H_2:CO_2$, 1 sccm; e) $1:99 C_2H_2:CO_2$, 7 sccm; f) C_2H_2/CO_2 TPD curves for **SIFSIX-22-Zn** after saturation with an inlet flow of $1:99 C_2H_2:CO_2$, 7 sccm; c) $1:99 C_2H_2:CO_2$, 7 sccm; f) C_2H_2/CO_2 TPD curves for **SIFSIX-22-Zn** after saturation with an inlet flow of $1:99 C_2H_2:CO_2$, 7 sccm; f) C_2H_2/CO_2 TPD curves for **SIFSIX-22-Zn** after saturation with an inlet flow of $1:99 C_2H_2:CO_2$, 7 sccm; f) C_2H_2/CO_2 TPD curves for **SIFSIX-22-Zn** after saturation with an inlet flow of $1:99 C_2H_2:CO_2$, 7 sccm; f) C_2H_2/CO_2 TPD curves for **SIFSIX-22-Zn** after saturation with an inlet flow of $1:99 C_2H_2:CO_2$, 7 sccm; f) C_2H_2/CO_2 TPD curves for **SIFSIX-22-Zn** after saturation with an inlet flow of $1:99 C_2H_2:CO_2$, 7 sccm; f) C_2H_2/CO_2 TPD curves for **SIFSIX-22-Zn** after saturation with an inlet flow of $1:99 C_2H_2:CO_2$, 7 sccm.

Angew. Chem. Int. Ed. 2022, 61, e202116145 (5 of 8)

conditions with breakthrough times of ca. 22 min g⁻¹ for CO₂ and ca. 83 min g⁻¹ for C₂H₂. The separation factor (α_{AC}) was calculated to be 17.5, higher than some leading C₂H₂ selective adsorbents, such as **ZJU-74a** (4.3), **HOF-3a** (2.0), and **NKMOF-1-Ni** (2.6), but lower than benchmark sorbents such as the **TCuX** series (33.4–143.1), **IPM-101** (22.5) and **sql-16-Cu-NO₃-a'** (78).^[22b,28-30] Effluent CO₂ purity was >99.996 % until the elution of C₂H₂. This is equivalent to CO₂ at N4.5 CP Grade specification. Under the same conditions, **SIFSIX-22-Zn** exhibited α_{AC} of 3.8 and effluent CO₂ purity of >99.99 %, still a strong performance but not as efficient as **SOFOUR-1-Zn**.

DCB experiments were then conducted using a $1:99 \text{ C}_2\text{H}_2/\text{CO}_2$ inlet stream. **SOFOUR-1-Zn** exhibited a remarkable breakthrough time of ca. 270 min g⁻¹ for C₂H₂ at a total inlet flow rate of 7 sccm. CO₂ broke through the column within 3 min g⁻¹, resulting in calculated uptakes of 21.9 cm³g⁻¹ of C₂H₂ and 17.4 cm³g⁻¹ of CO₂, and α_{AC} of 124.6. No other $1:99 \alpha_{AC}$ DCB experiments have been reported in the literature. The purity of the effluent CO₂ remained >99.996 % under these conditions. **SIFSIX-22-Zn** exhibited uptakes of 5.6 cm³g⁻¹ of C₂H₂ and 20.3 cm³g⁻¹ of CO₂ under the same conditions for α_{AC} of 27.3. At intermediate inlet gas compositions of 5 % and 10 % C₂H₂, α_{AC} values of 42.5 and 52.6 were measured, respectively, for **SOFOUR-1-Zn**, while the values for **SIFSIX-22-Zn** were 11.9 and 15.5, respectively (Figure S13, S14).

Temperature-programmed desorption (TPD) experiments were conducted after saturation in DCB experiments using a He gas stream at 20 sccm and a temperature gradient up to 333 K in order to evaluate the feasibility of recovering purified C2H2 by desorption. SOFOUR-1-Zn and SIFSIX-22-Zn both exhibited rapid desorption of CO₂, followed by peaks associated with desorption of C₂H₂ as the temperature was elevated under both 1:1 and 1:99 conditions (Figure S15, S16). In the 1:1 experiments, much of the C₂H₂ was desorbed with CO₂ at the onset of He flow and C₂H₂ desorption also occurred at elevated temperature. Elution of high purity C_2H_2 , >99.5%, which exceeds instrument grade specifications of purity (>99.0%), occurred from 15 to 41 min g^{-1} for **SOFOUR-1-Zn** and from 17 to 30 min g^{-1} for SIFSIX-22-Zn. These values correspond to productivities of 2.07 Lkg⁻¹ and 1.95 Lkg⁻¹. Such productivity equals the desorptive C2H2 recovery performance of ZNU-1 and the peak C₂H₂ purity is comparable to the benchmark set by **TIFSIX-2-Cu-i** (99.9%).^[13b,16] C_2H_2 of purity >98% was recovered between 15 and 70 ming⁻¹ with a productivity of 3.1 Lkg^{-1} using **SOFOUR-1-Zn**, and between 17 and 46 min g^{-1} with a productivity of 3.3 L kg⁻¹ using SIFSIX-22-**Zn**. We note that even after adsorptive saturation using a 1:99 mixture, C_2H_2 of purity >98% (fuel grade) was obtained by desorption from SOFOUR-1-Zn for the period between 33 and 40 ming⁻¹ and >95% between 33 and 84 min g^{-1} , corresponding to productivities of $1.01 \text{ L} \text{ kg}^{-1}$ and 4.66 L kg⁻¹ of >98% pure and >95% pure C_2H_2 , respectively. To our knowledge, this is the first demonstration of physisorptive recovery of fuel grade C₂H₂ from a dilute (1:99) C_2H_2/CO_2 mixture. In contrast, the peak C_2H_2 purity achieved during desorption from SIFSIX-22-Zn was 96.7 % (at 30.9 min g⁻¹). We attribute this exceptional performance to the favorable C_2H_2 and $CO_2 Q_{st}$ values and high C_2H_2 uptake at low partial pressure, both of which are enabled by highly selective C_2H_2 binding sites.

We conducted computational studies to gain insight into SO_4^{2-} ... C_2H_2 interactions. The binding sites in **SOFOUR-1**-Zn derived by density functional theory (DFT) calculations for both gases revealed that the interlayer "mezzanine" region which corresponds to the maximum pore diameter plays a key role (Figure 5, S23, S25, S26). C₂H₂ has two hydrogen bonds with SO_4^{2-} pillars (H- \cdot O = 2.56 Å and 2.83 Å) while CO₂ has no close C···O contacts. (C···O = 6.12 Å and 6.76 Å). The low loading adsorption enthalpies at 298 K from DFT calculations for C_2H_2 and CO_2 of -53, and $-34 \text{ kJ} \text{ mol}^{-1}$, respectively, are consistent with the Q_{st} values obtained experimentally. In SIFSIX-22-Zn, C2H2 has two hydrogen bonds with the framework (H - F = 3.08 Å and 2.53 Å) while CO₂ has one close C.-F contact (C.-F distance = 2.99 Å). Lower enthalpies of adsorption were calculated for both gases (Figure S24). Importantly, we found that when SO42- moieties were afforded freedom to rotate, alternating pairs of SO₄²⁻ pillars can synergistically orient an oxygen atom directly into a channel to optimally bind a C_2H_2 molecule, leaving alternating channels without SO_4^{2-} oxygen atoms pointing directly into them. That sulfate anions can rotate is experimentally supported by the crystal structure of SOFOUR-1-Zn, which exhibited disorder of the

Figure 5. The binding sites of a) C_2H_2 and b) CO_2 in **SOFOUR-1-Zn** and c) C_2H_2 and d) CO_2 in **SIFSIX-22-Zn** obtained by DFT calculations. (Colour codes: N, blue; Si, gold; S, yellow; F, turquoise; Zn, lavender; O, red; H, white; C, grey and C (C_2H_2), orange. The distances are in Angstrom (Å). C_2H_2 and CO_2 molecules are shown in space-filling mode.

GDCh

sulfate pillars (see Supporting Information for full details). Adsorption of C_2H_2 by the alternating pores with unfavourable electrostatics was calculated to be less exothermic. Such a binding mechanism would explain lower Q_{st} and reduced C_2H_2 uptake at higher loadings for **SOFOUR-1-Zn** vs. **SIFSIX-22-Zn** as the octahedral SiF₆²⁻ pillars preclude an alternating binding site arrangement (Figure S27).

Temperature swing cycling experiments revealed retention of breakthrough performance over three consecutive adsorption–desorption cycles (Figure S17), as well as good retention of the initial rates of sorption from gravimetric experiments. However, whereas both **SOFOUR-1-Zn** and **SIFSIX-22-Zn** were found to be stable to multiple regeneration cycles and storage under ambient conditions for at least 4 months (Figure S21), water vapor sorption isotherms conducted on both HUMs revealed that **SIFSIX-22-Zn** displayed a dramatic negative deviation in uptake at 80 % R.H., corresponding with a phase transformation reminiscent of other well-studied HUMs (Fig S18).^[31] In contrast, **SOFOUR-1-Zn** exhibited reversible Type I water sorption, with no discernible phase change occurring, although very minor peak broadening was observed by PXRD.

The stabilizing effect of the **SOFOUR** pillar is corroborated by PXRD studies on samples exposed to 75 % R.H. and 313 K in line with previously reported accelerated moisture stability tests.^[10c] We observed that **SIFSIX-22-Zn** underwent a phase change within 12 hours of exposure, whereas the onset of the phase change for **SOFOUR-1-Zn** occurred after 96 hours (Figure S19, S20). Therefore, the pillaring strategy outlined here resulted in improved stability and performance. In terms of the cost of manufacture, **tepb** can be prepared through a simple one-step synthesis (SI) although it is not widely commercially available. Mechanochemical synthesis of **SOFOUR-1-Zn** was attempted, but the material thus obtained exhibited limited porosity (Figure S22).

Conclusion

To conclude, we report the gram-scale room temperature synthesis of the prototypal sulfate-pillared HUM, SO-FOUR-1-Zn. The use of sulfate pillars makes SOFOUR-1-Zn greener, cheaper, more stable, and more effective in the separation of C₂H₂ from CO₂ than previously reported materials and its SIFSIX analogue, SIFSIX-22-Zn. SO-FOUR-1-Zn was found to exhibit benchmark performance in for trace separation of C₂H₂ from CO₂ and is the first sorbent that yields fuel grade C_2H_2 (>98% purity) from a 1:99 C₂H₂/CO₂ stream on desorption. DFT calculations provided insight into C₂H₂ binding in SOFOUR-1-Zn, revealing that it is enabled by SO₄²⁻…C₂H₂ H-bonding. This work reiterates that ultramicroporous physisorbents are highly effective for trace gas separations and demonstrates that they can be prepared using cheap and ubiquitous building blocks. Further research will focus on constructing SO_4^{2-} -pillared HUMs with commercially available linkers and improving their stability to humid conditions.

Acknowledgements

M.J.Z. acknowledges Science Foundation Ireland (13/RP/ B2549, 16/IA/4624, and 12/RC/2278_P2) and the European Research Council (ADG 885695). A.K. and M.V. acknowledge the Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. D.S. thanks Dr. Soumya Mukherjee for useful discussions. There are no conflicts to declare. Open access funding provided by IReL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: Acetylene · Crystal Engineering · Metal–Organic Materials · Physisorption · Separation

- a) S. Sircar, Ind. Eng. Chem. Res. 2006, 45, 5435–5448; b) J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477– 1504; c) S. Mukherjee, D. Sensharma, K.-J. Chen, M. J. Zaworotko, Chem. Commun. 2020, 56, 10419–10441; d) M. Y. Gao, B. Q. Song, D. Sensharma, M. J. Zaworotko, SmartMat 2021, 2, 38–55; e) Y. Wang, S. B. Peh, D. Zhao, Small 2019, 15, 1900058.
- [2] S. Mukherjee, M. J. Zaworotko, *Trends Chem.* 2020, 2, 506– 518.
- [3] D. J. O'Hearn, A. Bajpai, M. J. Zaworotko, Small 2021, 17, 2006351.
- [4] S. Subramanian, M. J. Zaworotko, Angew. Chem. Int. Ed. Engl. 1995, 34, 2127–2129; Angew. Chem. 1995, 107, 2295–2297.
- [5] a) P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, *Nature* 2013, 495, 80–84; b) A. Bajpai, M. Lusi, M. J. Zaworotko, *Chem. Commun.* 2017, 53, 3978–3981; c) C. Gu, J. Liu, D. S. Sholl, J. Phys. Chem. C 2021, 125, 20076–20086; d) P. Nugent, V. Rhodus, T. Pham, B. Tudor, K. Forrest, L. Wojtas, B. Space, M. Zaworotko, *Chem. Commun.* 2013, 49, 1606–1608; e) P. A. Maggard, A. L. Kopf, C. L. Stern, K. R. Poeppelmeier, K. M. Ok, P. S. Halasyamani, *Inorg. Chem.* 2002, 41, 4852–4858; f) A. L. Kopf, P. A. Maggard, C. L. Stern, K. R. Poeppelmeier, *Acta Crystallogr. Sect. C* 2005, 61, m165–m168; g) A. Cadiau, Y. Belmabkhout, K. Adil, P. M. Bhatt, R. S. Pillai, A. Shkurenko, C. Martineau-Corcos, G. Maurin, M. Eddaoudi, *Science* 2017, 356, 731–735.
- [6] a) M. H. Mohamed, S. K. Elsaidi, L. Wojtas, T. Pham, K. A. Forrest, B. Tudor, B. Space, M. J. Zaworotko, *J. Am. Chem. Soc.* 2012, *134*, 19556–19559; b) M. H. Mohamed, S. K. Elsaidi, T. Pham, K. A. Forrest, B. Tudor, L. Wojtas, B. Space, M. J. Zaworotko, *Chem. Commun.* 2013, *49*, 9809–9811.
- [7] M. Lusi, P. B. Fechine, K.-J. Chen, J. J. Perry, M. J. Zaworotko, *Chem. Commun.* **2016**, *52*, 4160–4162.
- [8] a) Q. Lin, C. Mao, A. Kong, X. Bu, X. Zhao, P. Feng, J. Mater. Chem. A 2017, 5, 21189–21195; b) L. He, J. K. Nath, Q. Lin, Chem. Commun. 2019, 55, 412–415; c) S. K. Elsaidi, M. H.

Angew. Chem. Int. Ed. 2022, 61, e202116145 (7 of 8)

Mohamed, T. Pham, T. Hussein, L. Wojtas, M. J. Zaworotko, B. Space, *Cryst. Growth Des.* **2016**, *16*, 1071–1080.

- [9] Q.-L. Qian, X.-W. Gu, J. Pei, H.-M. Wen, H. Wu, W. Zhou, B. Li, G. Qian, J. Mater. Chem. A 2021, 9, 9248–9255.
- [10] a) S. Mukherjee, N. Sikdar, D. O'Nolan, D. M. Franz, V. Gascón, A. Kumar, N. Kumar, H. S. Scott, D. G. Madden, P. E. Kruger, B. Space, M. J. Zaworotko, *Sci. Adv.* 2019, *5*, eaax9171; b) P. M. Bhatt, Y. Belmabkhout, A. Cadiau, K. Adil, O. Shekhah, A. Shkurenko, L. J. Barbour, M. Eddaoudi, *J. Am. Chem. Soc.* 2016, *138*, 9301–9307; c) A. Kumar, C. Hua, D. G. Madden, D. O'Nolan, K.-J. Chen, L.-A. J. Keane, J. J. Perry, M. J. Zaworotko, *Chem. Commun.* 2017, *53*, 5946–5949.
- [11] D. G. Madden, D. O'Nolan, K.-J. Chen, C. Hua, A. Kumar, T. Pham, K. A. Forrest, B. Space, J. J. Perry, M. Khraisheh, M. J. Zaworotko, *Chem. Commun.* **2019**, *55*, 3219–3222.
- [12] B. Li, X. Cui, D. O'Nolan, H. M. Wen, M. Jiang, R. Krishna, H. Wu, R. B. Lin, Y. S. Chen, D. Yuan, H. Xing, W. Zhou, Q. Ren, G. Qian, M. J. Zaworotko, B. Chen, *Adv. Mater.* **2017**, *29*, 1704210.
- [13] a) H. S. Scott, M. Shivanna, A. Bajpai, D. G. Madden, K.-J. Chen, T. Pham, K. A. Forrest, A. Hogan, B. Space, J. J. Perry IV, M. J. Zaworotko, ACS Appl. Mater. Interfaces 2017, 9, 33395–33400; b) K.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry IV, M. J. Zaworotko, Chem 2016, 1, 753–765; c) R.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028; d) N. Kumar, S. Mukherjee, N. C. Harvey-Reid, A. A. Bezrukov, K. Tan, V. Martins, M. Vandichel, T. Pham, L. M. van Wyk, K. Oyekan, A. Kumar, K. A. Forrest, K. M. Patil, L. J. Barbour, B. Space, Y. Huang, P. E. Kruger, M. J. Zaworotko, Chem 2021, 7, 3085–3098; e) Y. Zhang, J. Hu, R. Krishna, L. Wang, L. Yang, X. Cui, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2020, 59, 17664–17669; Angew. Chem. 2020, 132, 17817–17822.
- [14] M. H. Mohamed, S. K. Elsaidi, T. Pham, K. A. Forrest, H. T. Schaef, A. Hogan, L. Wojtas, W. Xu, B. Space, M. J. Zaworotko, *Angew. Chem. Int. Ed.* **2016**, *55*, 8285–8289; *Angew. Chem.* **2016**, *128*, 8425–8429.
- [15] a) C. Healy, N. C. Harvey-Reid, B. I. Howard, P. E. Kruger, *Dalton Trans.* **2020**, *49*, 17433–17439; b) C. Healy, K. M. Patil, B. H. Wilson, L. Hermanspahn, N. C. Harvey-Reid, B. I. Howard, C. Kleinjan, J. Kolien, F. Payet, S. G. Telfer, P. E. Kruger, T. D. Bennett, *Coord. Chem. Rev.* **2020**, *419*, 213388.
- [16] L. Wang, W. Sun, Y. Zhang, N. Xu, R. Krishna, J. Hu, Y. Jiang, Y. He, H. Xing, *Angew. Chem. Int. Ed.* **2021**, 60, 22865–22870; *Angew. Chem.* **2021**, *133*, 23047–23052.
- [17] a) E. Davy, *The Transactions of the Royal Irish Academy* 1839, 80–88; b) P. Pässler, W. Hefner, K. Buckl, H. Meinass, A. Meiswinkel, H. J. Wernicke, G. Ebersberg, R. Müller, J. Bässler, H. Behringer, *Ullmann's Encyclopedia of Industrial Chemistry*, Wiley-VCH, Weinheim, 2000; c) H. Schobert, *Chem. Rev.* 2014, *114*, 1743–1760.
- [18] Q. Zhang, J. Wang, T. Wang, Ind. Eng. Chem. Res. 2016, 55, 8383–8394.
- [19] W. M. Haynes, CRC Handbook of Chemistry and Physics, CRC, Boca Raton, 2014.

- [20] a) X.-P. Fu, Y.-L. Wang, Q.-Y. Liu, *Dalton Trans.* 2020, 49, 16598–16607; b) W. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737.
- [21] D. L. Hilden, R. F. Stebar, Int. J. Energy Res. 1979, 3, 59-71.
- [22] a) O. T. Qazvini, R. Babarao, S. G. Telfer, *Chem. Mater.* 2019, *31*, 4919–4926; b) S. Mukherjee, Y. He, D. Franz, S. Q. Wang, W. R. Xian, A. A. Bezrukov, B. Space, Z. Xu, J. He, M. J. Zaworotko, *Chem. Eur. J.* 2020, *26*, 4923–4929.
- [23] a) D. Ma, Z. Li, J. Zhu, Y. Zhou, L. Chen, X. Mai, M. Liufu, Y. Wu, Y. Li, J. Mater. Chem. A 2020, 8, 11933–11937; b) Y. Xie, H. Cui, H. Wu, R. B. Lin, W. Zhou, B. Chen, Angew. Chem. Int. Ed. 2021, 60, 9604–9609; Angew. Chem. 2021, 133, 9690–9695; c) L. Li, J. Wang, Z. Zhang, Q. Yang, Y. Yang, B. Su, Z. Bao, Q. Ren, ACS Appl. Mater. Interfaces 2018, 11, 2543–2550.
- [24] Deposition Number(s) 2105435 (for SOFOUR-1-Zn) and 2069812 (for SIFSIX-22-Zn) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- [25] C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B 2016, 72, 171–179.
- [26] a) P. Zhou, Z. Anorg. Allg. Chem. 2017, 643, 653–656; b) L.-W. Lee, T.-T. Luo, C.-M. Wang, G.-H. Lee, S.-M. Peng, Y.-H. Liu, S.-L. Lee, K.-L. Lu, J. Solid State Chem. 2016, 239, 1–7; c) D. Bradshaw, J. E. Warren, M. J. Rosseinsky, Science 2007, 315, 977–980; d) A. Dey, A. Garai, V. Gude, K. Biradha, Cryst. Growth Des. 2018, 18, 6070–6077.
- [27] S. Hu, Z.-M. Zhang, Z.-S. Meng, Z.-J. Lin, M.-L. Tong, *CrystEngComm* 2010, 12, 4378–4385.
- [28] Y. L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K. J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, *Angew. Chem. Int. Ed.* **2018**, *57*, 10971–10975; *Angew. Chem.* **2018**, *130*, 11137–11141.
- [29] a) N. Kumar, S. Mukherjee, A. A. Bezrukov, M. Vandichel, M. Shivanna, D. Sensharma, A. Bajpai, V. Gascón, K.-I. Otake, S. Kitagawa, M. J. Zaworotko, *Smart Mater. Struct.* 2020, *1*, e1008; b) L. Yang, L. Yan, Y. Wang, Z. Liu, J. He, Q. Fu, D. Liu, X. Gu, P. Dai, L. Li, *Angew. Chem. Int. Ed.* 2021, *60*, 4570–4574; *Angew. Chem.* 2021, *133*, 4620–4624.
- [30] a) S. Sharma, S. Mukherjee, A. V. Desai, M. Vandichel, G. K. Dam, A. Jadhav, G. Kociok-Köhn, M. J. Zaworotko, S. K. Ghosh, *Chem. Mater.* 2021, *33*, 5800–5808; b) J. Pei, K. Shao, J. X. Wang, H. M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li, G. Qian, *Adv. Mater.* 2020, *32*, 1908275; c) P. Li, Y. He, Y. Zhao, L. Weng, H. Wang, R. Krishna, H. Wu, W. Zhou, M. O'Keeffe, Y. Han, B. Chen, *Angew. Chem. Int. Ed.* 2015, *54*, 574–577; *Angew. Chem.* 2015, *127*, 584–587.
- [31] D. O'Nolan, A. Kumar, M. J. Zaworotko, J. Am. Chem. Soc. 2017, 139, 8508–8513.

Manuscript received: November 26, 2021 Accepted manuscript online: December 20, 2021 Version of record online: January 11, 2022