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Nanopore sequencing enables direct measurement of RNAmolecules without conversion to cDNA, thus opening the gates

to a new era for RNA biology. However, the lack of molecular barcoding of direct RNA nanopore sequencing data sets

severely affects the applicability of this technology to biological samples, where RNA availability is often limited. Here,

we provide the first experimental protocol and associated algorithm to barcode and demultiplex direct RNA nanopore se-

quencing data sets. Specifically, we present a novel and robust approach to accurately classify raw nanopore signal data by

transforming current intensities into images or arrays of pixels, followed by classification using a deep learning algorithm.

We demonstrate the power of this strategy by developing the first experimental protocol for barcoding and demultiplexing

direct RNA sequencing libraries. Ourmethod, DeePlexiCon, can classify 93% of reads with 95.1% accuracy or 60%of reads

with 99.9% accuracy. The availability of an efficient and simple multiplexing strategy for native RNA sequencing will im-

prove the cost-effectiveness of this technology, as well as facilitate the analysis of lower-input biological samples. Overall,

our work exemplifies the power, simplicity, and robustness of signal-to-image conversion for nanopore data analysis using

deep learning.

[Supplemental material is available for this article.]

The emergence of third-generation sequencing (TGS) technologies
has revolutionized our ability to sequence genomes and transcrip-
tomes (Ardui et al. 2018; Pollard et al. 2018). Compared to second-
generation sequencing technologies, TGS has the ability to pro-
duce long sequencing reads, avoiding the hassle of fragmenting
the RNA or DNAmolecules into smaller pieces to then reassemble
them back together. Furthermore, TGS technologies have the abil-
ity to sequence DNA and RNA without a PCR amplification step,
thus allowing direct detection of DNA and RNA modifications,
with single nucleotide resolution and in individual molecules.

Direct sequencing of native RNA molecules (dRNA-seq) can
be achieved using the platform offered by Oxford Nanopore
Technologies (ONT). This platform relies on the use of protein
nanopores embedded in a membrane that are subjected to an elec-
tric field. Characteristic disruptions in the electric current are mea-
sured as the RNA molecule passes through the pore, enabling the
observation of single molecules. Low translocation velocity of
the RNA molecule is achieved through the association of motor
proteins that regulate the translocation of the nucleic acid mole-
cule, and the resulting current intensity measurements can, in
turn, be converted into sequence information using previously
trained base-calling algorithms (Rang et al. 2018).

The first direct RNA sequencing protocol developed by ONT
(SQK-RNA001) became commercially available in 2017 and was

designed to sequence mRNAs (Garalde et al. 2018), although later
efforts have shown that this protocol can be adapted to sequence
non-poly(A)-tailed RNAs, such as ribosomal RNAs (Smith et al.
2019). The current ONT dRNA-seq library preparation protocol
comprises three main steps: (1) ligation of a double-stranded,
pre-annealed DNA RT Adapter (RTA), which contains an oligo-dT
overhang to anneal to poly(A)+ mRNAs; (2) optional reverse tran-
scription, which linearizes the RNA molecule into an RNA-DNA
duplex; and (3) ligation of the RNA sequencing adapter (RMX),
which contains the motor protein that directs RNA molecules to
the pores and regulates their translocation (Fig. 1A). Currently,
there are no manufacturer-provided protocols for molecular bar-
coding of direct RNA sequencing data sets, which greatly improve
the cost-effectiveness of certain dRNA-seq applications by combin-
ing multiple samples on the same consumable flow cell.
Multiplexing would greatly benefit sequencing designs in which
the required number of reads per sample is low or transcriptomes
are of low complexity, such as in vitro–transcribed RNA sequences,
ribosomal RNAs, or viral RNA genomes.

To overcome these limitations, here, we provide a novel ex-
perimental protocol and associated algorithm to barcode and
demultiplex direct RNA nanopore sequencing data sets, which
consists of classifying barcode current intensity data into images
or arrays of pixels, followed by classification using a deep learning
algorithm.
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Results

Barcoding in vitro–transcribed RNAs with shuffled DNA adapters

We designed three custom DNA barcode adapters by shuffling the
double-stranded sequence of the default ONT RTA (Fig. 1B). The
three custom barcodes, together with the standard ONT RTA,
were individually ligated to four distinct in vitro–transcribed
RNA sequences (seeMethods and Supplemental Table S1). In total,
we performed five sequencing runs with the RTA and custom
adapters: replicates 1 and 3 contained four unique Sequins tran-
scripts (Hardwick et al. 2016), while replicates 2, 4, and 5 con-
tained four unique Sequins and four unique Curlcake sequences
(Liu et al. 2019), each of them ligated to a distinct barcoded adapter
(Table 1). In addition, replicate 3 was spiked-in with the manufac-
turer-provided yeast ENO2 control strand (RCS). Each run pro-
duced between 600,000 and 1,000,000 reads, which were base-
called and uniquely aligned to the reference sequences (Table 1;
see also Supplemental Table S2). The reference alignments were
used to empirically demultiplex the sequences, thus establishing
a truth set to train the barcode classifier.

Extraction of barcode signals from raw FAST5 reads

Raw nanopore barcode signal data, consisting of a time series of
electric current values, were extracted from the files corresponding
to the uniquely mapped reads. Atomic structural differences be-

tween DNA and RNA produce conspicuously different mean cur-
rent signal intensities, which can effectively be used to identify
the boundaries of the proximal DNA adapter in the raw signal—a
processhenceforth referred to asbarcode segmentation.Wemodified
the Segmenter utility of SquiggleKit (Ferguson and Smith 2019) to
create an automated workflow for barcode segmentation (termed
B_roll) that targets the lower average current level of the DNA bar-
codes by comparing the current of a given window to the average
current of the readusing a slidingwindow.Wealso tested a barcode
segmentation strategy that uses raw current signal smoothing fol-
lowed by convolutional transformation of the data (termed
B_conv) to identify major current intensity change points along
the read (see Methods). We found that B_roll extracted signal at
anaverage speedof 0.013 secper read,whileB_convextracted signal
at an average speed of 0.3 sec per read. The two methods showed
high agreement in the extracted regions, with a median overlap
of segmented signals of 89% (Supplemental Fig. S1A–C).
Although both methods proved sufficient for training a classifier
(Supplemental Fig. S1D), the B_rollmethod for barcode segmenta-
tionwas chosen for subsequent analyses given its greater speed and
recovery.

Transformation of segmented barcode signals into 2D images

We reasoned that conveying raw current signal into a higher di-
mension could facilitate the recognition of similar patterns in

BA
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Figure 1. Schematic overview of the direct RNA barcoding and demultiplexing strategy. (A) Overview of Oxford Nanopore library preparation protocol
for native RNA sequencing. (B) Adaptation of A to include customDNA barcodes. (C) Barcode segmentation and transformation, where the electric current
associated with a barcode adapter (highlighted in red) is extracted and converted into an image using GASF transformation. (D) Deep learning is used to
classify the segmented and GASF-transformed squiggle signals into their corresponding bins, without the need of base-calling the underlying sequence.
The convolution architecture of the final residual neural network classifier (ResNet-20) described in this work: FC= fully connected layer.
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the data by employing deep learning strategies for the downstream
classification. Indeed, supervised machine learning using deep
convolutional neural networks (CNNs) and, in particular, deep re-
sidual neural networks (ResNets) has been shown to perform opti-
mally for the classification of images (He et al. 2016; Pak and Kim
2017). To leverage the power of ResNet classifiers, we converted the
raw signal corresponding to the extracted barcodes into an array of
pixels (Fig. 1C) and used diverse image transformation strategies
previously shown to be effective for subsequent CNN training
and classification, including recurrence plots (RPs) (Eckmann
et al. 1987), Markov Transition Fields (MTFs), Gramian Angular
Difference Fields (GADFs), and Gramian Angular Summation
Fields (GASFs) (Wang andOates 2015). An example of the different
image transformations for a given raw signal segment can be found
in Supplemental Figure S2. GASF transformation was retained as it
was found to be substantially faster at computing images than the
other methods (Table 2). Furthermore, the symmetrical images
that GASF produces generated slightly more accurate results than
the nonsymmetrical GADF images or any of the other image trans-
formationmethods tested (Table 2). Figure 2 illustrates the conver-
sion of segmented nanopore dRNA-seq barcode signals into GASF
images that were subsequently used for deep learning.

Deep residual networks accurately classify raw signal barcodes

We combined sequencing data from replicates 2, 3, and 4 to train
different CNNarchitectures using theGASF images generated from
the segmented barcodes (Fig. 1C), which were previously disam-
biguated by aligning the base-called sequences of the ligated
RNA sequenced to the reference sequence of their unique ligation
templates. A total of 240k images were divided into three groups of
four barcodes for training, testing, and validation at a ratio of 4:1:1,

respectively (160K training:40K testing:40K withheld for valida-
tion). We compared a ResNet V2 implementation with 20 layers
(ResNet-20) (see Fig. 1D) to a ResNet V2 with 56 layers (ResNet-
56) for classification of transformed images corresponding to bar-
code signals. We found that ResNet-20 performed slightly better
than ResNet-56 while being one third smaller and three times fast-
er (Table 3).

The resulting ResNet-20 model was applied to the withheld
validation set to assess its accuracy. Receiving operator characteris-
tic (ROC) analysis revealed an area under the curve of 0.998, a sen-
sitivity of 98.9% and a false positive rate of 0.3% at maximal
accuracy (99.4%) (Table 4; see also Fig. 3A–C), suggesting that
the ResNet-20 model is highly accurate but might be potentially
overfitted to the input, despite the latter being composed of three
independent sequencing data sets.

To further evaluate the model’s accuracy and assess potential
overfitting, we applied the model onto two additional indepen-
dent biological replicates (Table 4; see also Supplemental Table
S3), not used during algorithm training or testing. The global accu-
racy of demultiplexingwas slightly lower than the other replicates,
with AUC values of 0.954 and 0.987, respectively (Fig. 3A). These
decreased AUC values suggest that the ResNet-20 model may in-
deed be slightly overfitted to the sequencing data used for training
but nonetheless remains highly accurate at classifying reads from
independent sequencing runs generatedwith different chemistries
(RNA001 and RNA002; see Discussion).

Discussion

In the last decade, third-generation sequencing technologies have
emerged as powerful methods to comprehensively study the (epi)
transcriptome (van Dijk et al. 2018). In contrast to second-

Table 1. Mapping statistics from direct RNA sequencing runs

Barcode ID Barcode sequence IVT product ligated to barcoded adapter
Uniquely mapped reads

Rep 1a Rep 2a Rep 3b Rep 4b Rep 5b

BC1 GGCTTCTTCTTGCTCTTAGG Sequin (R2_63) 17,643 18,244 44,329 922 1566
Curlcake (CC1) NA 45,489 NA 15,040 63,895

BC2 GTGATTCTCGTCTTTCTGCG Sequin (R1_81) 3278 12,236 22,331 22 39
Curlcake (CC2) NA 138,835 NA 10,789 16,509

BC3 GTACTTTTCTCTTTGCGCGG Sequin (R1_103) 692 6684 21,192 124 273
Curlcake (CC3) NA 55,475 NA 17,930 35,014

BC4 GGTCTTCGCTCGGTCTTATT Sequin (R2_117) 11,421 18,139 36,882 769 1672
Curlcake (CC4) NA 130,043 NA 15,411 20,706

Total 33,034 425,145 124,734 61,007 139,674

aSQK RNA001 chemistry.
bSQK RNA002 chemistry.

Table 2. Accuracy and average speed of signal to image conversions from 1000 runs

Training
accuracy

Testing
accuracy

Training
loss

Testing
loss

Total image conversion
time (sec)a

Per-image conversion
time (sec)a

Gramian Angular Summation
Field (GASF)

0.975 0.942 0.19 0.33 785 0.006

Gramian Angular Difference
Field (GADF)

0.968 0.943 0.192 0.306 835 0.007

Markov Transition Field (MTF) 0.92 0.892 0.319 0.415 17,671 0.147
Recurrence plot (RP) 0.899 0.871 0.373 0.486 1008 0.008

aComputing time was determined using a single core of an Intel Xeon Skylake 2194 MHz CPU.

Multiplexing direct RNA nanopore sequencing data

Genome Research 1347
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260836.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260836.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260836.120/-/DC1


generation sequencing technologies, TGS is not limited by read
length, and consequently, does not require prior fragmentation
of the RNA or cDNA molecules, providing transcriptome-wide
maps of full-length molecules.

In 2017, the direct RNA sequencing technology appeared,
making it possible for the first time to sequence native RNA mole-
cules.Moreover, this technology could also identify chemical RNA
modifications present in the native RNA molecules (Garalde et al.
2018; Leger et al. 2019; Liu et al. 2019; Smith et al. 2019), as well as
estimations for their poly(A)-tail lengths (Krause et al. 2019;
Workman et al. 2019). However, two major caveats of dRNA-seq
are the lack of multiplexing options and the large amount of
poly(A)-selected RNA material that is needed, that is, typically
500 ng of poly(A)+ RNA. In this regard, pooling samples via multi-
plexing in the same flow cell would allow this technology to be ap-
plied to situations where the amount of input RNA is limiting, and
it would decrease the sequencing cost per sample.

In contrast to dRNA-seq libraries, ONT does offer barcoding
strategies for cDNA libraries, which rely on direct ligation of
DNA adapters to the cDNA sequences. In this scenario, both the
barcode and the cDNA sequence can be easily base-called under
a DNA model. However, this is not possible in the context of
RNA sequencing kits, as the adapter is DNA and, therefore, the
DNA adapter cannot be properly base-called under an RNAmodel.
Alternatively, one could base-call the DNA adapter using the DNA
model; however, this is not straightforward because the transloca-
tion speed of RNA reads (70 bp/sec) differs from that of DNA reads
(450 bp/sec).

Here, we propose a novel strategy to barcode and efficiently
demultiplex dRNA-seq data (Fig. 1B). Our strategy does not require
additional ligation steps compared to the standard direct RNA se-
quencing library preparation, as it relies on the use of shuffled
DNA oligonucleotides that are incorporated during the first liga-
tion step. To demultiplex the dRNA-seq libraries, we employ

Figure 2. Barcode segmentation and signal transformation. A randomly selected example of barcode signal segmentation (red outline) for each of the
four barcodes is shownwith its corresponding GASF image below. An additional five randomly selected segmented barcode signals and their corresponding
GASF images are shown for each of the four barcodes. Sequencing reads were drawn from replicate 2. (GASF) Gramian Angular Summation Field.
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deep convolutional neural networks which are able to demultiplex
dRNA-seq reads without the need of base-calling. Specifically, our
strategy relies on conversion of the barcoded DNA adapter region
into images, which are fed onto the trainedCNNs to determine the
underlying barcode. The DNA barcodes do not appear in the base-
called FASTA sequence, but their electronic signal is present in the
raw FAST5 sequencing data, which is used as input for our demul-
tiplexing algorithm. Thus, demultiplexing is performed via a two-
step process: (1) the transformation of raw FAST5 signals into im-
ages using Gramian Angular Summation Field (GASF), followed by
(2) classification using a deep residual neural network learning
model (Fig. 1; He et al. 2016). We demonstrate that our proposed
methodology and algorithm is a highly effective strategy to multi-
plex direct RNA sequencing reads, yielding 99.9% specificity,
while recovering 60% of the reads, or 95.1% specificity with 93%
of read recovery, if enhanced recovery is preferred. Lower accuracy
but increased recoverymay be desired for specific applications; the
user can choose to increase the recovery rate at the expense of ac-
curacy if desired (Table 4; see also Supplemental Table S3).

CNNs have been widely used in signal and time-series analy-
sis problems, including speech recognition and electrical and opti-
cal signal coding-decoding (Ismail Fawaz et al. 2019).
Compounding this fact, many of the recently developed DNA
base-callers for nanopore signals rely on the use of CNNs, such
as DeepNano (Boža et al. 2017), DeepSignal (Ni et al. 2019), or
Chiron (Teng et al. 2019). Similarly, previous efforts have shown
that nanopore DNA barcodes can be correctly classified using 1D
CNNs, using a tool called DeepBinner (Wick et al. 2018). Here, we
employ 2D CNNs, which are widely used in computer vision and
pattern recognition (LeCun et al. 2015), for direct classification
of raw current intensity signals. Using this strategy, we correctly
classified 84% of reads at 99% specificity (Table 3), which corre-
sponds to 96.5% precision (positive predictive value) and 94.9%
accuracy. The performance of DeePlexiCon is comparable to the
signal-based DNA demultiplexing algorithm DeepBinner, which
displays slightly higher sensitivity and precision (92% and
98.5%, respectively) (Wick et al. 2018). In an attempt to compare
DeepBinner (1D CNN) to DeePlexiCon (2D CNN), we recreated
the code from the GitHub DeepBinner repository (Wick et al.
2018) and trained this network on our dRNA-seq data. Using the
same training and test set data (see Methods), we found that
DeepBinner’s 1D CNN achieved 61.4% accuracy, whereas
DeePlexiCon achieved 94.2% accuracy (Supplemental Fig. S3).
Thus, we conclude that 2D CNNs are best suited for the classifica-
tion of barcodes from dRNA-seq runs; however, it is possible that
future solutions better than ours will rely on the use of 1D CNNs.

Although DeePlexiCon is well-suited for multiplexing up to
four samples on the same flowcell, there is room for future im-
provement. Firstly, barcodes could be increased in length, which
may improve the accuracy of the algorithm due to a larger amount

of discriminative information. Here we designed the barcodes by
shuffling the paired region of oligoA and oligoB (20 bp), with
some additional constraints to minimize ligation bias across barc-
odes (see Methods). One possible improvement would be to in-
crease the length of the barcode, for example, up to 40 bp, in a
similar fashion to the longer barcodes that are typically employed
in ONT DNA multiplexing. Secondly, barcode sequences could be
redesigned to maximize the differences between current intensity
signals derived from the barcodes. Lastly, it is possible to train new
models with additional barcodes to increase the level ofmultiplex-
ing using the methodology and DeePlexiCon software described
herein.

The barcodes used in this work were designed such that: (1)
the same nucleotide was maintained in the 5′ end in all four barc-
odes to minimize ligation efficiency differences across barcodes,
and (2) the nucleotide content of the annealed region between A
and B was maintained across the four barcodes to ensure that the
melting temperature of the four oligonucleotides was the same
(see Methods). Biases in ligation efficiency are known to be se-
quence-dependent and are heavily affected by the identity of the
3′ and 5′ nucleotides that are being ligated. We tried to alleviate
this known bias by designing barcodes that had the same 5′ nucle-
otide as the original ONT adapter (in this case, “G”). Thus, all se-
quences ligated have an “A” (from the poly(A) tail) at their 3′

end and a “G” at their 5′ end (the barcode). We should note, how-
ever, that this design will alleviate ligation bias, but we cannot rule
out its existence. Nevertheless, even in a scenario with bias in liga-
tion efficiency, this will only lead to a slight difference in the pro-
portion of reads represented by each barcode but not in the
sequencing results per se.

We should note that, in the library preparation, replicate 1,
which was one of the two data sets used for independent

Table 3. Accuracy and training time of two residual neural networks
on 4x Tesla V-100 GPUs

ResNet-20 ResNet-56

Training time 6 h 21 min
52 sec

19 h 21 min
26 sec

Accuracy/loss @ epoch 10 0.8956/0.3896 0.8825/0.4135
Accuracy/loss @ epoch 30 0.9735/0.1583 0.9356/0.2537
Accuracy/loss @ epoch 45 0.9780/0.1448 0.9370/0.2489
Training/inference time per

barcode (msec)
3/3 9/4

Table 4. Accuracy and recovery of ResNet-20 on the testing set, val-
idation set, and two independent replicates

False positive
rate (≤)

DeePlexiCon
cutoff

Unclassified
reads (%)

Accuracy
(%)

Testing set (AUC=0.999)
0.01% 1 69.9 85.3
0.10% 0.9969 9 97.7
0.2%a 0.8893a 1.5a 99.8a

0.4%b 0.0809b 0.8b 99.4b

1.00% 0.0139 0.7 99.1

Validation set (AUC=0.998)
0.01% 1 68.3 85.4
0.10% 0.9991 17.2 95.6
0.3%a 0.8164a 1.1a 99.4a

0.4%b 0.4396b 1.4b 99.6b

1.00% 0.0152 0.7 99.1

Independent replicate (Rep. 1; AUC=0.954)
0.01% 1 97.5 75.6
0.10% 1 86.1 78.4
1% 0.9834 29.4 89.3
3.2%a 0.7550a 23.6a 91.7a

9.3%b 0.1914b 12.8b 89.8

Independent replicate (Rep. 5; AUC=0.987)
0.01% 1 82.6 79.9
0.10% 0.9983 39.6 89.1
1% 0.88 16.2 94.9
2.1%a 0.6424a 11.5a 95.6a

4.9%b 0.2143b 6.8b 94.6b

aMaximum accuracy cutoff.
bOptimal cutoff (Youden’s J-statistic).
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validation of the demultiplexing accuracy (Table 4), was loaded
onto a R9.5 flowcell, which bears a modified nanopore protein op-
timized for rapid adapter uptake, whereas the remaining replicates
were loaded onto R9.4 flowcells (Supplemental Table S2).
Although observed sporadically in other sequencing runs, repli-
cate 1 revealed an increased frequency of spurious (equal barcode
assignment probabilities), chimera (multimapping reads), and
dual barcode ligations (false-false positive assignments evidenced
by visual and algorithmic confirmation of dual barcodes in the
raw signal), which may explain the lower—yet reasonable—accu-
racy for this sample (Supplemental Fig. S4). The presence of multi-
ple barcodes in a read might occur due to free-floating adapters in
solution in conjunction with minimal time between the first
adapter/barcode passage, and the next, with a true read attached.
However, this may also be due to the lack of clear open pore signal,
causing MinKNOW to miss the segmentation and thus produce a
single FAST5 file with both events included. Nonetheless,
DeePlexiCon was able to demultiplex the sample with respectable
accuracy (92%–96%), demonstrating the power of deep learning
for disentangling noisy data. The ability to barcode and accurately
demultiplex direct RNA sequencing reads opens new avenues to
enable nanopore native RNA sequencing of samples with limited
RNA availability. Moreover, it improves the cost-effectiveness of
sequencing low diversity samples, such as target-enriched or in vi-
tro–transcribed libraries.

In the last few years, deep learning has gained a lot of atten-
tion for the analysis of biomedical data. Here, we exploit the fact

that residual neural networks (a type of
convolutional neural network) excel at
image classification by converting raw
signal into abstract images. We describe
the conversion of raw nanopore current
intensities into images for pattern recog-
nition and apply it for the purpose of
dRNA-seq demultiplexing. The resulting
model is sufficiently powerful that it
can classify reads from distinct library
preparation chemistries. The ability to
extract biologically meaningful informa-
tion from nanopore raw signals without
base calling can be employed to tackle a
large variety of biological problems,
such as rapid binning of metagenomic
samples. We hope our work will provide
grounds for the development of base-
calling-free classification of DNA or
RNA sequences produced using nano-
pore sequencing.

Methods

Synthetic sequences

Curlcake sequences (Liu et al. 2019) were
ordered from General Biosystems. Curl-
cake plasmids were double-digested over-
night with EcoRV-BamHI-HF. Sequin
plasmid constructs (R2_117_1, R2_63_3,
R1_103_1 and R1_81_2), used commer-
cially for RNA sequencing experiments
as a spike-in control (Hardwick et al.
2016) were a kind gift from Dr. Tim
Mercer (https://www.sequinstandards

.com/). Sequin plasmids were digested overnight with EcoRI-HF.
After digestion, DNA was extracted with phenol-chloroform fol-
lowed by ethanol precipitation. Plasmid digestion was confirmed
by agarose gel (Supplemental Fig. S5A). Digestion product quality
was assessed with NanoDrop before proceeding to in vitro
transcription.

Barcode design

To incorporate barcodes into the direct RNA sequencing library
preparationwithout additional ligation steps, we redesigned oligo-
nucleotide A (5′-/5Phos/GGCTTCTTCTTGCTCTTAGGTAGTAGG
TTC-3′) and oligonucleotide B (5′-GAGGCGAGCGGTCAATTT
TCCTAAGAGCAAGAAGAAGCCTTTTTTTTTT-3′), which are em-
ployed in the first ligation step of the direct RNA sequencing pro-
tocol. The barcodes were designed by shuffling the underlined
regions of oligoA such that (1) the same nucleotide was main-
tained in the 5′ end—in this case, G—in all four barcodes, to min-
imize ligation efficiency differences across barcodes, and (2) the
nucleotide content of the annealed region between A and B (un-
derlined above) wasmaintained across the four barcodes, to ensure
that the melting temperature of the four oligonucleotides was the
same. Similarly, we chose to not change the barcode length of the
RMX adapters to ensure that the clean-up steps would work as ef-
ficiently as in the original direct RNA sequencing protocol. The
FASTA sequences corresponding to each barcoded oligonucleotide
A and B pairs used in this work to obtain barcoded direct RNA se-
quencing libraries can be found in Supplemental Table S1.

B

A

C

Figure 3. Performance of 2D convolutional neural network barcode classifier. (A) Receiving operator
characteristic (ROC) analysis and area under the curve (AUC) metrics of the final model on three evalu-
ation sets: (1) Replicates 2–4 validation set (left column), which was generated from the same sequencing
runs used to train the model but were withheld from training; (2) Replicate 1 set (middle column), com-
posed of reads generated using the RNA001 library kit; and (3) Replicate 5 set (right column), derived
from an independent sequencing run using the RNA002 kit. Optimal Youlden index (J statistic) is marked
as a black cross on the ROC curve. (B) The associated precision recall curves on the three test sets. (C)
Accuracy (black) and percentage of reads recovered (blue) in function of the scoring threshold (cut-
off) emitted by the trained model, for three different data sets presented in A.
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In vitro transcription, capping, and polyadenylation

Using 1 µg of purified digestion product as starting material,
Curlcake in vitro–transcribed (IVT) sequenceswere produced using
the AmpliScribe T7-Flash Transcription kit (Lucigen ASF3507).
Sequin IVT sequences were produced using SP6 Polymerase
(NEB M0207S), following the manufacturer’s recommendations.
Each IVT reaction was incubated for 4 h at 42°C for Curlcake se-
quences and at 40°C for Sequin sequences. In vitro–transcribed
RNA was then incubated with Turbo DNase (Lucigen) for 15
min, followed by purification using the RNeasy Mini kit (Qiagen
74104). Correct IVT product lengths for Sequins were confirmed
using Bioanalyzer (Supplemental Fig. S5B). Each IVT product was
5′-capped using Vaccinia Capping Enzyme (NEB M2080S) follow-
ing the manufacturer’s recommendations. The capping reaction
was incubated for 30 min at 37°C. Capped IVT products were pu-
rified using RNA Clean XP beads (Beckman Coulter A66514).
Curlcake IVT products were poly(A)-tailed using the Escherichia
coli Poly(A) Polymerase kit (NEBM0276S), following the manufac-
turer’s recommendations. Poly(A)-tailed RNAs were purified using
RNA Clean XP beads. Correct IVT product lengths for Curlcakes
were confirmed using TapeStation (Supplemental Fig. S5C).
Concentration of IVT products was determined using Qubit
Fluorometric Quantitation and purity was measured with a
NanoDrop 2000 Spectrophotometer (Supplemental Table S4).

Direct RNA library preparation and sequencing

Custom RT adaptors (IDT) were annealed in following conditions.
Oligo A and B were mixed in annealing buffer (0.01 M Tris-HCl at
pH 7.5, 0.05MNaCl) to the final concentration of 1.4 µM each in a
total volume of 75 µL. The mixture was incubated at 94°C for
5 min and slowly cooled down (−0.1°C/sec) to room temperature.
An RNA library for direct RNA sequencing (SQK-RNA001 for
replicates 1 and 2; SQK-RNA002 for replicates 3, 4, and 5) was
prepared following the ONTDirect RNA Sequencing protocol (ver-
sion DRS_9026_v1_revP_15Dec2016 for replicates 1 and 2;
DRS_9080_v2_revI_14Aug2019 for replicates 3, 4, and 5).

For replicates 2, 3, 4, and 5, 500 ng total of each IVT product
(four Curlcakes and/or four Sequins, as described in Table 1) were
individually ligated to pre-annealed custom RT adaptors
(Supplemental Table S2) in four separate eppendorfs, using con-
centrated T4 DNA Ligase (NEB M0202T) and were reverse-tran-
scribed using SuperScript III Reverse Transcriptase (Thermo
Fisher Scientific 18080044). The products were purified using
1.8X Agencourt RNAClean XP beads (Thermo Fisher Scientific
NC0068576), washingwith 70% freshly prepared ethanol. In total,
50 ng of reverse-transcribed RNA from each reaction was pooled,
and RNA Adapter (RMX), composed of sequencing adapters with
motor protein, was ligated onto the RNA:DNA hybrid. The mix
was purified using 1X Agencourt RNAClean XP beads, washing
with wash buffer twice. The sample was then eluted in elution
buffer and mixed with RNA running buffer prior to loading onto
a primed R9.4.1 flowcell (replicates 2,3,4, and 5) or R9.5 flowcell
(replicate 1); the samples were run on either a GridION (replicates
1 and 3) or MinION (replicates 2, 4, and 5) sequencer for 48 h or
less (until all pores were inactive).

For replicate 1, library preparation steps were mainly per-
formed as described above but with slight variations. Specifically,
the pooling of barcoded samples was performed after the ligation
step with pre-annealed custom RT adaptors, prior to reverse-tran-
scription. This strategywas discarded for the subsequent replicates,
as we considered that there could be potential cross-ligation of
barcodes and IVT products if the pooling was performed prior to
clean-up.

Base calling, mapping, and organization of sequencing data

Reads were base-called with Guppy version 3.1.5 on a GPU-en-
abled Sun Grid Engine high-performance computing server (pa-
rameters “‐‐chunks_per_runner 1500 ‐‐gpu_runners_per_device 1
–cpu_threads_per_caller 4 -x “cuda:0 cuda:1 cuda:2 cuda:3” -r”
and configuration “rna_r9.4.1_70bps_hac.cfg”. Base-called reads
(FASTQ) were aligned to Sequin transcripts (R2_117_1, R2_63_3,
R1_103_1 and R1_81_2) (Hardwick et al. 2016) in replicate 1,
and to both Sequin and ‘Curlcake’ constructs (CC1, CC2, CC3,
and CC4) in replicate 2, using minimap2 (Li 2018) with v.2.17-
r943-dirty with parameters “-k 14 ‐‐secondary =no”. Reference
FASTA sequences used to map both Sequin and Curlcake reads
can be found in Supplemental File S1. Mapped reads were filtered
for unique targets and mapping quality (MAPQ=60), quantified,
and binned into four groups based on the ligated sequence against
which they mapped, and the associated raw signal data was ex-
tracted using the fast5_fetcher and SquigglePull modules from the
SquiggleKit package (Ferguson and Smith 2019). The resulting tab
delimited files were used as input for barcode segmentation, that
is, identifying and extruding the signal associated with DNA
adapter barcodes.

Extraction (segmentation) of raw signal associated with barcodes

Barcode segmentation from raw signal was performed using two
strategies. The first strategy, which we term B_roll, calculates the
global mean of the signal over a rolling window (2000 signal
points) and identifies DNA barcode edges by setting a threshold
of the mean, relative to the standard deviation. This strategy was
performed by running the dRNA_segmenter.py script from
SquiggleKit, with default parameters (Ferguson and Smith 2019).
The second strategy, which we term B_conv, consisted in applying
the discrete convolution operation of the numpy Python package
(van der Walt et al. 2011) to smooth the unidimensional signal
data and manifest large shifts in the data, which facilitates the
identification of boundaries delimiting the different sections of
the sequencing read. The secondderivative of the convolved signal
was calculated using a rolling window of 1001 points by applying
the Savitzky-Golay filter (Savitzky andGolay 1964).Maximal abso-
lute values of derivatives were considered as the most likely loca-
tion of boundary signal points, that is, adapter start and end
points. Mean and standard deviation of the current intensities
were considered to further refine the boundaries. The raw signal
comprised between the two boundary points, identified by either
strategy, was used as input for the following steps. The efficiency
and accuracy of both methods was assessed by visually inspecting
100 start and stop sites in the segmentation output of both meth-
ods. A comparative analysis of the segments obtained using either
B_convor B_roll is shown in Supplemental Figure S1.We also exam-
ined the robustness of our algorithm toward inaccuracies in the
segmentation. We found that small shifts, trims, or extensions
(150 data points) of the barcode segment did not significantly af-
fect the accuracy and/or recovery of the algorithm, with only a
very slight decrease (1%) in accuracy in the case of trimming the
signal (Supplemental Fig. S6).

Signal transformation and deep learning

The extracted raw signals were converted into 2D images using the
Python PyTS package (https://zenodo.org/record/2561773). We
implemented a model training method in Python that employs
Tensorflow, Keras, Scikit, Pandas, PyCM, and PyTS libraries
(Supplemental Table S5; Hunter 2007; McKinney 2010;
Pedregosa et al. 2011; van der Walt et al. 2011; Abadi et al. 2016;
Gulli and Pal 2017; Haghighi et al. 2018). Keras implementations
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of ResNet-20 and ResNet-56 were slightly modified to support
multi-GPU training, to adjust the learning rate scheduler, and to
limit the channels to one and outputs to four classes (see Jupyter
notebook in git repository v1.0.0 release source code). To drasti-
cally increase the speed of training, we employed Keras multi-
GPU processing with Tensorflow-1.32. A Jupyter notebook pre-
senting all commands used for the ResNet training protocol is
available in the accompanying GitHub repository (release
v1.0.0). Training was performed on a server with 4x NVIDIA
V100 GPUs with 16GB memory each using NVLink. Statistics on
the demultiplexing accuracy for each barcode separately can be
found in Supplemental Table S3.

Comparison of image transformation methods

To compare how the choice of image transformation method af-
fects the accuracy of prediction of the algorithm, we trained the
ResNet-56 with 32,000 barcodes from replicates 2 to 4 as a training
set and 8000 barcodes from replicates 2 to 4 as a test set.
Specifically, we compared the following 2D image transformation
methods: (1) recurrence plot; (2) Markov Transition Field; (3)
Gramian Angular Summation Field; and (4) Gramian Angular
Difference Field. Comparative performance of the accuracy of
the algorithm using distinct image transformation methods can
be found in Table 2. Comparative results of per-image processing
time required by each image transformation method can also be
found in Table 2.

Implementation of DeepBinner for RNA barcodes and

comparison to DeePlexiCon

To compare the performance of a 1D CNN to a 2D CNN for classi-
fication of barcodes in dRNA-seq data sets, we have recreated the
DeepBinner (Wick et al. 2018) code from the DeepBinner reposito-
ry (https://github.com/rrwick/Deepbinner) and trained this net-
work using our data. Comparative performance using the same
training and test set data can be found in Supplemental Figure S3.

Performance evaluation

ROC and precision metrics were computed using the ROCit pack-
age in R (R Core Team 2017). Code for performance evaluation is
accessible at GitHub (https://github.com/Psy-Fer/deeplexicon/
blob/master/benchmarking/metrics_plots.R). We should note
that performance of demultiplexing can only be assessed from
those reads thathave beenmapped.While barcodes can be predict-
ed from raw FAST5 reads—not only from mapped reads—these
would not be useful to assess the accuracy of the method, because
unless the read is mapped, it is not possible to know whether the
barcode has been correctly or incorrectly predicted.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI BioProject database (https://www
.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA545820. The individual accession numbers for each
MinION run are: SRR10584784 (replicate 1), SRR10584783
(replicate 2), SRR10584782 (replicate 3), SRR10584781 (replicate
4), SRR10584780 (replicate 5). Code, models, and scripts used
to demultiplex direct RNA reads, including benchmarking scripts,
can be found atGitHub (https://github.com/Psy-Fer/deeplexicon).
Additional documentation on how to use DeePlexiCon and build
barcoded libraries can be found in a GitHub Page (https://psy-fer
.github.io/deeplexicon). All code, models, and scripts used in
this work can be found in the stable release at GitHub (https://

github.com/Psy-Fer/deeplexicon/releases/tag/v1.1.0), as well as
in Supplemental Code.
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