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Abstract: Identifying and adopting industrial applications for proteins and enzymes derived from
fungi strains have been at the focal point of several studies in recent times. To facilitate such studies,
it is necessary that advancements and innovation in mycological and molecular characterisation
are concomitant. This review aims to provide a detailed overview of the necessary steps employed
in both qualitative and quantitative research using the omics technologies that are pertinent to
fungi characterisation. This stems from the understanding that data provided from the functional
characterisation of fungi and their metabolites is important towards the techno-economic feasibility
of large-scale production of biological products. The review further describes how the functional
gaps left by genomics, internal transcribe spacer (ITS) regions are addressed by transcriptomics and
the various techniques and platforms utilised, including quantitive reverse transcription polymerase
chain reaction (RT-qPCR), hybridisation techniques, and RNA-seq, and the insights such data pro-
vide on the effect of environmental changes on fungal enzyme production from an expressional
standpoint. The review also offers information on the many available bioinformatics tools of analysis
necessary for the analysis of the overwhelming data synonymous with the omics approach to fungal
characterisation.

Keywords: fungi; omics; lignin modifying enzymes; bioinformatics

1. Introduction

The use of fungal biological products predates this modern era; consistently, fungi
have been used as a source of food, food additives, hallucinogens, pharmaceuticals (antibi-
otics, hormones, and immunological adjuvants), citric acid, specialty chemicals production,
and derived enzymes have been used in a variety of bioprocesses including textile bleach-
ing, alcohol fermentation, and environmental pollution remediation [1–4]. However, the
isolation and identification of a desired species of fungi and its functional characterisation
to determine the potential biological product that it will contribute towards domestic and
commercial exploits are prerequisite stages for the commencement of any application. The
precise identification of a fungal strain is crucial, especially when we consider that visual
misidentification by unsuspecting individuals and resultant ingestion have often led to
grave consequences, including fatalities [5,6]. Moreover, the pertinent role played by mem-
bers of the fungi kingdom as major decomposers and recyclers in nature and their ubiquity
in both terrestrial and aquatic environments has motivated investigations that culminate
in the accepted importance of their degrading enzymes in several industries. Some fungi
have been isolated and known to thrive in very extreme conditions such as arid desert
conditions, low pH and high metal concentrations such as is present in some soils, mine
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tailings and acid mine drainages, and even in high-salt concentrations as found in marine
ecosystems [7–10]. In the quest for survival by the fungi, these extreme environments have
facilitated the evolution of unique enzymes that find applications in several industrial
and environmental exploits. The most important enzymes studied to date are those pro-
duced by the species of Ascomycetes, Basidiomycetes, and Deuteromycetes, particularly
the lignin-modifying enzymes (LMEs) such as cellulases, laccases, and peroxidases that
have also proved very useful in the degradation of xenobiotic compounds due to their
multi-specific activities [11–13].

In the past, research on fungal characterisation relied mostly on the classical mycologi-
cal and microbiological approaches of bioprospecting which involved isolating wild fungal
species of interest from their natural environments, cultivation under growth conditions
that strived to simulate favourable conditions for proliferation using selective growth
media on plates and sometimes cultivation in submerged cultures, under aseptic culture
conditions [14–16]. However, even with advancements, not all taxa have been successfully
cultured on media, and some fungi have demonstrated recalcitrance to cultivation on most
current commercially available media. More recently, there have even been attempts to
overcome this challenge with the use of laser-printing technology [17]. The earliest studies
involving fungi used adaptations of the laser-induced forward transfer (LIFT), such as
absorbing-film-assisted, laser-induced forward transfer (AFA-LIFT) for the fungus (Tricho-
derma). The LIFT enables the rapid but controlled transfer of minute quantities of biological
samples to different substrates thinly coated to a metal surface plate with other materials
such as silica. However, AFA-LIFT especially ensures this thin layer is protected from the
laser irradiation by a metal film capable of absorbing the laser energy and conversion to
kinetic energy; this energy actually stimulates rapid germination and/or growth of conidia
as was observed in T. longibrachiatum with germination observed within a 20 h incubation
period [18–21].

In general, growth and isolation are typically achieved using solid-surface culture
techniques; fungal growth in liquid media is also possible, especially for the purpose of
enrichment to maximise the proliferation of mycelia of a desired fungus [22]. However,
submerged cultures cultivation is challenged by oxygen levels constraints for these aerobic
eukaryotic cells as the mycelia will tend to grow on the liquid–air interface. Nonetheless,
the latter cultivation approach has undergone several adaptations, including pseudo-
submerged culture conditions, as the growth in liquid media appears to favour the collec-
tion of the extracellular enzymes produced by fungi [23].

Although the process of obtaining axenic cultures of fungi is tedious and requires
several sub-culturing and strain transfers on selective media, it is unavoidable in the quest
to derive biological products from a fungal strain [24]. Moreover, pure plate cultivation
ensures storage and reproducibility. In the past, identification was based on observable
traits, and characterisation employed morphological variations that relied on nuanced
visualisation facilitated by staining techniques and microscopy, for example, light, electron,
fluorescence, phase contrast, etc. [25,26]. Morphological characterisation depends greatly
on comparative analysis with previously documented fungal features [27]. Even with
advances in microscopy and the additional computational analyses that have improved
its accuracy, morphological characterisation is still considered an imprecise method, espe-
cially when applied for differentiating members of the same genus and when, at mycelial
stages, distinct features have not developed. The reliance of microscopy on an individual’s
expertise further increases biases in identification [28]. Therefore, beyond phenotype-based
identification, genotype studies appear to provide the best option in non-discriminatory
characterisation. This review provides a synthesis of information on progress made thus far
in integrating the omics approach in fungal investigation and functional characterisation
of economically significant enzymes in the hope of bringing attention and encouraging
routine use of these frameworks in research to boost the lagging database for fungi-derived
biological products. There is a general acceptance that any progress in fungi-derived
product upscaling and increased industrial product volumes can only be the result of our
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clear understanding and elucidation of fungal responses to environmental changes, their
molecular expression patterns and mechanisms of metabolite productions and adaptations.
Such knowledge will be concomitant to advances in the field of mycology and industrial
applications. Moreover, it will be associated with the ease in accessibility and cheap appli-
cation of enzymes and other protein metabolites employed in industrial and environmental
processes. Additionally, the application of these enzymes will potentially reduce effluent
production owing to its specificity in chemical reactions, and it will serve as an environmen-
tal pollution mitigation strategy. Therefore, it becomes necessary to routinely re-evaluate
the status of advances made in fungal characterisation to allow researchers to identify
gaps requiring improvements. The omics approach, as will be discussed, encompasses
metagenomics, genomics, transcriptomics, and proteomics. Figure 1 presents an overview
of the protein (enzyme) expression process and the connection to the omics approach in
functional characterisation. Research thus far has been sparse, in which omics technologies
have been comprehensively used in the characterisation of novel fungal enzymes. In a
recent publication, Oates et al. [29] used a multi-omics approach to identify a number
of potentially important CAZymes from P. putredinis NO1. A potential industrially rele-
vant extracellular oxidase capable of cleaving β-ether linkages and releasing tricin from
monocot lignin was also identified. Brenelli et al. [30] used a similar approach to identify
multiple redox-active enzymes produced by the marine fungus Peniophora sp. CBMAI
1063. Using a combination of genome and secretome analyses, the authors discovered
valuable extracellular CAZymes, especially lignin and polyphenols-degrading enzymes. It
is hoped that this review will draw attention to this gap in research and provide insights
on a systematic approach to fungal protein metabolite characterisation.
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2. Relevant Metabolites Produced by Fungi

Fungi produce both primary and secondary metabolites of medical and economic
significance. Pertinent to the review are three major types of metabolites (see Figure 2):
the enzymes, bioactive compounds (including amino acids), and fungal ribotoxins. Al-
though it is estimated that at least 5.1 million species of fungi exist, the Basidiomycota
and Ascomycota phyla appear to have predominance and include several wood- and
litter-decomposing fungi [31]. Moreover, these two phyla have thus far produced the most
impactful metabolites, including enzymes that have gained industrial importance. They
have shown demonstrable application in carbon recycling and therefore bioremediation,
as well as usefulness in food, feed, and pharmaceutical industries [32–36]. The enzymes
produced by fungi are unique because of their broad substrate specificity as well as their
strong oxidative and hydrolytic abilities, and of utmost importance is the ease of collection
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since most of them are expressed extracellularly. Table 1 shows some important examples
of industrially relevant fungal enzymes and the aspects of industry in which they have
found application. Several authors in recent times have reviewed the applications of these
enzymes [37–39].
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There are additional enzymes that have been recently elucidated that find application
in the bioremediation of recalcitrant pollutants as well as heterocyclic substrates, including
aromatic hydrocarbons, halogenated biphenyl esters, and chlorinated benzenes [40]. These
two newly elucidated enzymes are chloroperoxidase and the so-called aromatic or unspe-
cific peroxygenases (APO/UPO) and are classified as either heme-thiolate peroxidases or
peroxygenases with capabilities to incorporate an oxygen molecule from their hydrogen
peroxide acceptor into their substrate, thereby demonstrating peroxygenase activity [41].
Moreover, there has been the identification of dye-decolourising peroxidases (DyP) in the
heme peroxidase class with a preference for the oxidation of anthraquinone dyes. These
enzymes show high catalytic efficiency and, in the future, will most likely play a very
important role in the decolourisation of synthetic dyes [42,43].

Several secondary metabolites are produced by fungi, often referred to as bioactive
compounds; most of these metabolites are associated with endophytic fungi, a group
of fungi closely associated with plants. These bioactive compounds have demonstrated
efficacy as antibiotics and anticancer drugs and include Penicillenols, Taxol, Clavatol,
Sordaricin, Jesteron, and Javancin. Bioprospecting of these groups of fungi offers great
potential for investigation and drug discovery as it is believed that only a small fraction
of these compounds has been identified to date. Recently, Hoeksma et al. [44] used a
combination of mycology, embryology, and chemistry to test and identify biologically
active secondary metabolites from over 10,000 species of fungi using developing zebrafish
embryos. The authors successfully identified 34 active compounds consisting of both
therapeutically known and unexplored compounds. Molecular characterisation approaches
have also recently been applied for the screening of bioactive compounds from endophytic
fungi [45].

Furthermore, fungi produce a number of free amino acids that contribute nutritional
value and unique tastes to food preparations. Previously, Tseng et al. [46] identified
free amino acids as some of the non-volatile flavour components of the medicinal mush-
room Ganoderma tsugae. A total of 17 amino acids were found to be present. Recently,
Tagkouli et al. [47] cultivated fungi on agricultural by-products and used this to specifically
assess the free amino acids profile of Pleurotus mushrooms. The authors identified a total
of 22 free amino acids, including all the essential ones. The work by Landi et al. [48]
on the Pioppino mushroom (Cyclocybe cylindracea) also illustrates the presence of these
important products in basidiomycetes as their content analysis of this mushroom revealed
the presence of various amino acids and their antioxidant activity.
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Table 1. Economically significant enzymes produced by basidiomycetes and ascomycetes.

Class of Enzyme Sub-Category Enzyme Industrial Applications References

Oxidoreductases

Heme-containing
peroxidases and
peroxygenases

Lignin peroxidase
Production of vanillin, textile dye degradation

and bleaching, xenobiotic
compounds degradation

[37]

Manganese peroxidase
Bioethanol production, dye decolourisation,

degradation of rubber, distillery
waste treatment

[37,39]

Versatile peroxidase Novel delignification strategies [38]

Chloroperoxidase Halogenation and oxygenation of organic
compounds, lignin cleavage [41,49]

Aromatic/Unspecific
peroxygenases

Bioremediation of recalcitrant pollutants such
as polycyclic aromatic hydrocarbons,

halogenated biphenyl esters, and
chlorinated benzenes

[40]

Dye-decolourising
peroxidases Decolourisation of synthetic dyes [42,43]

Flavin-containing
oxidases and

dehydrogenases
Aryl-alcohol oxidase

Synthesis of high value-added chemicals,
flavours, production of bio-based polymer

precursors, dye decolourisation, pulp bleaching
[50,51]

Copper-containing
oxidases and

monooxygenases
Laccase

Detoxifier in industries such as pulp and paper,
textile, and petrochemical Heavy metal

precipitation, biosensor production, food
processing, drug preparation

[52–54]

Hydrolases

Proteases Alkaline, acid, and
neutral proteases

Fabrication of laundry detergents, beer haze
clarification, brewing, cheese making, meat

tenderisation, synthesis of bioactive peptides
[33,34]

Glycoside
hydrolase

Cellulases:
endoglucanases,

exocellulases, and
processive endoglucanases

Juice extraction and clarification,
supplementation of livestock, biofuel

production, laundry detergent production
[35]

Xylanase

Hemicellulases,
endo-1,4-β-D-xylanases,

β-D-xylosidases,
α-glucuronidase

acetylxylan esterase,
α-L-arabinofuranosidases,
p-coumaric esterase, and

ferulic acid esterase

Juice clarification, paper bleaching, and
increasing the nutritional value of animal feeds. [36,55]

Amylase α-amylase, β-amylase,
and glucoamylase

Bread making, detergent manufacture,
treatment of digestive disorders [56]

Lipase Triacylglycerolacyl
hydrolases

Production of detergents and cosmetic
products, synthesis of biopolymers and

biodiesel, manufacturing of food products
[36]

In recent times, attention has been focused on the highly toxic extracellular ribonu-
cleases produced by fungi because they have previously demonstrated antitumor and
immunotoxin effects [57], making them useful in cancer therapy and immunotoxin synthe-
sis. Ribotoxins exert ribonucleolytic activity on the larger molecule of RNA of the ribosome,
which results in the cessation of protein synthesis and cell death through apoptosis [58].
Olombrada et al. [59] reviewed the potential biotechnological applications of these highly
specific enzymes. Research completed by Li and Xia [60] showed the efficacy of ribotoxins
as pest control agents either alone or conjugated with other compounds. This was used
in experiments involving a recombinant form of the insecticidal ribotoxin hirsutellin A
(HtA) produced from Pichia pastoris. The insecticide formulation showed dose-dependent
cytotoxicity to Sf9 insect cells and insecticidal activity against Galleria mellonella larvae.

Recently, a novel family of proteins similar to ribotoxins has been identified and
characterised. Landi and colleagues first characterised and purified Ageritin, the first
basidiomycete-produced ribotoxin-like protein capable of inhibiting protein synthesis



J. Fungi 2021, 7, 700 6 of 24

in vitro and releasing the α-fragment when incubated with ribosomes [61]. More recently,
the same researchers identified a second ribotoxin-like protein called Ostreatin [62]. Al-
though functionally similar to ribotoxins, these enzymes show no homology with ribotoxins
from the ascomycetes family. They show more similarity to members of the ribonuclease T1
family, however. Ragucci et al. [63] recently reviewed Ageritin, focusing on its structural, bi-
ological, antipathogenic, and enzymatic characteristics. The authors also discussed some of
the possible biotechnological applications of Ageritin, including its use as an immunotoxin
and pest control agent, which could be achieved through gene transfer in plant cells.

3. Advances in Molecular Characterisation of Fungi

The study and application of molecular biology to fungi characterisation has rapidly
gained popularity as a gold standard approach and is entrenched now as validation for most
morphological characterisation [64]. Its routine adoption to the taxonomic identification of
pathogenic fungi has greatly assisted in the resolution of previously unidentified fungi to
species level [26,65,66]. The process begins with genomic extraction techniques, sequencing
which employs specific DNA markers that allow for identification to species level; further
bioinformatics analyses facilitate phylogeny establishment.

Developed in 1977, Sanger sequencing is the current standard molecular tool for
identification [67]. Sanger sequencing is made possible through polymerase chain reaction
(PCR), a molecular technique that enables the synthesis of a complementary DNA strand
from a template using the enzyme taq polymerase [68,69]. In 1990, a ground-breaking
advancement in fungal molecular characterisation was introduced with the identification
of fungal nuclear ribosomal RNA (rRNA) operon primers [70]. The DNA sequences
associated with the large ribosomal subunit (nrLSU-26S or 28S), the small ribosomal
subunit (nrSSU-18S), and the whole internal transcribed spacer region (ITS1, 5.8S, ITS2;
650-900 bp) have since become the target region of fungal identification by the Sanger
sequencing approach [64]. Different evolution rates have been observed in the ITS region,
resulting in diverse levels of variation from one organism to the next. As the fastest evolving
and most variable segment, the ITS region has become the golden standard for fungal
identification using ITS1 and ITS4 primers [64,71–73]. The ITS1 and ITS4 gained popularity
because they are capable of differentially identifying to significant extents members of
the Ascomycetes and Basidiomycetes class of fungi. Molecular characterisation also owes
its success to the rapid advancement in bioinformatics tools and the continuous addition
of new species and strains to different databases that enable identification. Molecular
characterisation involves the initial amplification of a conserved DNA region using a
genomic DNA template and specific primers that target specific regions. Amplification
is then terminated using di-deoxynucleotides. The derived sequences are matched to
other previously submitted sequences in a comprehensive database. These comparisons
characterise and identify through the matching of sequences to the closest relatives on
the database by allocating a value range of between 0 and 100 for percentage similarities,
the latter indicating an exact match [67,74]. Databases such as e-Fungi, NCBI-BLAST,
FungiDB, and UNITE serve as repositories for sequences and are also crucial to molecular
characterisation as it is through them that identification can be precisely achieved [75–77].
Nilsson et al. [78] as well as Kõljalg et al. [79] describe UNITE, a database designed for fungi
molecular identification curating all public fungal sequences as well as those that have not
successfully been assigned to any taxonomic lineage beyond phylum. The latter groups are
assigned a unique digital object identifier (DOI) in the interim. Loeffler et al. [80] discuss
the importance of reference genomes to metagenomics studies but pertinently warn of the
poor integration of new sequences into the existing database as well as the cooperative
interactions between different databases with the resulting lack of a credibly comprehensive
database despite progress in sequence curation. The direct implication is the doubtful
identification of any fungi that are analysed using only one reference database [81]. This
challenge significantly impacts progress in metagenomic analysis as it hinders the pace of
identification and adds the cumbersome process of further analysis on several databases
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to ensure that accuracy in identification is achieved. The consensus solution will be to
open dialogue between database creators and seek a partnership that allows the merging
of most platforms to reduce the overlap created and prevent the ‘re-invention of the wheel’,
synonymous with a lack of cooperation amongst developers. This cohesion will reduce
discrepancies in identification between multiple platforms and databases and accelerate
progress in functional genomics.

4. Transcriptomics in Fungi Functional Characterisation

Genomic sequences provide, to a certain extent, sufficient information that facilitates
the molecular characterisation of fungi. However, it is by no means adequate in giving in-
sights into an organism’s physiology because the sequence data elucidate all genes present;
however, these genes are usually not expressed at the same time or in the same man-
ner [82]. Changes in environmental conditions significantly influence gene expression and
metabolites production by causing epigenetic modifications such as DNA methylation and
chromatin re-modelling [83]. This implies that to truly understand metabolite production, it
is important to look in-depth at the succession of events that occur during gene expression
under normal circumstances and make comparisons against varied changes in conditions.
This aspect of research is referred to as transcriptomics and has also evolved over time in
response to technological advances for fungal functional genomic characterisation.

The central dogma of molecular biology is premised on the transcription of genes into
messenger RNA (mRNA) and the translation of the latter into peptides; it also integrates
the study of the post-translational processes and the organisation of polypeptide chains into
functional proteins [84,85]. This study is important in connecting genes to morphological
and physiological characteristics. More recently, the focus is firmer on gene expression
going from the genome to the transcriptome [86]. The field of transcriptomics bridges the
gap between genes and proteins [87] and has made it possible to monitor and measure
gene expression in different cells and tissues as well as the responses to different conditions
at different time points. More importantly, with eukaryotic cells and their pre-disposition
towards expression being directed by a complex array of genes, but also in some other
instances, expression may be the consequence of single gene’s activity, while others can
even be attributed to the activity of a cluster of genes [88]. Advances in our understanding
of transcriptomics have enabled the identification of many previously unannotated genes,
such as witnessed in the recent work of Noriega et al. [89], where transcriptomics provided
insights to genes crucial to different developmental stages in the coffee berry borer Hy-
pothenemus hampei. There are similarities in the approaches used by Noriega and colleagues
to that employed by Kim et al. [90] in the identification of genes associated with a particular
phenotype; in their research, the focus was on identifying genes responsible for the display
of yellow colouration on leaves obtained after the γ-ray-based mutagenesis of a Cymbidium
orchid. They utilised the Kyoto Encyclopedia of Genes and Genomes database to assign a
total of 144,918 unigenes derived from over 25 million reads into 22 metabolic pathways.
Remarkably, the RNA sequencing analysis identified 2267 differentially expressed genes
between wild-type and mutant Cymbidium sp. In summary, they were able to pinpoint the
alteration of chlorophyll metabolism to seven genes also observed to be involved in ion
transport as well as chlorophyllase-2 production. This implied a possible link between leaf
colouration in Cymbidium orchids and combined alterations in chlorophyll metabolism and
ion transport.

Transcriptomics has also contributed to our understanding of white-rot fungi and
the process of LMEs production. Although it is still sparsely utilised in fungi research,
techniques such as quantitative reverse transcription PCR (RT-qPCR) have been found
to be very useful in identifying and quantifying mRNA at any given time in biological
systems [91] and can be integrated into fungal differential expression studies. It should be
noted that in comparison to other PCR techniques, RT-qPCR gives accurate quantification of
mRNA due to its ability to quantify in real-time. Therefore, it is very useful in investigations
of gene expression resulting from different treatments. Moreover, it has other advantages,
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including the absence of a need for amplification, an exercise that tends to introduce bias;
it also avails the user a mid-throughput analysis and, to an extent, ease of automation that
allows for the processing of a relatively significant number of samples [92,93]. RT-qPCR
stabilises a target mRNA through its transcription into complementary DNA (cDNA) while
amplification is ongoing; there is an associated emission of fluorescence which enables real-
time quantification [94]. Fernández-Fueyo et al. [95] used RT-qPCR to investigate the effect
of environmental parameters of temperature and pH on gene expression and regulation in
Pleurotus ostreatus. By monitoring gene expression under various conditions, the authors
were able to present certain predictions on the correlation between temperature and pH in
gene regulation. Previously, RT-qPCR was used to identify the peroxidase genes lip and
mnp from soil fungi [96] and in studies involving peroxidase genes in ectomycorrhizal
fungi [97], as well as the expressional profile of Pleurotus ostreatus laccase genes [98] and
many more. More recently, Vasina et al. [99] used similar tools in the quantification of
the expressional patterns of 18 peroxidase genes encoding class II peroxidases in Trametes
hirsuta. Moreover, the characterisation of this multigene family enabled the design of
specific primers that were used for further studies.

Although the RT-qPCR is considered fast and effective, its limitation remains its mid-
throughput feature which implies that it can only process a few genes at a time. This can be
a constraint, especially impactful when studying eukaryotic organisms and fungi with their
tendency to have multiple gene involvement in the production of a given compound. There-
fore, it limits the depth of analysis in such instances [100,101]. Moreover, a further challenge
in employing RT-qPCR in fungal investigations is with the choice of a correct reference
gene, which is sometimes hampered by the sharp impact that environmental/external
parameters and growth conditions tend to have on gene expression [102]. This has moti-
vated the introduction of novel, high-throughput technologies in order to ameliorate these
limitations [87,103]. Hybridisation techniques such as microarrays were able to partially
address these issues by increasing the amounts of genes to be analysed per run. However,
prior knowledge of these genes is still required to develop complementary probes [87].
It would appear that most of the limitations highlighted previously in this review were
addressed in the design and application of the RNA sequencing (RNA-seq) platform de-
velopment; of most importance is the ability to analyse thousands of known or unknown
genes at once without the need for a reference gene [104–106]. Moreover, the RNA-seq
platforms have the ability to integrate analysis of post-transcriptional modifications, which
is important in eukaryotic cell studies and specifically fungi, where gene fusion, alternative
gene spliced transcripts and mutations/single nucleotide polymorphisms (SNPs), and
changes in gene expression may occur over time. RNA sequencing platforms currently
use the next-generation sequencing principle to obtain the whole transcriptome profile
(type and quantity) of a cell, tissue, organ, or entire organism [107]. Although modifica-
tions have been made since its introduction, all RNA-seq platforms basically use the same
principles, differing only in terms of read lengths, throughput, error, and price. Different
authors have reviewed and compared these platforms for various applications [107–110].
Ravichandran et al. [111] used RNA-seq on an Illumina platform to obtain insight on the
degradative ability of a white-rot fungus based on the expression of genes for these degrad-
ing enzymes. Henske et al. [112] used RNA-seq to investigate the differential expression
of LMEs in the presence of different substrates. Additionally, Ma et al. [113] previously
used the same tool to study fungal metabolic regulation by identifying all genes under the
regulation of a given transcription factor, such as the Xyr factor presumed to be responsible
for carbohydrate metabolism.

In as much as there have been some studies that have helped to deepen our under-
standing of the expressional patterns followed by fungi, especially with regard to LMEs,
several aspects of functionality are yet to be elucidated. Most of these studies point to a
need for continuation in research and in-depth studies as many more questions are raised
when attempts are made that seek to probe previously held assertions [114]. It is without a
doubt that these questions around expressions and translation patterns need investigations
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especially motivated by the potential applications that these enzymes produced by fungi
represent to several industrial and environmental bioremediation pursuits. For example,
Korripally et al. [115] used RNA-seq to study the regulation of LMEs gene expression.
By applying whole transcriptome shotgun sequencing, they observed an increase of up
to four-fold from an initial 356 genes at the inception of ligninolytic enzyme production.
This link presents questions on what the possible trigger in terms of external conditions
could have been that caused this sharp increase. This is further emphasised because, in
the same study, they made further observations that there were at least 356 up-regulated
genes and that 165 were of unknown functions. Similar thought-provoking results have
been observed in other studies [116,117], which indicate the need for more transcriptomics
studies in order to bring better insight to this area of research and possibly serve as a
starting point for the elucidation of LMEs gene expression, as it tends to have a direct
impact on the amount of enzyme produced.

Bioinformatics in Fungi Transcriptomics Studies

The evolution in transcriptomics studies and the general acceptance of RNA-seq plat-
forms as standard for transcriptomics-based studies resulted in a change in the approach
to data analysis owing to the copious amounts of data it generates. This has motivated
a transition to the application of complex bioinformatics and computational tools to en-
able a clearer interpretation of data, accuracy, and reproducibility of results. These data
analyses involve three major steps, namely: quality control of the raw reads, mapping
and alignment, and quantification of reads. Similarly, further investigative research on
differential expression analysis also involves each of the steps identified and several other
bioinformatics tools [87,118]. This stage-gated approach in reviewing data is premised on
the susceptibility of the huge amount of complex data to many variations that may arise
from technical and random sources [119]. Therefore, the quality control of raw data is
especially critical in ensuring the accuracy of analysis, primarily focused on tackling likely
biases introduced from nucleotide composition, for example, GC-content that tends to
affect differential expression analysis [120]. This problem is usually overcome with normal-
isation to guarantee accuracy in the inference of expression levels and other analyses, but if
this is not considered for prior treatment before analysis, such an anomaly will bias final
results. To date, various bioinformatics tools have been developed for RNA-seq quality
control (QC). In their work, Hernández-Domínguez et al. [118] present FastQC as one of
the most popular QC tools for the Illumina platform. FastQC reports on the quality of
data based on reads or sequences run on its platform; it also provides the proportion of
each nucleotide base in the reads. The applications and efficiency of FastQC were also
reviewed by Qi et al. [121]. Other QC tools, including FASTX-Toolkit, QC-Chain, and NGS
QC Toolkit, were discussed by Zhou et al. [122], who also introduced RNA-QC-chain, a
novel comprehensive tool for QC which comes with the advantages of trimming, automatic
rRNA detection, and contaminating species identification. Quality control not only takes
place at the beginning of data analysis but also precedes each step of further data analysis.

Initial quality control is followed by mapping and alignment, where all reads are
located either with respect to a reference genome or using de novo assembly. In their work,
Schaarschmidt et al. [123] evaluate seven different mapping tools (bwa, CLC Genomics
Workbench, HISAT2, kallisto, RSEM, salmon, and STAR) using experimental data from
Arabidopsis thaliana. Interestingly, similar results are obtained, with all of them showing
high reproducibility. Hernández-Domínguez et al. [118] describe three strategies that could
be followed during the mapping process. When the goal is to identify new transcripts,
reads are aligned with gaps to a reference genome. Tools such as STAR have been found
to be best adapted for this type of mapping as they can map spliced sequences of any
length [124]. When new transcripts are not the query for analysis, reads are aligned to the
reference genome without gaps using tools such as RSEM. In other cases, where a reference
genome is not available, reads are used for de novo assembly. Previously, Haas et al. [125]
described Trinity, one of the most popular tools used for de novo assembly. Trinity is an
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‘assembly-first’ tool for transcriptome reconstruction consisting of three modules, namely,
Inchworm, Chrysalis, and Butterfly. Trinity is able to assemble transcriptomes by separating
the data into many de Bruijn graphs that are processed separately before using parallel
computing to reconstruct the transcriptome [126].

Transcript quantification is an important step in data analysis as it provides the
important quantitative aspect to RNA-seq applications which allows comparison between
different expression points and provides insights as to when the organisms begin to
respond to externalities. Jin et al. [127] evaluated different quantification methods using
tools such as TopHat, RSEM, HTSEq, and featureCounts. The authors also differentiated
between alignment-based and alignment-free methods depending on the presence or
absence of a reference genome. Another important step in transcript quantification is
the previously mentioned normalisation of data to remove the influence of all possible
biases. Normalised measures such as RPKM (reads per kilobase of exon model per million
reads), FPKM (fragments per kilobase of exon model per million mapped reads), and TPM
(transcripts per million) are then used to report expression values [128]. Based on the
obtained data, differential expression analysis can then be carried out by comparing values
from different samples. Various tools are also available for differential expression, including
DESeq, Cufflinks, PoissonSeq, UpperQuartile, etc. [107,128]. Although most currently used
tools have been found to be very effective for differential expression, Assefa et al. [129]
reported low performance when assessing differential expression of long non-coding RNAs
(lncRNAs) using 25 different pipelines. The authors correlated this with sample levels and
variability, as lncRNAs are expressed at low levels and are quite variable. For fungal specific
studies, Wang et al. [130] described a workflow for differential expression in fungal species
using the Bioconductor package DESeq2. In recent work, Pawlik et al. [131] used RNA-seq
to study differential expression in the fungus Cerrena unicolor FCL139 when grown under
different lighting conditions. Mapping was completed using a reference genome, and the
DESeq 2 package was also used to identify the differentially expressed genes.

5. Proteomics in Fungi Translational Characterisation

Translation of mRNA into functional proteins is the second step of the central dogma;
it is considered a precursor to metabolomics studies and most cellular biochemical activ-
ities. It is also where products of economic significance are derived. Depending on the
complexity and size of the organisms’ protein; the final product can be simple or complex,
with the latter requiring a further post-translational modification (PTM) step of folding
at the cellular or intercellular levels; without this crucial refinement, the long peptide
chains that spool out during translation may not gain functionality or specificity [132].
Proteomics looks at the identification and quantification of all proteins present in a given
cell, tissue, or organism [133,134]. The study of protein expression, modification, structure,
and function by means of proteomics has brought progress in various fields of science
and technology because proteins are usually the end-products of gene expression and the
sought-after bioproducts. Amiri-Dashatan et al. [135] reviewed the application of pro-
teomics to food technology, biomarker, and drug target identification. An in-depth review
of the applications of proteomics in pharmaceuticals was also executed by Yokota [136],
including the use of proteomics to study expression profiling, protein–protein interactions,
and post-translational modifications. Other authors have focused their proteomics studies
on fungi specifically in order to identify potential vaccines and drug targets [137–139]. In
some of the research studies, the authors used quantitative Mass Spectrometry—Elevated
Collision Energy to identify fungal proteins with no significant homology with human
ones with the goal to ascertain their feasibility as vaccine candidates. Importantly, Ball
et al. [140] reviewed advancements in MS-based proteomics as it relates to fungal patho-
genesis and interactions between these fungi and the host. Even though the focus was on
medicine and pharmacology, this work provides a benchmark for studies in industrial and
environmental biotechnology.
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5.1. Protein Production and Analysis

Eukaryotes, in general, have more complex machinery involved in protein production
as compared to bacteria. Fungi proteins undergo post-translational modifications (PTMs)
involving phosphorylation, glycosylation, acetylation, and many other processes to ensure
functionality. PTMs take the form of covalent bonding modification to straight polypeptide
chains, causing a change in their structural shapes, with the end result allowing these
proteins to gain function. Such protein functionality imbues in fungi, for example, virulence
and pathogenicity [141]. Other examples of PTMs can be observed in proteins found in
the cell membrane responsible for cell-to-cell interactions or secretory functions, which
is extracellularly useful [142]. PTMs may be reversible or irreversible; however, external
factors may cause irreversible changes to already modified proteins, which inevitably
affects their ability to function as well. It must be noted that structure and shape are very
much linked to specificity and the type of biochemical interactions individual proteins can
participate in.

Wang et al. [143] describe filamentous fungi as having a mature PTMs machinery,
especially for glycosylation. Unlike yeasts that mainly produce glycoproteins with high
mannose content, filamentous fungi use many other monosaccharides for their glycosyla-
tion processes during PTMs, making them more appropriate to produce mammalian-like
proteins for pharmaceutical uses. In their work, Wang et al. [144] reviewed the evolution
of glycosylation in eukaryotes. The authors differentiate between N- and O-glycosylation.
It should be noted that while N-glycoproteins have glycans attached to the amide group of
their asparagine residues, O-glycoproteins have this modification attached to the carboxyl
group of their serine, lysine, threonine, and proline residues. Additionally, they describe
glycosylation as one of the most complex PTMs, but they assert that the process is crucial
in excretory proteins’ folding. This assertion is confirmed by Ramazi and Zahiri [142], who
remarkably linked glycosylation, or the lack thereof, to the onset of conditions such as
cancer and diabetes in humans. Previously, Goto et al. [145] had reviewed structures and
functions of O-glycosylation in fungi, providing a dossier of its cellular usefulness. Most
fungal secretory proteins are glycosylated through the action of O-mannosyltransferase
and several other glycosyltransferases as they move from the endoplasmic reticulum to
the golgi apparatus before reaching the cell exterior. These modifications have been re-
ported to add stability and solubility to extracellular proteins [142,145,146]. PTMs therefore
play an important role in enzyme production strategies, especially when the research
progression strategies may involve cloning and/or artificial synthesis. In this regard,
Tokmakov et al. [147] investigated the correlation between PTMs and the success of het-
erologous protein synthesis. Results suggested that prior identification of potential PTMs
using protein sequences could predict and optimise heterologous synthesis. Proteomics
technologies such as mass spectrometry (MS) are able to study these modifications with
the goal of identifying their cellular location, and the resulting data are stored on different
databases, including the more popularly used PhosphoGRID, PHOSIDA, PhosphoELM,
and iPTMNet [133,148].

Filamentous fungi have the advantageous tendency of producing extracellular en-
zymes, which allow them to play their role of complex compound degradation in the
environment. This has largely contributed to extracellular enzymes being desirous in
industrial applications because of the minimal requirement of downstream processing for
their collection [12,149,150]. Recently, Arnau et al. [151] presented strategies and challenges
for the production of industrial enzymes using the extracellular machinery of fungi. The
authors described the use of classical mutagenesis and screening in order to identify and/or
develop mutant organisms with the ability to produce higher enzyme titres. Moreover,
many other strategies, including the use of antagonistic interspecific interactions, stronger
promoters, codon optimisation of gene sequences, deletion of protease-coding genes, ad-
dition of artificial transcription factors, etc., have been employed for industrial enzyme
production [152–154].
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5.2. Enzyme Production through Recombinant DNA Technology

Cellular energy conservation and utilisation efficiency often imply that enzyme synthe-
ses have feedback mechanisms and various other factors that prevent excessive production
of all metabolites, including enzymes. Moreover, some organisms that are capable of en-
zyme over-expression may not necessarily be amenable to manageable growth conditions
in the laboratory. Sometimes, the feasible solution to these challenges is the application
of recombinant technology, involving the modification of a more amenable organism by
integrating DNA molecules of the desired traits to allow its over-expression in the host
organism, achieved through the use of a vector [155]. Since the introduction of recombinant
DNA technology in the 1970s, it has contributed greatly to the large-scale production
of many important proteins, including enzymes, in fields ranging from agriculture to
pharmaceuticals and cosmetics [156,157]. Over the years, different expression hosts have
been developed for recombinant protein production. In their work, Tripathi and Shri-
vastava [158] review these expression hosts, including bacteria, mammalian cells, yeasts,
insects, and transgenic plants. The authors also point out the importance of using eukary-
otic hosts to produce therapeutic proteins, as these require post-translational modifications,
especially glycosylation, for their efficacy. As previously discussed, PTMs play a crucial
role in eukaryotic protein stability, solubility, and functionality. As such, PTMs must there-
fore be considered during the selection of the host for recombinant protein production.
Von Schaewen et al. [159] further explain this attribute as they discuss the limitations of
bacterial hosts such as E. coli for the production of recombinant eukaryotic proteins.

Besides host selection, recombinant protein production also relies greatly on the effec-
tiveness of cloning. The expression of recombinant eukaryotic proteins involves cloning of
the cDNA of interest into an appropriate expression vector, followed by its insertion into the
host cell [156]. Several cloning vectors are available depending on the intended use. Various
cloning methods have also been developed. Jia and Jeon [160] describe different cloning
methods and their possible applications for high-throughput recombinant protein produc-
tion. These include restriction enzyme-based cloning, which utilises restriction enzymes to
determine and cut the beginning and the end of the inserted gene; recombination-based
cloning, where a site-specific recombinase is used to make the recombinant vector without
using restriction enzymes; and ligation-independent cloning, which facilitates directional
cloning of any insert with no restriction enzyme, nor recombinase needed. Additionally,
Nishikawa et al. [161] provided an in-depth analysis of a group of plasmid vectors used for
gene manipulation in fungi collectively referred to as ‘pFungiway’. Interestingly, the core
constitution of this group of vectors is the binary plasmid pCAMBIA2200, and they advised
that the vector Agrobacterium tumefaciens can be used to mediate transformation. They were
able to use it to successfully bring about transformation in two fungi, a basidiomycete,
Flammulina velutipes, and in the pathogenic plant fungus Fusarium oxysporum.

Different vectors can be designed to introduce a recombinant gene into the selected
host. Depending on the chosen host, these vectors contain elements or motifs necessary for
the optimal expression of the recombinant protein. These include a promoter region, affinity
tags, fluorescence tag, and many more as described by previous researchers [162,163].
Various authors have reported different vectors compatible with eukaryotic hosts. Some of
the most commonly used vectors for fungi in recent times are summarised in Table 2.
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Table 2. Examples of Eukaryotic expression vectors compatible with fungi.

Host Vector References

Yeast

• Yeast Episomal Shuttle Vectors (YEp type) [164]

• Yeast Integrative Plasmids (YIps) [165,166]

• Yeast Replicative Plasmids (YRps) [167,168]

• Yeast Centromeric Plasmids (YCps) [169]

• Yeast Artificial Chromosome (YAC) [168,170,171]

Agrobacterium tumefaciens • pFungiway vectors 1 [161]
1 Several vector types within this group.

5.3. Expression Analysis

Depending on the objective of a study, protein expression analysis can be completed
using high-throughput methods such as MS or protein arrays technology. Alharbi [172]
is of the opinion that protein array is less preferred in comparison to MS due to the huge
amounts of data it generates, making its application difficult for most studies. Moreover,
its dynamic range of detection is limited as a result of both background and saturation
levels signals and the interferences that they pose. Its potential to analyse hundreds
of antibodies–antigen interactions at once brings with it the challenge of quantifying
protein concentrations of the newly introduced proteins. It follows that it would need to
possess the capability not only for detection but immediate quantification of the varying
concentrations. It also has the additional problem of generating false-negative results in
the basic investigation of protein interactions on an array. This can be a consequence of
the inevitable change in the folding of a protein structure within the microarray, thereby
destroying the antibody–antigen pairing, leading to a false-negative result. The same
will likely occur in investigative analysis involving enzyme–substrate interactions, as the
issue is associated with space constraints. Further, these challenges are possibly linked
to the strategies employed in protein microarray detection, which are either label-based
or label-free. The labelling process and its use of materials such as fluorescent dyes or
radioisotopes tend to alter surface characteristics of the protein and also likely introduce
biases to the results. Thus, there is a favouring of the label-free approach, which uses
inherent properties of the probe samples such as its mass to avoid interference to the
protein molecule within the probe. For example, in the application of surface plasmon
resonance (SPR) as a technique, where proteins are immobilised on the microarray using a
thin layer of gold coating on the surface structure when the unlabelled protein probe is
added, any changes in the angle of reflection of light are regarded to have been caused
by their interaction and used for detection. However, the sensitivity and specificity in the
unlabelled approach are lower as compared to the label-based approach. It is hoped that
with refinements in aspects of quantitative information on protein-binding kinetics, there
will be a shift towards greater use of label-free approach [173].

On the other hand, the MS application brings with it accuracy and sensitivity, the
two features that have contributed to its popularity. Data obtained through analysis by
LC-MS/MS, MALDI-TOF/MS, for example, enable the discovery and identification of
protein biomarkers, most of which can be found on databases such as Mascot, MS-Tag,
and PepProb. In certain cases, selected proteins can be analysed using low-throughput
techniques such as ELISA and Western blotting, which depend on the reaction between a
protein and a complementary tag [148,172]. Previously, Braitbard and colleagues [174] used
ELISA to assay human proteins using specific peptides and antibodies. These techniques
not only confirm the presence or absence of a given protein, but they also, to some extent,
give a quantitative proportionality to the total protein content of a sample. Although not
common in fungal studies, ELISA can be effective for the serological detection of fungi;
in this regard, some of its first applications go back to the 1990s with works such as that
of Kim et al. [175], where ELISA was used to identify white- and brown-rot fungi with
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their ligninolytic metabolites serving as antigens. In more recent work, Martin-Souto
et al. [176] used ELISA to detect fungi from cystic fibrosis patients. Using whole protein
extract from S. boydii as an antigenic extract, Scedosporium and Lomentospora fungal species
were serologically detected in patients’ sera with 100% sensitivity. Similar work has
also been completed using Western blotting to identify fungi, but mostly those causing
diseases [177]. More research should shift towards possible modifications and adaptations
of these existing methodologies as they can be employed as a benchmark for developing
methods more suited to research involving enzyme elucidation targeting industrial and
environmental applications.

5.4. Protein (Enzyme) Purification and Separation

As many different fungal proteins and mostly enzymes are produced extracellularly,
purification is necessary to separate the enzyme(s) of interest from the rest of the secretome.
Purification is a prerequisite for most analytical work on proteins. Pure proteins are crucial
for the effectiveness and accuracy of subsequent studies such as structural and functional
determination [178]. Moreover, pure proteins are important for applications in various
industries as the presence of contaminants could result in different and unwanted reactions.
In the pharmaceutical industry, for instance, protein therapeutics require high levels of
purity to prevent unwanted interferences and reactions that may result in human fatalities.

Purification aims to exploit differentiating physicochemical characteristics of enzymes
in order to separate them from a mixture [179]. For example, Landi and colleagues [61,62]
exploited this understanding in the purification of the novel protein Ageritin by applying
acid precipitation techniques followed by chromatographic separation steps. As basic
proteins, the high isoelectric point of ribotoxin-like proteins (≥9.5) allows them to remain
soluble under acidic conditions as most contaminants precipitate.

Various techniques have been applied for protein purification, as summarised in
Table 3 with most of them using liquid chromatography. More et al. [180] reported the
chromatographic purification of a laccase enzyme using anionic exchange followed by gel
filtration by means of Fast Protein Liquid Chromatography (FPLC). Using this approach,
purification is initially executed based on the net charge of the proteins, followed by their
molecular weights. Additionally, their study implemented an ultrafiltration step that used
the Amicon® system for further separation. This additional step enabled the concentration
of the pure protein. In their studies, Mukhopadhyay et al. [181], Irfan et al. [182], and
Carrasco et al. [183] used ammonium sulfate precipitation based on the biochemical process
of salting in/out, which allows proteins to precipitate out of solution as a result of a change
in ammonium sulfate ionic strength. When dealing with LMEs, careful considerations
should be given to the material composition of filter panels; it is advisable to avoid reactive
materials such as cellulose-based filters.

Table 3. Protein purification techniques.

Technique Principle References

Salting in/out Exploiting protein solubility by increasing salt concentration in
the solution [184]

Dialysis Using size exclusion to separate proteins from small molecules
and ions that pass through a semi-permeable membrane [185]

Gel filtration chromatography Separation of proteins based on size [186]

Ion-exchange chromatography Separation of proteins based on their net charge [187,188]

Affinity chromatography Exploiting the affinity of proteins for given chemical groups to
separate them [189]

High-Pressure Liquid Chromatography
(HPLC)

Can use different principles of column chromatography to
separate proteins using high pressure to give better resolution [190]



J. Fungi 2021, 7, 700 15 of 24

Regardless of the method used, purification is most often coupled with a separation
technique for monitoring and evaluating the extent of purity. Cruz et al. [148] report
that gel-based techniques remain the main separation techniques for proteins. Sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel
electrophoresis (2-DE), and two-dimensional differential gel electrophoresis (2D-DIGE)
allow separation and visualisation of proteins within a mixture. Furthermore, 2-DE gives
the protein profile of a sample which is of valuable use in comparative studies using
databases such as the World-2DPAGE [191,192].

5.5. Structural Studies and Sequencing

After purification, especially when working with a novel protein, structural studies
are critical towards function predictions [193]. X-ray crystallography and NMR are the
principal techniques used to determine the 3D structure of proteins [148,194]. Although
they can be used individually, Yee et al. [194] describe these techniques as being com-
plementary. This is also shown in the work of Bryn Fenwick et al. [195], where using
these techniques in synergy gives more accuracy in the structural analysis. The structures
derived from these studies can be deposited in the different structure databases such as
Protein Data Bank (PDB), PDBsum, or ModBase [196]. Functions can be predicted using
the various approaches reviewed by Mills et al. [197]. They provided notable perspectives
on functional annotations at the molecular level of uncharacterised proteins but also high-
lighted 3D-structure-based methods for protein function prediction, which such studies
benefit from using software programs such as MolScript. The analysis and determination
of structure allow for protein sequence elucidation. Miyashita et al. [198] describe protein
sequencing using Edman degradation, a classical technique used to determine the amino
acid sequence of proteins. Although effective in many cases, Edman degradation is limited
to proteins without post-translational modifications on the N-terminal. This limitation is
the reason for the focus on mass spectrometry application as the more favoured approach
in protein sequencing technology, even though more novel approaches are continuously
being developed [199,200]. Using the sequences derived, bioinformatics tools such as
UnitProt and RefSeq can be employed to develop a clearer perspective of the protein and
its attributes [201]. However, the one feature that integrates a consortium of databases
makes UniProt very popular as a platform for protein sequences. Its constituent databases,
UniProt Knowledgebase, UniProt Archive, UniProt Reference Clusters, and UniProt Pro-
teomes, cater to all protein inquiries from functional information, annotations, publications,
homology, and full proteome information [201]. Similarly, RefSeq gives non-redundant
sequence information of proteins, including conserved regions and variations. It is im-
portant to note that as part of NCBI, RefSeq can be accessed from all NCBI tools such as
BLAST [202]. McGarvey et al. [203] describe the functioning of Refseq as it relates to the
mouse genome annotations. The authors present the various resources accessible through
Refseq, including gene annotations, publications, nucleotide and protein records, even
including new features such as the ‘Identical Proteins Report’, which reveals proteins
that are identical both in length and in sequence. It is a useful study for fungal protein
elucidation from a eukaryotic classification standpoint.

6. Conclusions

The introduction of omics technologies has and continues to deepen our understand-
ing of fungi and processes involved in the production of their unique and very useful
enzymes. While molecular characterisation is considered a routine and necessary proce-
dure, cohesion and sharing of information among the different available databases would
provide better identification of new fungi species and reduce redundancy in research.
Moreover, innovative adaptation of existing technologies designed for medical studies
may be necessary to advance enzyme and protein studies targeting the industrial and
environmental sector requirements of bioproducts. The study of fungal transcriptomes
has enabled us to look beyond the genome as a static concept and perceive it as a dynamic
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collection of genes whose expressions are dependent on several factors. Transcriptomics
studies have brought to our knowledge numerous genes that impact protein production
both directly and indirectly. While we continue to rely on technologies such as RNA-seq
for the identification of these genes, more transcriptomics studies are necessary to further
elucidate the molecular basis of protein production, especially in the case of the important
LMEs. Fungal proteomics also continues to be a growing area of research with the goal of
discovering enzymes and proteins that will be more impactful to industry and the envi-
ronment. Finally, bioinformatics analyses have gained importance as tools that facilitate
the amalgamation of functional prediction and commercial value addition in our quest for
bioproducts; they are tools that will continue to carry great significance in the future of
research targeting protein elucidation and applications.
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188. Kosanović, M.; Milutinović, B.; Goč, S.; Mitić, N.; Janković, M. Ion-Exchange Chromatography Purification of Extracellular
Vesicles. Biotechniques 2017, 63, 65–71. [CrossRef] [PubMed]

189. Rodriguez, E.L.; Poddar, S.; Iftekhar, S.; Suh, K.; Woolfork, A.G.; Ovbude, S.; Pekarek, A.; Walters, M.; Lott, S.; Hage, D.S.
Affinity chromatography: A review of trends and developments over the past 50 years. J. Chromatogr. B 2020, 122332. [CrossRef]
[PubMed]

190. Mant, C.T.; Chen, Y.; Yan, Z.; Popa, T.V.; Kovacs, J.M.; Mills, J.B.; Tripet, B.P.; Hodges, R.S. HPLC analysis and purification of
peptides. In Methods in Molecular Biology; Fields, G., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2007; Volume 386, pp. 3–55.

191. Encarnación, S.; Hernández, M.; Martínez-Batallar, G.; Contreras, S.; del Carmen Vargas, M.; Mora, J. Comparative proteomics
using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or
partially sequenced genomes. Biol. Proced. Online 2005, 7, 117–135. [CrossRef] [PubMed]

192. Dias, L.L.C.; Balbuena, T.S.; Silveira, V.; Santa-Catarina, C.; Schevchenko, A.; Floh, E.I.S. Two-dimensional gel electrophoretic
protein profile analysis during seed development of Ocotea catharinensis: A recalcitrant seed species. Braz. J. Plant Physiol. 2010,
22, 23–33. [CrossRef]

193. Najmanovich, R.J.; Torrance, J.W.; Thornton, J.M. Prediction of protein function from structure: Insights from methods for the
detection of local structural similarities. Biotechniques 2005, 38, 847–851. [CrossRef]

194. Yee, A.A.; Savchenko, A.; Ignachenko, A.; Lukin, J.; Xu, X.; Skarina, T.; Evdokimova, E.; Liu, C.S.; Semesi, A.; Guido, V.; et al.
NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J. Am. Chem. Soc. 2005, 127,
16512–16517. [CrossRef]

195. Bryn Fenwick, R.; Van Den Bedem, H.; Fraser, J.S.; Wright, P.E. Integrated description of protein dynamics from room-temperature
X-ray crystallography and NMR. Proc. Natl. Acad. Sci. USA 2014, 111, E445–E454. [CrossRef]

196. Chen, C.; Huang, H.; Wu, C.H. Protein Bioinformatics Databases and Resources. Methods Mol. Biol. 2017, 1558, 3–39. [CrossRef]
197. Mills, C.L.; Beuning, P.J.; Ondrechen, M.J. Biochemical functional predictions for protein structures of unknown or uncertain

function. Comput. Struct. Biotechnol. J. 2015, 13, 182–191. [CrossRef]
198. Miyashita, M.; Presley, J.M.; Buchholz, B.A.; Lam, K.S.; Lee, Y.M.; Vogel, J.S.; Hammock, B.D. Attomole level protein sequencing

by Edman degradation coupled with accelerator mass spectrometry. Proc. Natl. Acad. Sci. USA 2001, 98, 4403–4408. [CrossRef]
[PubMed]

199. Steen, H.; Mann, M. The ABC’s (and XYZ’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 2004, 5, 699–711. [CrossRef] [PubMed]
200. Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 2018, 13, 786–796.

[CrossRef] [PubMed]
201. Pundir, S.; Magrane, M.; Martin, M.J.; O’Donovan, C.; Consortium, T.U. Searching and navigating UniProt databases. Curr. Protoc.

Bioinform. 2015, 50, 1.27.1–1.27.10. [CrossRef]

http://doi.org/10.3389/fcimb.2020.602089
http://doi.org/10.1093/mmy/myx019
http://doi.org/10.1016/S0065-3233(07)75003-9
http://www.ncbi.nlm.nih.gov/pubmed/20731990
http://doi.org/10.1016/j.chroma.2004.05.074
http://www.ncbi.nlm.nih.gov/pubmed/15317415
http://doi.org/10.4061/2011/248735
http://doi.org/10.1007/s13205-014-0219-8
http://www.ncbi.nlm.nih.gov/pubmed/28324287
http://doi.org/10.1515/tjb-2017-0239
http://doi.org/10.1186/s12934-017-0693-x
http://www.ncbi.nlm.nih.gov/pubmed/28464820
http://doi.org/10.17352/gjbbs.000010
http://doi.org/10.2144/000114575
http://www.ncbi.nlm.nih.gov/pubmed/28803541
http://doi.org/10.1016/j.jchromb.2020.122332
http://www.ncbi.nlm.nih.gov/pubmed/32871378
http://doi.org/10.1251/bpo110
http://www.ncbi.nlm.nih.gov/pubmed/16145578
http://doi.org/10.1590/S1677-04202010000100003
http://doi.org/10.2144/05386TE01
http://doi.org/10.1021/ja053565+
http://doi.org/10.1073/pnas.1323440111
http://doi.org/10.1007/978-1-4939-6783-4
http://doi.org/10.1016/j.csbj.2015.02.003
http://doi.org/10.1073/pnas.071047998
http://www.ncbi.nlm.nih.gov/pubmed/11287636
http://doi.org/10.1038/nrm1468
http://www.ncbi.nlm.nih.gov/pubmed/15340378
http://doi.org/10.1038/s41565-018-0236-6
http://www.ncbi.nlm.nih.gov/pubmed/30190617
http://doi.org/10.1002/0471250953.bi0127s50


J. Fungi 2021, 7, 700 24 of 24

202. Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res. 2007, 35, 61–65. [CrossRef] [PubMed]

203. McGarvey, K.M.; Goldfarb, T.; Cox, E.; Farrell, C.M.; Gupta, T.; Joardar, V.S.; Kodali, V.K.; Murphy, M.R.; O’Leary, N.A.; Pujar, S.;
et al. Mouse genome annotation by the RefSeq project. Mamm. Genome 2015, 26, 379–390. [CrossRef] [PubMed]

http://doi.org/10.1093/nar/gkl842
http://www.ncbi.nlm.nih.gov/pubmed/17130148
http://doi.org/10.1007/s00335-015-9585-8
http://www.ncbi.nlm.nih.gov/pubmed/26215545

	Introduction 
	Relevant Metabolites Produced by Fungi 
	Advances in Molecular Characterisation of Fungi 
	Transcriptomics in Fungi Functional Characterisation 
	Proteomics in Fungi Translational Characterisation 
	Protein Production and Analysis 
	Enzyme Production through Recombinant DNA Technology 
	Expression Analysis 
	Protein (Enzyme) Purification and Separation 
	Structural Studies and Sequencing 

	Conclusions 
	References

