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Abstract: After the insertion of dental implants into living bone, the condition of the peri-implant
bone changes with time. Implant-loading phenomena can induce bone remodeling in the form
of the corticalization of the trabecular bone. The aim of this study was to see how bone index
(BI) values behave in areas of bone loss (radiographically translucent non-trabecular areas) and
to propose other indices specifically dedicated to detecting corticalization in living bone. Eight
measures of corticalization in clinical standardized intraoral radiographs were studied: mean optical
density, entropy, differential entropy, long-run emphasis moment, BI, corticalization index ver. 1
and ver. 2 (CI v.1, CI v.2) and corticalization factor (CF). The analysis was conducted on 40 cortical
bone image samples, 40 cancellous bone samples and 40 soft tissue samples. It was found that
each measure distinguishes corticalization significantly (p < 0.001), but only CI v.1 and CI v.2 do
so selectively. CF or the inverse of BI can serve as a measure of peri-implant bone corticalization.
However, better measures are CIs as they are dedicated to detecting this phenomenon and allowing
clear clinical deduction.

Keywords: dental implants; long-term results; long-term success; functional loading; peri-implant
bone; intra-oral radiographs; radiomics; texture analysis; corticalization; bone remodeling

1. Introduction

The functional loading of dental implants induces permanent changes in the alveolar
crest [1,2]. The functional loading of intraosseous dental implants causes significant changes
in the structure of the alveolar marginal bone, observed radiographically [3]. There was
corticalization and associated marginal bone loss relentlessly progressing over the five and
ten years of observation presented previously [3]. It is expressed in the loss of trabeculation
(lower entropy of bone radiostructure) in favor of the unification of the arrangement of
bone components and their massification (increase of long elements in radiograph). Both
of these structural changes are summarized in the bone index (BI). The conducted analysis
strongly suggests that the phenomenon of corticalization is a nonbeneficial alteration of
the bone around the implants (at least in the scope disclosed in this study). It means that
marginal bone loss will increase as corticalization progresses.

The trabecular structure disappears and is successively replaced by cortical bone-like
tissue. These observations were made on the digital analysis of peri-implant bone structure
in intraoral radiographs. For this, the bone index [4,5] was used, or, strictly speaking,
the inverse of this index since BI is used to detect trabecular bone. Due to the fact of
dichotomous deduction possibilities (cancellous bone vs. cortical bone), 1/BI was proposed
for detecting corticalization.

However, BI is oriented toward detecting cancellous bone. In trabecular structure
radiographs, BI reaches the highest values. In contrast, it reaches low values in other
bone structures. The author suspects that low BIs occur not only in images of cortical and
corticalized bone but also in areas of bone atrophy (uniformly radiologically translucent).
This suspicion is related to the structure of the BI [4,6] since there is a measure in its
structure that highlights the existence of long strings of pixels of similar brightness (in other
words, of similar radiographic translucency). This measure is not related to high brightness
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(optical density) only but shows both high and low optical density regions. BI cannot be the
only measure for evaluating bone at dental implant site. Unfortunately, BI does not indicate
whether a clinically suspicious site is corticalization or bone loss. This is a significant
disadvantage. To avoid it, each examined site or radiograph should be subjected to visual
inspection, which precludes the automation of the analysis and completely excludes the
use of radiomics.

The aim of this study was to see how BI behaves in areas of bone atrophy (radiologically
translucent non-trabecular areas) and to propose other indices specifically dedicated to
detecting corticalization in living bone.

2. Materials and Methods

The source of the scientific material included in this study was digital intraoral ra-
diographs [7] taken with the Digora Optima system (Soredex, Helsinki, Finland): 7 mA,
70 kV an 0.1 s (Focus apparatus—Instrumentarium Dental, Tuusula, Finland). Positioner
Rinn (Densply, Charlotte, NC, USA) was used for the 90◦ angle of X beam to the surface of
phosphor plate. Storage phosphor plates were read immediately after exposure.

Square areas of 3844 pixels (62 × 62), i.e., regions of interest (ROIs) in 8-bit, greyscale
images were included in the study, numbering 40 for the compact (cortical) bone images,
40 for the cancellous (trabecular) bone images and 40 soft tissue images (Figure 1). A total
of 120 ROIs were analyzed.
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and soft tissue. The textures of the X-ray images were analyzed in MaZda 4.6 freeware 

Figure 1. Regions of interest were located in cortical bone (ROI 1), trabecular bone (ROI 2) and soft
tissue (ROI 3) in main window of MaZda. Next, a series of textural features was extracted (MZ
Reports—on the left) and exported in comma-separated vector format (CSV).

This provided information on three unique regions: cortical bone, trabecular bone
and soft tissue. The textures of the X-ray images were analyzed in MaZda 4.6 freeware
invented by the University of Technology in Lodz [8] to test measures of corticalization
in control environments of trabecular bone (representing original bone before implant-
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dependent alterations) and soft tissue (representing product of marginal bone loss). MaZda
provides both first-order (mean optical density) and second-order (entropy, differential
entropy (DifEntr), long-run emphasis moment (LngREmph)) data. Due to the fact that
the second-order data are given for four directions in the image, and in the present study,
the author did not wish to search for directional features, the arithmetic mean of these
four primary data was included for further analysis. The regions of interest (ROIs) were
normalized (µ ± 3σ) to share the same average (µ) and standard deviation (σ) of optical
density within the ROI. To eliminate noise, [9] worked on data reduced to 6 bits. For
analysis in a co-occurrence matrix, a spacing of 5 pixels was chosen. In the formulas that
follow, p(i) is a normalized histogram vector (i.e., histogram whose entries are divided by
the total number of pixels in ROI), i = 1,2,..., Ng denotes the number of optical density levels.
Mean optical density (only a first-order feature) is calculated as follows:

µ = ∑Ng
i=1 ip(i) (1)

Second-order features are found by:

Entropy = −∑Ng
i=1 ∑Ng

j=1 p(i, j) log(p(i, j)) (2)

Di f Entr = −∑Ng
i=1 px−y(i)log

(
px−y(i)

)
(3)

where Σ is sum, Ng is the number of levels of optical density in the radiograph, i and j are
optical density of pixels 5-pixel distant one from another, p is probability and log is common
logarithm [10]. The differential entropy calculated in this way is a measure of the overall
scatter of bone structure elements in a radiograph. Its high values are typical for cancellous
bone [4,11,12]. Next, the last primary texture feature was calculated (Figure 2):

LngREmph =
∑

Ng
i=1 ∑Nr

k=1 k2 p(i, k)

∑
Ng
i=1 ∑Nr

k=1 p(i, k)
(4)

where Σ is sum; Nr is the number of series of pixels with density level i and length k; Ng is
the number of levels for image optical density; Nr is the number of pixel in the series; and p
is probability [13,14]. This texture feature describes thick, uniformly dense, radio-opaque
bone structures in intraoral radiograph images [4,12].

The equations for DifEntr and LngREmph were subsequently used for the index
construction [4–6,12]. The bone index (BI), which represents the ratio of the diversity of the
structure observed in the radiograph to the measure of the presence of uniform longitudinal
structures, was calculated:

Bone Index =
Di f Entr

LngREmph
(5)

Two more formulas were developed with the intention that they would describe the
intuitive increases in their values together with the progression of corticalization and that
they would suppress the results for cancellous and soft-tissue sites by representing such
sites with low values:

Corticalization Index ver.1 =
LngREmph·Mean

Di f Entr
(6)

Corticalization Index ver.2 =
LngREmph·Mean

Entropy
(7)

The Kruskal–Wallis test was used for the comparison of medians between cortical,
and trabecular or soft tissue radiograph (Statgraphics–StatPoint Technologies, Inc., The
Plains, VA, USA). Factor analysis was used to find the statistically supported next measure
for the corticalization process product. Input vectors: mean optical density, texture entropy,
DifEntrp, and LngREmph. The procedure was performed for factors of eigenvalue ≥ 1. A
probabilistic neural network (PNN) to classify cases into different ROI was applied. Rate of
correctly classified ROIs by the network was evaluated.
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the ROIs are the same as in Figure 1. Maps of the local intensity of the studied features are below 
the original radiographs. The map is created from square boxes of nine pixels. In the maps of 
features, lighter areas indicate higher local intensity of the feature, while darker areas indicate lower 
intensity of the feature. 

Figure 2. The source material and the primary texture features extracted from it. The meanings of the
ROIs are the same as in Figure 1. Maps of the local intensity of the studied features are below the
original radiographs. The map is created from square boxes of nine pixels. In the maps of features,
lighter areas indicate higher local intensity of the feature, while darker areas indicate lower intensity
of the feature.
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3. Results

Calculations for selected measures of corticalization in radiographs of three types of
tissue representing the corticalization phenomenon, bone loss and the reference region of
cancellous bone are shown in Table 1. The results of the primary bone imaging features are
shown in Figure 3. These consisted of one first-order feature (mean optical density) and
two second-order features (DifEntr and LngREmph).

Table 1. Numerical results of the investigation of selected measures of corticalization.

Measure
of Corticalization

ROI 1
Cortical Bone

ROI 2
Trabecular Bone

ROI 3
Bone Loss Note

Mean Optical Density 132 ± 27 91 ± 15 34 ± 15 p < 0.001 1

Entropy 2.68 ± 0.15 2.74 ± 0.19 1.79 ± 0.27 p < 0.001 2

Differential Entropy 1.10 ± 0.09 1.28 ± 0.10 0.81 ± 0.15 p < 0.001 1

LngREmph 1.66 ± 0.21 1.55 ± 0.18 3.01 0.97 p < 0.001 3

Bone Index 0.67 ± 0.13 0.84 ± 0.15 0.31 ± 0.14 p < 0.001 1

Corticalization Index ver.1 200 ± 42 112 ± 28 115 ± 26 p < 0.001 4

Corticalization Index ver.2 81 ± 15 53 ± 13 52 ± 12 p < 0.001 4

Corticalization Factor 114 ± 23 80 ± 12 29 ± 14 p < 0.001 1

1 Statistically significant difference found between all the ROIs compared with each other; 2 ROI 3 is significantly
lower than ROI 1 as well ROI 2; 3 ROI 3 is significantly higher than ROI 1 as well as ROI 2; 4 ROI 1 is significantly
higher than ROI 2 as well as ROI 3. ROI—region of interest; LngREmph—long-run emphasis moment.

J. Clin. Med. 2022, 11, 5463 6 of 15 
 

 

 
Figure 3. Based on the above three features (DifEntrp, Mean optical density, LngREmph), the 
algorithm manages to initially separate the results for the three tissues (ROIs), but corticalization 
(Cortical) is not well discriminated here. It is worth noting that the simple measure of mean optical 
density itself shows the differences between the regions of interest studied. 

The constructed indices were then examined in three ROIs: bone index (Figure 4), 
corticalization index ver. 1 (Figure 5) and corticalization index ver. 2 (Figure 6). 

 
Figure 4. The bone index (BI) was calculated for the detection of normal bone (i.e., trabecular bone) 
within dental alveolus during guide bone regeneration. That is why BI reaches the highest values 
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Figure 3. Based on the above three features (DifEntrp, Mean optical density, LngREmph), the
algorithm manages to initially separate the results for the three tissues (ROIs), but corticalization
(Cortical) is not well discriminated here. It is worth noting that the simple measure of mean optical
density itself shows the differences between the regions of interest studied.

The constructed indices were then examined in three ROIs: bone index (Figure 4),
corticalization index ver. 1 (Figure 5) and corticalization index ver. 2 (Figure 6).
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texture entropy, DifEntrp, and LngREmph). In this case, the factor was extracted with a 
high eigenvalue, 3.30 (much greater than or equal to 1.0). It accounted for 82.4% of the 
variability in the original texture data. Since principal components was selected, the initial 
communality estimates were set to assume that all of the variability in the data was due 
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factorization to be worthwhile, KMO should normally be at least 0.6. Since KMO = 0.768, 
factorization was likely to provide interesting information about any underlying factors. 

Figure 5. Corticalization index ver. 1 (CI v. 1) is based on two components included in BI and mean
optical density. The components are arranged inversely to the BI to emphasize the corticalization
sites rather than trabeculation, and the mean optical density enhances this effect because it is located
in the numerator and is highest in the cortical bone.
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Figure 6. Corticalization index ver. 2 (CI v. 2). This corticalization measure differs from version 1
by replacing differential entropy (ver. 1) in the denominator with entropy (here, ver. 2). This was
dictated by the good statistical separation of ROI 1 from the other two ROIs by entropy. However,
due to the greater spread of entropy in ROIs than differential entropy, the separation between ROIs is
weaker here (but still highly statistically significant: p < 0.001).

The purpose of the factor analysis was to obtain a small number of factors that would
account for most of the variability in the four textural features (mean optical density,
texture entropy, DifEntrp, and LngREmph). In this case, the factor was extracted with a
high eigenvalue, 3.30 (much greater than or equal to 1.0). It accounted for 82.4% of the
variability in the original texture data. Since principal components was selected, the initial
communality estimates were set to assume that all of the variability in the data was due to
common factors. Moreover, the Kaiser–Meyer–Olkin measure of sampling adequacy (KMO)
was above 0.6 for that set of input features. This factorability test indicates whether or not
it is likely to be worthwhile attempting to extract factors from a set of variables. The KMO
statistic provides an indication of how much common variance is present. For factorization
to be worthwhile, KMO should normally be at least 0.6. Since KMO = 0.768, factorization
was likely to provide interesting information about any underlying factors. The equation
that estimated the common factor (the corticalization factor, CF) was performed to represent
the factor loadings:

CF = 0.8446·Mean + 0.9555·Entropy + 0.9066·Di f Entr − 0.9211·LngREmph (8)

where the values of the variables in the equation are standardized by subtracting their
means and dividing by their standard deviations. It also shows the estimated commu-
nalities, which can be interpreted as estimating the proportion of the variability in each
variable attributable to the extracted factors.

Factor analysis indicated that by placing the main emphasis on the simple measure-
ment of mean optical density and measuring the amount of chaoticity in the texture, it
is possible to more than adequately detect corticalization sites in the bone image (high
CF = 114 ± 23) with simultaneous indication of normal trabecular structure (intermediate
values 80 ± 12) and sites that are no longer bone, such as those affected by marginal bone
loss (lower values 29 ± 14). The presence of pixel long series of similar optical density is
minimized in this corticalization evaluation technique. However, removing LngREmph
from the analysis lowers the KMO to 0.618. Thus, one should suspect that short pixel series
(i.e., the inverse of LngREmph) is more important in assessing corticalization. A second
conclusion from this relationship is the essentiality of evaluating pixel series for indicating
corticalization sites.
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Thus, the last of the corticalization measures examined here was obtained from factor
analysis: CF (Figure 7). It was strongly stratified and allowed for good discrimination of
cortical bone from cancellous bone, cancellous bone from soft tissue, and soft tissue from
cortical bone (p < 0.001).
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The relationships of the corticalization index with the bone index and corticalization
factor are shown in Figure 8 below.
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Figure 8. The relationships of selected corticalization measures in the evaluation of intraoral radio-
graphs. (a) Corticalization index ver.1 with bone index (BI). A probabilistic neural network (PNN)
used to classify cases into different three structures in radiograph (cortical, trabecular, bone loss),
based on two input variables (corticalization index ver.1 and bone index). Of the 120 ROIs, 93% were
correctly classified by the network. (b) Corticalization index ver.1 with corticalization factor. Among
the 120 ROIs used, 94% were correctly classified in this pair of corticalization evaluators.

4. Discussion

It is worth noting that a simple measure derived from radiograph histogram analysis (i.e.,
mean optical density) has been used in dentomaxillofacial radiology for decades [9,15–24].
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It carries a great deal of clinically useful information but does not allow the automation
feature of radiomics [25–28] because it requires an analog context for understanding the
significance of local density changes. A second argument is the vast amount of other
information coming from the radiograph beyond the histogram data. In dentistry, more
than 10,000 texture features computing from the determined ROIs are now possible [29]. A
final issue is the non-specificity of the mean optical density for assessing bone corticalization
since residual granules of biomaterial previously implanted into bone, for example, can be
detected by this feature [30,31].

In peri-implant bone, optical density increases on plain intraoral radiography in pa-
tients treated with immediate-loading implants [1,32]. Similar observations were made for
late-loaded implants in the same time horizon (12 months of functional loading) that were
noted in the peri-implant bone texture structure [33]. The sum of squares, a feature from
the co-occurrence matrix, was studied, and it was found that there is a significant decrease
in the value of this texture feature around the integrated dental implant at 12 months after
prosthetic loading. This indicates a homogenization of the bone texture and a decrease
in its intrinsic contrast [33]. These are the initial reports describing the phenomenon of
corticalization of the alveolar crest caused by dental implants.

How to measure the product quantity derived from corticalization process in peri-implant
bone in a clinical situation is a critical question. In recent years, the occurrence of corticalization
in peri-implant bone was mentioned in scientific literature [32,34–36], and attempts are being
made to describe this phenomenon [3] and get to know its clinical significance.

The importance of the standardization of images and ROI should be emphasized first.
The approach to this issue depends on the tools used later. When digital radiographic
subtraction is used [7,9,16–18,21,22], geometric alignment is necessary first because two
radiographs of the same implant but taken at different times are superimposed. Rotational,
translational, scale and affine distortions need to be corrected. Next, alignment and contrast
brightness are needed. This is best achieved by aligning the histograms of the reference
locations [20,23]. In the research presented in this study, this second range of alignment
is essential. An alignment algorithm is introduced in the MaZda program consists of
standardizing the ROI. The ROIs were adjusted (µ ± 3σ) to share the same average (µ) and
standard deviation (σ) of optical density within the ROI.

Bone index (BI) is a good measure for determining the qualitative changes occurring
in the cancellous bone of the jaw. A decrease in its value indicates the disappearance of the
structure characteristic of trabecular bone. This is most likely related to corticalization since
low BI precedes the appearance of marginal trabecular bone in dental implantology by years.
There was a strong association of low BI (0.41 ± 0.19) present in the fifth year of implant
use with marginal bone loss at that time (p < 0.0001) [3]. Bone index also well describes the
results of guided bone regeneration inside the alveolus [4]. It highlights the appearance of
bone trabeculae at the site of biomaterial implantation. Inferences based on the BI also seem
to work well in other disciplines, i.e., in the analysis of bone consolidation quality [37],
where a low BI is present at post-fracture sites because the islands of bone densities are
more homogeneous (compact) than cancellous bone. This results in a less-chaotic structure,
i.e., entropy is reduced (and this entropy is the numerator of the fraction forming the BI).
For the same reasons, the bone image here has broad and uniform radio-opaque fields,
where long lines of pixels of the same optical density can be found. This causes a high
LngREmph, and this is the denominator of the fraction that forms BI. Thus, it affects the
reduction of the final BI to 0.70–0.79. Unfortunately, LngREmph (as well BI) cannot describe
the pixel series as high optical density (bone apposition) or low optical density (bone loss)
points in an image (BI is also low in homogenous radiologically translucent regions).

Moreover, in a study of corticalization, one would need a tool indicating the sites
of corticalization rather than the inverse, a tool indicating trabeculation, since bone loss
is much more strongly represented in this index (i.e., 1/BI) than corticalization itself.
Corticalization index ver. 1 is based on up to the inverse of the described bone index
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enhanced by the mean optical density result in the ROI. Corticalization index ver. 2 in its
design is similar to the inverse of the texture index described previously [5].

The presence of statistically significant differences between the ROIs of the cortical-
ization measures studied indicates that they are all useful to some degree. However, the
three tissues tested differed from each other in mean optical density, differential entropy,
bone index, corticalization factor). This does not provide a simple measure indicating the
site of corticalization searched for in this study. Nevertheless, it should be stated here that
both mean optical density and corticalization factor are highest at the site of corticalization.
Entropy, on the other hand, is uniformly elevated in both bone tissues (i.e., corticalized and
trabecular) relative to soft tissue, which is almost lacking a chaotically scattered texture pat-
tern (Table 1). The next one-element group is the long-run emphasis moment (LngREmph),
whose value is highest in soft tissue and lowest in both bone types studied (p < 0.001).
Yet other measures studied here (both corticalization indices) unambiguously indicate
that a given site is corticalized and significantly different from both trabecular bone and
well bone loss (i.e., soft tissue). Thus, these two measures do not have the interpretive
contamination of random bone loss detection introduced inside. High values here indicate
only a corticalization phenomenon, in contrast to the low values, which indicate everything
else, i.e., trabecular bone and bone loss. Therefore, these two measures also cannot be
used for evaluating the results of guided bone regeneration (the bone index is great for
this purpose), nor can they be used to study sites of bone loss. It will be possible in the
future to select the best measure for studying a particular phenomenon in peri-implant
bone. However, for the considerations in this study, the indices of corticalization (CI ver.1
and CI ver. 2) are the most interesting measures selected.

It seems appropriate to present a dedicated index for detecting corticalization as a
phenomenon important for the long-term success of implant treatment. The purpose of this
paper is to present such an index for clinical application. The interpretation inconvenience
of 1/BI can be resolved by associating the index with high brightness (i.e., high optical
density) as typically found in radiographic images of compact (cortical) bone. This gave
the idea to include in the index the first-order feature of mean brightness/optical density,
i.e., the mean from the histogram of the examined region of interest.

Both versions of CI allow for distinguishing corticalization from atrophy and, of
course, also from trabecular bone. The question is whether it is better to rely on BI in the
assessment of corticalization, which after all is designed to search for trabecular bone in
X-ray images and which also distinguishes bone atrophy well (BI for cancellous bone is the
highest, for cortical bone, it is statistically significantly lower and for the site of bone loss, it
is significantly lower to corticalized bone). Or is it better to rely on a CI that indicates only
corticalization and describes trabecular bone and bone loss together at an equal level i.e.,
CI ver.1 approx. 114, CI ver.2 approx. 52 for non-corticalization sites.

When considering these aspects of the analysis, it should be emphasized that marginal
bone loss has already been very well described in the literature, and the methods to diagnose
it are known and evident [38–43]. It is also known to be an unequivocally unfavorable
phenomenon for implant success [44–46]. Corticalization itself is suspected as a potentially
unfavorable prognostic factor [3]. Thus, it seems best at this stage of the understanding of
this phenomenon to focus on the dichotomous separation of the peri-implant bone image
structure: corticalized versus other (i.e., cancellous or affected by loss).

As is well known, cortical structural changes can have very serious adverse effects, as
in patients treated with antiresorptive therapy (MRONJ) [47], less severe as it seems after a
decade of monitoring bone transformation around dental implants [3] or perhaps have a
positive effect as in the case of immediate loading of dental implants [32].

The phenomenon described here is so pronounced in the jaws because the bone
appositional index here is one of the highest in the body [48]. It is certainly higher than in the
iliac bone, femur or vertebrae. In the mandible, the bone apposition rate is 0.086–0.088 µm
per hour. This process guarantees the osseointegration of the dental implants in the first
phase but is probably responsible in later years for the corticalization of the surrounding
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area modulated by the permanent loading of the bone by biting and chewing forces. The
remodeling and the superimposition of new osteons to the older [49]. This late effect
at sufficiently high levels can lead to increased bone fragility and brittleness through
the mechanism of osteon hypermineralization, which is related to the process of bone
apposition [50]. However, in the jawbone, the phenomenon occurs on a microscale. Whether
it is a negative process for the long-term maintenance of functioning dental implants is
uncertain. Perhaps for this reason, it is worth thinking about other methods of building
measures to describe bone corticalization.

A new approach is the use of factor analysis to evaluate peri-implant bone. The hopes
placed in it are based on good predictive experiences from other surgical teams [51,52]. The
advantage is the statistically reliable combination of information flowing from several tex-
ture features into a single number (corticalization factor) describing the variation occurring
in, for example, four features: mean optical density, the frequency of long series of pixels of
similar optical density (LngREmph) and two measures of texture pattern scattering (en-
tropy and differential entropy). This aforementioned reliability relies on high eigenvalues
and KMO statistics.

Information describing the triplet variation (cortical vs. trabecular vs. bone loss)
can reduce the number of features while retaining their internal information by the factor
analysis and equation for the corticalization factor (8). It turns out that based on the factor
calculated in this way (CF), statistically significant differences (p < 0.05) can be indicated
between corticalization site roentgenograph (value approx. 120) and cancellous bone (value
about 80) versus bone loss (value less than 40). Both analyses (Figure 8) indicate the
possibility of the direct transition of cancellous bone to atrophy and of cortical bone to
atrophy. Based on the presented methods for the detection of corticalization, there is no
indication of a transition state between cancellous bone and bone loss. It is certainly not a
corticalized bone. Bone loss can arise directly from one or the other bone tissue.

On the other hand, when considering the interpretive convenience in a study of only
corticalization, it is more comfortable to use a tool that gives dichotomously differentiated
results, i.e., yes or no for corticalization, and such measures are presented above: the
corticalization indices.

It is important and interesting to validate the corticalization measures presented here
on a wide range of patients in variable clinical situations (e.g., different implants [53,54],
different surgical protocols [55], bone compression screws [56,57], different prosthetic
work [58], vitamin D3 levels [47] and molecular signaling modulation [59]). This will
allow for choosing the best applications for particular measures. Or perhaps it will prove
advisable to use several measures simultaneously, e.g., for monitoring remodeling of the
cancellous and cortical substance. It is also important to test the usefulness in other parts
of skeletal surgery such as hand [60], foot [61], thoracic [62], orthognathic [63], spine [64],
joint replacements [35,65] and rehabilitation [66,67].

One should not forget other measures of corticalization being developed in dentistry
itself like fractal dimension and multifractal spectra [53,68–70]. It seems that this valu-
able and interesting source may in the future bring very useful measures of peri-implant
bone remodeling.

This study provides important clinical considerations for dentistry (especially dental
implantology). First, it systematizes the possibilities of assessing bone remodeling. It
will be possible in the future to select the most suitable index in relation to the observed
bone remodeling processes. Second, it is important to relate an objective measure of bone
condition with the prediction of dental implant maintenance in normal function. The
proposed measures of corticalization are applicable for monitoring bone health around
the dental abutments associated with bridges and crowns and the results of guided bone
regeneration and tissue bone regeneration in implantology and perioodontology. The
clinical relevance of this study can also be seen in monitoring antiresorptive therapy in
the treatment of osteoporosis and controlling the metastasis of malignant tumors to bone.
Orthopedists, neurosurgeons and hand surgeons who also use metal stabilizers, screws,
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cages and joint replacements may also benefit. Many fields of medicine need evaluators that
assess the condition of bone and its transformation as a function of time. In these example
fields of medicine, for example, the use of the corticalization index is being looked at.

5. Conclusions

The corticalization factor, or inverse of bone index, can serve as a measure of peri-
implant bone corticalization. However, better measures are the corticalization indices as
these are dedicated to detecting corticalization and allowing for clear clinical deduction.
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Gedrange, T.; Kozakiewicz, M.; et al. Fractal Dimension and Texture Analysis in the Assessment of Experimental Laser-Induced
Periodic Surface Structures (LIPSS) Dental Implant Surface-In Vitro Study Preliminary Report. Materials 2022, 15, 2713. [CrossRef]
[PubMed]
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