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Abstract: Urate oxidase derived from Aspergillus flavus has been investigated as a treatment for
tumor lysis syndrome, hyperuricemia, and gout. However, its long-term use is limited owing to
potential immunogenicity, low thermostability, and short circulation time in vivo. Recently, urate
oxidase isolated from Arthrobacter globiformis (AgUox) has been reported to be thermostable and less
immunogenic than the Aspergillus-derived urate oxidase. Conjugation of human serum albumin
(HSA) to therapeutic proteins has become a promising strategy to prolong circulation time in vivo.
To develop a thermostable and long-circulating urate oxidase, we investigated the site-specific
conjugation of HSA to AgUox based on site-specific incorporation of a clickable non-natural amino
acid (frTet) and an inverse electron demand Diels–Alder reaction. We selected 14 sites for frTet
incorporation using the ROSETTA design, a computational stability prediction program, among
which AgUox containing frTet at position 196 (Ag12) exhibited enzymatic activity and thermostability
comparable to those of wild-type AgUox. Furthermore, Ag12 exhibited a high HSA conjugation
yield without compromising the enzymatic activity, generating well-defined HSA-conjugated AgUox
(Ag12-HSA). In mice, the serum half-life of Ag12-HSA was approximately 29 h, which was roughly
17-fold longer than that of wild-type AgUox. Altogether, this novel formulated AgUox may hold
enhanced therapeutic efficacy for several diseases.

Keywords: Arthrobacter globiformis; gout; half-life extension; inverse electron demand Diels-Alder
reaction; site-specific albumin conjugation; thermostability; urate oxidase

1. Introduction

A high level of uric acid followed by its crystallization is related to tumor lysis syn-
drome, hyperuricemia, and gout [1–3]. Gout is a common type of inflammatory arthritis in
adults, resulting from the formation of uric acid crystals in the joints and other tissues [1–3].
Therefore, the treatment of gout has focused on reducing serum uric acid levels, which
has been effectively achieved by the injection of urate oxidase [3,4]. Urate oxidase (Uox,
Enzyme Commission number: 1.7.3.3) is a peroxisomal liver enzyme that catalyzes the
conversion of insoluble uric acid (0.06 g/L) to the more water-soluble 5-hydroxyisourate
(10.6 g/L; predicted using ALOGPS) [5–8]. In humans, intravenous administration of Uox
has been used for enzymatic therapy of hyperuricemia, supplementing the enzyme activity
lost during hominoid evolution [3]. Rasburicase [9,10] and pegloticase [11–13] have been
approved for the treatment of tumor lysis syndrome and gout, respectively. Rasburicase
is a recombinant version of Uox derived from Aspergillus flavus that was demonstrated
to be therapeutically superior to allopurinol for the control of uric acid levels in adult
patients [9–11]. Pegloticase (marketed under the name Krystexxa) is a PEG-conjugated
chimeric porcine–baboon Uox, with an extended serum half-life in vivo [12–14]. However,
several concerns have been raised regarding PEG-conjugated therapeutics, such as the
potential immunogenicity and toxicity of accumulated PEG molecules [15]. Human serum
albumin (HSA) has low to no immunogenicity and is biodegradable. Furthermore, HSA has
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an exceptionally long serum half-life in humans (>3 weeks) via neonatal Fc receptor (FcRn)-
mediated recycling [16–20]. Therefore, in order to overcome the potential issues of PEG
conjugation, we previously reported that direct conjugation or indirect binding of HSA to
Uox isolated from A. flavus (AfUox) resulted in a prolonged circulation time in vivo [21,22],
enhancing its potential use as a therapeutic agent for gout. Direct HSA conjugation leads
to a greater extension of circulation time than that achieved with indirect HSA binding via
fatty acid conjugation [21,22]. However, the clinical applications of HSA-conjugated AfUox
may be limited by its intrinsic immunogenicity and low thermostability [23]. Recently, Uox
derived from Arthrobacter globiformis (AgUox) was determined to hold desirable properties
for therapeutic development, including soluble expression in Escherichia coli, good solu-
bility at neutral pH, low immunogenicity, and good thermostability [4,24]. We confirmed
that wild-type AgUox is more thermostable than wild-type AfUox (Figure S1). To develop
HSA-conjugated Uox with promising potential for clinical applications, we investigated
site-specific HSA conjugation to AgUox. We hypothesized that the conjugation of HSA
to a permissive site of AgUox would lead to high thermostability, low immunogenicity,
prolonged circulation time in vivo (particularly in mice), and retained enzymatic activity.
It was reported that HSA interacts with mouse FcRn, resulting in the long serum half-life
in mice [25]. Furthermore, the attachment of HSA to insulin and glucagon-like peptide
1 extended the circulation time in mice, likely due to the HSA interactions with mouse
FcRn [26,27].

2. Materials and Methods
2.1. Materials

Bactotryptone and yeast extract were obtained from BD Biosciences (San Jose, CA,
USA). Ni-nitrilotriacetic acid (NTA) agarose was obtained from Qiagen (Hilden, Germany),
and frTet (4-(1,2,3,4-tetrazin-3-yl) phenylalanine) was purchased from Aldlab Chemicals
(Woburn, MA, USA). TCO–Cy3 was purchased from AAT Bioquest (Sunnyvale, CA, USA).
Axially substituted trans-cyclooctene maleimide (TCO-maleimide, A) was purchased from
FutureChem (Seoul, Korea). Disposable PD-10 desalting columns, HiTrap Q HP anion
exchange columns, and Superdex 200 10/300 GL Increase size exclusion columns were
purchased from Cytiva (Uppsala, Sweden). All other chemical reagents were purchased
from Sigma-Aldrich (St. Louis, MO, USA), unless otherwise indicated.

2.2. Computational Analysis of the frTet Incorporation Site in AgUox

Screening of the frTet incorporation site was performed using the molecular model-
ing software PyRosetta (Python-based Rosetta molecular modeling package, Pyrosetta4,
the PyRosetta Team at Johns Hopkins University, Baltimore, MD, USA) [28,29], which
performed point mutation and energy scoring functions based on the AgUox structure
(PDB ID: 2YZE). The amino acid sequence in wild-type (WT) AgUox was replaced with
the Y (tyrosine) or W (tryptophan) sequence, and then the energy of the full atoms in the
protein was calculated. The energy function in PyRosetta is based on Anfinsen’s hypothesis
that native-like protein conformations represent a unique, low-energy, thermodynamically
stable conformation. The score value represents the sum of the van der Waals force, attrac-
tive, repulsive energy, Gaussian exclusion implicit solvation, and hydrogen bonds (short,
long range, backbone-side chain, and side chain) between atoms on different residues
separated by distance.

2.3. Construction of Plasmids for Expression of AgUox-WT and AgUox-frTet Variants

AgUox was synthesized by Macrogen (Seoul, Korea) and cloned into pBAD for site-
specific frTet incorporation, generating the pBAD_AgUox plasmid. To replace the site
selected by PyRosetta scoring with amber codons, the site-directed mutagenesis polymerase
chain reaction (PCR) was performed using the pBAD_AgUox vector as template. The
primer pairs used are shown in Table S1.
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2.4. Expression and Purification of AgUox-WT and AgUox-frTet Variants

To site-specifically incorporate frTet into AgUox, each mutant plasmid was trans-
formed into C321∆A.exp (pDule C11RS)-competent cells [30], generating C321∆Aexp
(pDule C11RS) (pBAD_AgUox_Amb variants) E. coli cells. Transformants were cultured at
37 ◦C overnight in Luria broth medium containing ampicillin (100 µg/mL) and tetracycline
(10 µg/mL). Pre-cultured E. coli cells were inoculated into identical fresh media. To induce
protein expression, final concentrations of 1 mM and 0.4% of frTet and arabinose, respec-
tively, were added to the medium, which reached an optical density of 0.5% (at 600 nm).
The culture medium was incubated at 37 ◦C for 5 h with shaking, before being harvested
via centrifugation at 5000 rpm for 10 min at 4 ◦C. AgUox-containing frTet variants were
purified by immobilized metal affinity chromatography, using the interaction between
Ni-NTA and His-tag, according to the manufacturer’s protocols. The expression and purifi-
cation of AgUox-WT was performed similarly to that of the AgUox-frTet variants, without
the addition of tetracycline and frTet.

2.5. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry
(MALDI-TOF MS) and Dye Labeling Analysis of AgUox Variants

Purified AgUox-WT and AgUox-frTet variants (0.4 mg/mL) were digested with trypsin.
The trypsin-digested mixture was desalted using ZipTip C18 (Millipore, Billerica, MA, USA).
The desalted trypsin-digested protein sample was mixed with 2,5-dihydroxybenzoic acid
(DHB) solution (20 mg/mL of DHB in 3:7, (v/v) acetonitrile: 0.1% trifluoroacetic acid in
water) in a 1:1 ratio. Then, 0.5 µL of this mixture was loaded onto a ground steel target
(Bruker Corporation, Billerica, MA, USA) and molecular weight analysis was performed by
MALDI-TOF MS (Bruker Corporation, Billerica, MA, USA).

To identify the IEDDA reactivity of the AgUox-frTet variants, purified AgUox-WT
and AgUox-frTet variants were desalted with phosphate-buffered saline (PBS, pH 7.4) and
then mixed with TCO-Cy3 at a molar ratio of 1:2 for 2 h at room temperature. Afterwards,
the mixture, with or without the addition of TCO-Cy3, was subjected to sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The gel underwent fluorescence
analysis (excitation: 302 nm, filter 510/610 nm) in a ChemiDoc XRS+ System (Bio-Rad
Laboratories, Hercules, CA, USA), followed by visualization after Coomassie brilliant blue
(CBB) staining.

2.6. Enzymatic Activity Assay and Thermostability Assessment of AgUox-WT and AgUox-frTet
Variants

AgUox variants (100 µL at 120 nM in enzyme activity assay buffer (50 mM sodium
borate with 150 mM NaCl)) were mixed with 100 µL of 200 µM uric acid in enzyme activity
assay buffer. The degradation of uric acid was then measured using the absorbance of the
mixture solution at 293 nm. Enzyme activities were expressed as specific activity (U/mg
AgUox). One unit (U) of activity was defined as the amount of enzyme that catalyzed the
oxidation of 1.0 µmol of uric acid per minute at 25 ◦C. The serum activity of the AgUox-WT
and AgUox-frTet variants was measured by an enzymatic activity assay of diluted serum
in the enzyme assay buffer containing uric acid. Briefly, 10 µL of serum separated from
whole blood at different time points was diluted in 90 µL of enzyme activity assay buffer
and then mixed with 100 µL of 200 µM uric acid solution, and absorbance was measured at
293 nm. To measure the thermostability of AgUox variants, each variant was incubated for
10 days in PBS (pH 7.4) and subjected to the enzyme activity assay described above at 0, 5,
and 10 days.

2.7. Generation of HSA-Conjugated AgUox-frTet Variants

HSA was subjected to the elimination of high-molecular weight aggregates using
anion exchange chromatography (Hitrap Q HP column) in 20 mM Tris buffer (pH 7.0), as
previously reported [21,31]. Purified HSA was desalted with PBS (pH 7.0), and reacted
with TCO-MAL heterobifunctional crosslinker at a molar ratio of 1:4 for 2 h at room
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temperature. Afterwards, the mixtures were desalted with PBS (pH 7.4), generating the
HSA-TCO conjugate. Purified AgUox-frTet variants were mixed with HSA-TCO at a molar
ratio of 1:4 for 5 h at room temperature, and then analyzed by SDS-PAGE to identify the
site-specific albumin conjugation yield. For further activity and pharmacokinetic studies,
the HSA-conjugated AgUox-196frTet (AgUox-196HSA) was separated from the reaction
mixture using size-exclusion chromatography. The elution peak corresponding to the
Uox-HSA conjugate was used for an enzyme activity assay and pharmacokinetic studies
after measuring the molecular weight by SDS-PAGE analysis.

2.8. Pharmacokinetic Studies

Briefly, 4.4 nmol (monomeric AgUox basis) of AgUox-WT or AgUox-HSA4 in 200 µL
PBS (pH 7.4) was intravenously injected into the tail of young female BALB/c mice (n = 4).
To evaluate the serum half-life of AgUox variants in vivo, retro-orbital blood collection was
performed at 15 min and 3, 6, and 12 h for AgUox-WT; and 15 min and 3, 6, 12, 24, 48, and
72 h post-injection for AgUox-HSA. Serum activity was measured in serum isolated from
the different whole blood samples collected.

3. Results and Discussion
3.1. Preparation of AgUox-WT and AgUox Containing frTet (AgUox-frTet) Variants

As the first step for preparing HSA-conjugated AgUox variants, the optimal sites
of AgUox for HSA conjugation were determined. In order to investigate the similarities
between AfUox and AgUox, we performed amino acid sequence alignment and overlapped
the crystal structures of AfUox and AgUox. The identity of the two amino acid sequences
was only 38.5% (Figure S2). Due to the low identity, the crystal structures of AfUox and
AgUox were poorly overlapped (Figure S3). Therefore, it was not straightforward to
choose a site for frTet incorporation by comparing the amino acid sequence and crystal
structures of the two Uox molecules. In the case of AfUox, the solvent accessibility and
hydrophobicity of site were taken into consideration. However, a mutation often leads to
misfolding or unfolding of a protein. Therefore, we performed a more systemic approach.
Using PyRosetta, we calculated the energy score of AgUox variants containing a single
mutation. Thus, the energy score of each variant was translated into its relative folding
stability [29,32,33]. In order to mimic the mutation to frTet (a phenylalanine analog), the
mutation to either Y or W was introduced to various sites of AgUox-WT. The top 14 sites
for which the energy scores upon the mutation to both Y and W were greater than or
comparable to that of AgUox-WT (Table S2), along with the 14 AgUox mutants containing
frTet (AgUox-frTet) (named as Ag1–14, Figure 1), were identified. In order to prepare 14
AgUox-frTet variants, an amber codon was introduced to each of the14 sites of AgUox-WT
by PCR-mediated mutagenesis. Then, C321delAexp E. coli cells [34] were co-transformed
into pDule C11RS plasmid [35] encoding the engineered MjtRNATyr/MjTyrRS specific for
ftTet as well as the vectors with each AgUox variant. The transformants were cultured to
express each AgUox-frTet variant as described in ‘Materials and Methods’ (Section 2.3).
In the CBB-stained protein gel, a molecular weight of 34 kDa, which corresponded to the
monomeric AgUox, was detected in lanes of the cell lysate after induction and purified
AgUox-frTet (Figure 2). Overall, these results demonstrate the successful expression and
purification of AgUox-WT and AgUox-frTet variants.
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before induction; AI, after induction. (b) Image of Coomassie blue-stained protein gels of AgUox-WT
and AgUox-frTet variants after purification.

3.2. Enzymatic Activity and Thermostability Assays of AgUox Variants

To investigate whether the site-specific incorporation of frTet into AgUox affected
its biological function, the enzymatic activities of purified AgUox-WT and AgUox-frTet
variants were compared. The enzymatic activities of the AgUox-frTet variants varied
between 1 and 93% relative to that of AgUox-WT (Figure 3a), indicating that the frTet
incorporation site significantly affects the function of AgUox. The AgUox-frTet variants
Ag1, 6, 8, 10, and 12 exhibited relatively high enzymatic activity (Figure 3a). The active
sites of AgUox are located at the interfaces between monomers [36]. Noteworthily, the frTet
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incorporation sites of those variants (Ag1, 6, 8, 10, and 12) were far away from the active
sites and interfaces between monomers.
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Figure 3. Thermostability assessment of AgUox-WT and AgUox-frTet variants. (a) Relative enzyme
activity of AgUox-WT and AgUox-frTet (Ag1–14) variants in PBS monitored at 0 and 120 h. Red line
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and five AgUox-frTet variants (Ag1, 6, 8, 10, and 12) monitored at 0, 120, and 240 h. The relative
activity of AgUox-frTet variants was normalized against the enzymatic activity of AgUox-WT.

AgUox-WT was reported to be thermostable [4]. In order to evaluate the thermostabil-
ity of AgUox-frTet variants, the AgUox-frTet variants as well as AgUox-WT were incubated
at 37 ◦C for five days, after which enzymatic activity assays were performed. As expected,
no activity loss of AgUox-WT was observed after the 5-day incubation (Figure 3a). Among
the 14 AgUox-frTet variants, Ag1, 6, 8, 10, and 12 exhibited more than 50% activity of
AgUox-WT after the same period (Figure 3a). Those five variants were incubated for up
to 10 days at 37 ◦C, after which Ag1, 6, 8, and 10 still showed an activity higher than 50%
of AgUox-WT (Figure 3b). Although some activity loss was observed after the 10-day
incubation, the Ag12 variant maintained an enzymatic activity similar to that of AgUox-WT
(Figure 3b).

3.3. Confirmation of the Site-Specific frTet Incorporation to AgUox

To confirm the frTet incorporation into each site on AgUox, we performed the flu-
orescence dye labeling of intact AgUox-frTet variants. As representative cases, the five
AgUox-frTet variants with a relatively high activity (Ag1, 6, 8, 10, and 12) were analyzed.
First, we performed the fluorescence dye labeling using TCO-Cy3 to confirm the IEDDA
reactivity of AgUox-frTet variants. Evaluation of the fluorescent image of the protein gel
revealed no band in AgUox-WT samples, indicating no IEDDA reactivity of AgUox-WT
(Figure 4). In contrast, the Ag1, 6, 8, 10, and 12 variants clearly exhibited the band in
both the fluorescence image of protein gel and the CBB-stained protein gel, confirming the
IEDDA reactivity of AgUox-frTet variants (Figure 4).

Pharmaceutics 2021, 13, x FOR PEER REVIEW 6 of 11 
 

 

AgUox are located at the interfaces between monomers [36]. Noteworthily, the frTet in-
corporation sites of those variants (Ag1, 6, 8, 10, and 12) were far away from the active 
sites and interfaces between monomers. 

AgUox-WT was reported to be thermostable [4]. In order to evaluate the thermosta-
bility of AgUox-frTet variants, the AgUox-frTet variants as well as AgUox-WT were incu-
bated at 37 °C for five days, after which enzymatic activity assays were performed. As 
expected, no activity loss of AgUox-WT was observed after the 5-day incubation (Figure 
3a). Among the 14 AgUox-frTet variants, Ag1, 6, 8, 10, and 12 exhibited more than 50% 
activity of AgUox-WT after the same period (Figure 3a). Those five variants were incu-
bated for up to 10 days at 37 °C, after which Ag1, 6, 8, and 10 still showed an activity 
higher than 50% of AgUox-WT (Figure 3b). Although some activity loss was observed 
after the 10-day incubation, the Ag12 variant maintained an enzymatic activity similar to 
that of AgUox-WT (Figure 3b). 

 
Figure 3. Thermostability assessment of AgUox-WT and AgUox-frTet variants. (a) Relative enzyme 
activity of AgUox-WT and AgUox-frTet (Ag1–14) variants in PBS monitored at 0 and 120 h. Red line 
indicates the 50% enzymatic activity of AgUox-WT. (b) Relative enzymatic activity of AgUox-WT 
and five AgUox-frTet variants (Ag1, 6, 8, 10, and 12) monitored at 0, 120, and 240 h. The relative 
activity of AgUox-frTet variants was normalized against the enzymatic activity of AgUox-WT. 

3.3. Confirmation of the Site-Specific frTet Incorporation to AgUox 
To confirm the frTet incorporation into each site on AgUox, we performed the fluo-

rescence dye labeling of intact AgUox-frTet variants. As representative cases, the five 
AgUox-frTet variants with a relatively high activity (Ag1, 6, 8, 10, and 12) were analyzed. 
First, we performed the fluorescence dye labeling using TCO-Cy3 to confirm the IEDDA 
reactivity of AgUox-frTet variants. Evaluation of the fluorescent image of the protein gel 
revealed no band in AgUox-WT samples, indicating no IEDDA reactivity of AgUox-WT 
(Figure 4). In contrast, the Ag1, 6, 8, 10, and 12 variants clearly exhibited the band in both 
the fluorescence image of protein gel and the CBB-stained protein gel, confirming the 
IEDDA reactivity of AgUox-frTet variants (Figure 4). 

 
Figure 4. Incorporation of frTet into AgUox. Fluorescence (illumination λex = 302 nm, with wave-
lengths at 510 and 610 nm in Chemidoc XRS+ system) and Coomassie blue-stained protein gel for 
reaction mixture of TCO-Cy3 with AgUox-WT or AgUox-frTet (Ag) variants. 

Figure 4. Incorporation of frTet into AgUox. Fluorescence (illumination λex = 302 nm, with wave-
lengths at 510 and 610 nm in Chemidoc XRS+ system) and Coomassie blue-stained protein gel for
reaction mixture of TCO-Cy3 with AgUox-WT or AgUox-frTet (Ag) variants.

Next, frTet incorporation was further confirmed by MALDI-TOF MS of trypsin-
digested AgUox-frTet (Ag1, 6, 8, 10, and 12) variants using AgUox-WT as control (Figure S4).



Pharmaceutics 2021, 13, 1298 7 of 11

In the mass spectra of trypsin-digested AgUox-frTet variants, the observed masses of frag-
ments containing frTet matched well with the respective theoretical values with a deviation
of less than 0.05% (Table S3). These results confirm the site-specific incorporation of frTet
into specific sites of AgUox-frTet variants.

3.4. Site-Specific HSA-Conjugation to AgUox-frTet

To prepare HSA-conjugated AgUox, we used the heterobifunctional crosslinker, TCO-
MAL. First, TCO-MAL was conjugated to the free cysteine at position 34 (Cys34) of
HSA via Michael addition. Since the only free cysteine (Cys34) on the HSA surface is
located away from the FcRn binding domain, it has been frequently used for bioconju-
gation [37–40]. Then, TCO-HSA was conjugated to the purified AgUox-frTet variants
via the IEDDA reaction to generate AgUox-HSA conjugates. The reaction mixtures were
subjected to SDS-PAGE analysis (Figure 5). In the CBB-stained protein gel, the bands for
HSA-conjugated AgUox-frTet (Ag1, 6, 8, 10, and 12) variants were clearly observed in the
range of 100–120 kDa (Figure 5). In case of Ag1, 8, and 12 variants, no band of monomeric
AgUox was observed, indicating the almost complete conjugation of AgUox to HSA. In
the case of Ag6 and 10, the band of AgUox monomer was observed within 25–37 kDa,
indicating poor AgUox conjugation to HSA. The trend in the HSA conjugation yield of Ag
variants, except for Ag8, was similar to that of solvent accessibility (Ag1, 6, 8, 10, and 12:
0.93, 0.51, 0.9, 0.85, and 0.92, respectively). Since the Ag12 variant exhibited the highest
HSA conjugation yield, as well as the highest enzymatic activity, it was selected for further
characterization. To confirm the generation of Ag12-HSA, we performed MALDI-TOF MS
analysis of the reaction mixture generating Ag12-HSA as well as AgUox-WT. The observed
mass of intact AgUox-WT in the mass spectrum was 33,312 Da, which is quite consistent
with its expected mass (33,305 Da) with a deviation of 0.03% (Figure S5a). In the mass
spectrum of the conjugation mixture of Ag-HSA, three bands were observed. The band
at 66,779 Da was expected to be that for HSA-TCO, as it matched well with its theoretical
mass of 66,770 Da. The observed masses of Ag12 and Ag-HSA were 33,394, 66,779, and
100,378 Da, which are quite consistent with their expected masses (33,403, 66,770, and
100,363 Da), respectively (Figure S5b).
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Figure 5. SDS-PAGE analysis of AgUox-HSA conjugate variants. The protein gel was visualized
using Coomassie blue staining. Lanes: MW, molecular weight marker; 1, AgUox-HSA from Ag1
variant; 2, AgUox-HSA from Ag6 variant; 3, AgUox-HSA from Ag8 variant; 4, AgUox-HSA from
Ag10 variant; 5, AgUox-HSA from Ag12 variant.

3.5. Enzymatic Activity of the AgUox-HSA Conjugate

We purified the HSA-conjugated Ag12 variant (Ag12-HSA) from the reaction mixture
using size-exclusion chromatography. The eluted fractions in the chromatograms were
analyzed by SDS-PAGE (Figure 6). The two major peaks indicate the Ag12-HSA and
unreacted HSA-TCO, respectively, whereas the peak for Ag12 monomer was not detected,
indicating that the HSA conjugation yield was high. The specific activities of Ag12 and
Ag12-HSA were 51.7 and 52.3 U/mg AgUox, respectively, which were approximately 93%
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of that of AgUox-WT (Figure 7). The specific activity of AgUox variants was calculated
based on the weight of AgUox in order to avoid the underestimation of the specific
activity of AgUox-HSA conjugates due to the weight of HSA molecules. These results
indicate that the Ag12 variant is suitable for site-specific HSA conjugation with the retained
enzymatic activity.
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3.6. Pharmacokinetic Study of AgUox-WT and Ag12-HSA

We measured the serum half-lives of AgUox-WT and Ag12-HSA after intravenous
administration to mice. Moreover, the enzymatic activity of AgUox species in the serum
samples was monitored. The serum half-life of AgUox-WT was about 1.7 h (Figure 8), which
was longer than that of AfUox-WT (1.3 h) [30]. We also observed that the serum half-life of
the Ag12-HSA conjugate was 29 h, which was approximately 17-times higher than that of
AgUox-WT (Figure 8), indicating that HSA conjugation effectively prolonged the serum
half-life of AgUox. Noteworthily, the serum half-life of Ag12-HSA conjugate was longer
than that of AfUox-HSA (21 h) [30]. Considering that both Ag12-HSA and AfUox-HSA
have four HSA molecules conjugated to each Uox molecule with the same linker, we believe
that the difference observed in their serum half-life results from thermostability differences.
In the case of AfUox-HSA, the serum half-life of Ag12-HSA was assessed by measuring the
enzyme activity of the AgUox variant remaining in the serum. Taken together, these results
highlight the thermostability of AgUox and how it retains its enzymatic activity in vivo.
Furthermore, these data indicate that the conjugation of HSA to AgUox, which has high
thermostability, results in a significantly longer serum half-life in vivo.
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4. Conclusions

AgUox is a promising therapeutic candidate for gout treatment because of its high ther-
mostability and low immunogenicity. To further develop AgUox as a therapeutic agent, we
achieved site-specific HSA conjugation to AgUox, resulting in the significantly prolonged
circulation time in vivo compared with AgUox-WT and AfUox-HSA, likely due to the high
thermostability of AgUox and the FcRn-mediated recycling of HSA. We demonstrated that
the computational stability prediction of AgUox variants containing frTet successfully led
to identification of 14 stable AgUox-frTet variants. As expected, approximately half of
these variants retained enzymatic activity and relatively high thermostability. In particular,
AgUox-196frTet (Ag12) showed enzyme activity and thermostability comparable to those of
AgUox-WT. Pharmacokinetic studies further showed that the serum half-life of Ag12-HSA
was extended to 29 h, which was approximately 17 times longer than that of AgUox-WT.
Hence, we believe that the HSA-conjugated AgUox would be a good therapeutic candidate
for severe gout treatment. Since the Uox-based therapeutics are very expensive compared
to other small molecule-based urate lowering drugs, their use would be limited to patients
with severe and refractory gout.
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Figure S4. Matrix-assisted laser desorption/ionization-time of flight mass spectra (MALDI-TOF MS)
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spectra of AgUox-WT (a) and the conjugate mixture generating Ag12-HSA (b); Table S1. Primers used
for the site-directed mutagenesis of AgUox; Table S2. Rosetta scores of AgUox after point mutation
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