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Abstract: Additive Manufacturing (AM) is rapidly evolving due to its unlimited design freedom
to fabricate complex and intricate light-weight geometries with the use of lattice structure that
have potential applications including construction, aerospace and biomedical applications, where
mechanical properties are the prime focus. Buckling instability in lattice structures is one of the
main failure mechanisms that can lead to major failure in structural applications that are subjected
to compressive loads, but it has yet to be fully explored. This study aims to investigate the effect
of surface-based lattice structure topologies and structured column height on the critical buckling
load of lattice structured columns. Four different triply periodic minimal surface (TPMS) lattice
topologies were selected and three design configurations (unit cells in x, y, z axis), i.e., 2 × 2 × 4,
2 × 2 × 8 and 2 × 2 × 16 column, for each structure were designed followed by printing using
HP MultiJet fusion. Uni-axial compression testing was performed to study the variation in critical
buckling load due to change in unit cell topology and column height. The results revealed that the
structured column possessing Diamond structures shows the highest critical buckling load followed
by Neovius and Gyroid structures, whereas the Schwarz-P unit cell showed least resistance to
buckling among the unit cells analyzed in this study. In addition to that, the Diamond design showed
a uniform decrease in critical buckling load with a column height maximum of 5193 N, which makes
it better for applications in which the column’s height is relatively higher while the Schwarz-P design
showed advantages for low height column maximum of 2271 N. Overall, the variations of unit cell
morphologies greatly affect the critical buckling load and permits the researchers to select different
lattice structures for various applications as per load/stiffness requirement with different height and
dimensions. Experimental results were validated by finite element analysis (FEA), which showed
same patterns of buckling while the numerical values of critical buckling load show the variation to
be up to 10%.

Keywords: additive manufacturing; buckling behavior; surface-based lattice structures; critical
buckling load; TPMS; FEA

1. Introduction

Additive manufacturing (AM) has gained interest due to its ability to fabricate complex
geometry [1] in lesser time [2] with less material processing [3] and allows the manufacture
of TPMS structures, which cannot be fabricated by traditional manufacturing [4]. The inves-
tigation of lattice structures fabricated by AM for buckling strength is the active research
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area as buckling is a critical failure mechanism that results in unstable structures [5,6].
Different studies have concluded that surface-based lattice structures have good combi-
nation of specific stiffness and axisymmetric stiffness, high surface volume ratio and pore
connectivity [7] and provide their advantages in applications where buckling is the integral
failure mechanism. This enabled the design and fabrication of different structures to obtain
high performance with variations in design parameters [8–10].

In Lattice structures, buckling is one of the important parameters that lead to the
failure of the structure when subject to compressive loads. Lattice structures are a better
choice for applications where stiffness is required to be as high as possible for a given
mass [6]. Despite the promising qualities of lattice structures, stress concentration at the
joints resulted in a considerable drop in their mechanical performance [11], which can
lead to yield, creep, damage, or premature failure [12,13]. Excessive axial load on columns
causes buckling, which is a common failure mode of lattice structures [14].

Surface-based lattice structures showed unique stress and volume distributions due
to which it exhibited superior mechanical performance, e.g., higher energy absorption
capacity, compressive strength and elasticity modulus compared to strut-based lattices [15].
Alabort et al. used different size and volume fraction of TPMS for fabrication of bone
tissues, and the results revealed that stiffness and yield strength of the designed lattices
match a wide range of bone types [16]. TPMS potentially offered improved properties over
strut-based lattice structures for bone implant applications. Maskery et al. analyzed Gyroid
with cell sizes of 3 mm, 4.5 mm, 6 mm, and 9 mm and found that one should choose a small
cell size to avoid low-strain structural failure, which occurred due to localized fracture and
crack propagation. In addition, he also found that Gyroids have almost three-times greater
specific energy absorption (SEA) than body-centered-cubic (BCC) structures with similar
porosity [17]. Zhao et al. [15] studied the impact of local geometric features on compressive
mechanical failure, using relative densities of 10%, 20% and 30%, and he found that the
failure mechanism of the TPMS-based samples with a high volume fraction changed to
brittle failure observed by scanning electron microscope (SEM), as their struts were more
affected by the axial force and fractured on struts.

Major engineering failure such as premature failure and crack growth may be caused
by improper design. Therefore, before the subjection of lattice structure to the application,
it is very important to find the optimal parameters. Nazir et al. analyzed buckling behavior
of strut-based lattice column and revealed that the critical buckling load depended on
the shape and size, diameter, distribution of mass and position of vertical beam and the
count of inclined as well as horizontal beams [5]. In another study, Nazir et al. analyzed
the effect of unit cell size and column height on critical buckling load strut-based lattice
column and found that critical buckling load increases with the increase in unit cell size
or decrease in cellular column height, additionally, the failure of cellular columns having
larger height-to-width (h/w) ratios happens due to global buckling, whereas local bucking
dominates for smaller h/w ratios [6]. Maskery et al. designed five different surface-
based lattice structures functionally graded by tailored volume friction and examined
elastic moduli. The result revealed that the I-WP lattice structure recorded the highest
stiffness in one loading direction. However, the Diamond structure also showed greater
isotropic behavior [18]. The unidirectional isotropic strut that is built of porous matter
is analyzed by Magnucki et al. [19] and the systematic solution for the calculation of the
critical buckling load of the beam was obtained. The bending and buckling behavior of a
porous plate subjected to uniformly distributed force and buckling force was studied by
Magnucka-Blandzi [20] and the critical load linearly decreased with the increased porosity
of the plate. Overvelde et al. investigated two-dimensional soft porous lattice for the
influence of structure shapes on buckling and reported that the structure’s design affects
the buckling actions of the soft, porous system [21]. Saghaian et al. [22] systematically
investigated three various TPMS designs with constant porosity levels and found that
the mechanical properties of porous samples were highly dependent on the structure’s
geometry. Additionally, the author claims that Gyroid and Diamond structures are suitable
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for high strain, while the Schwartz-P structure was recommended for low-stress levels.
The buckling analysis of functionally graded porous plate was studied in another study to
explore the effects of the lattice’s structure shape, different boundary conditions, and plate
thickness, and it was found that the porosity coefficients play significant influences on the
buckling behavior and reliability of the structures [23]. Kadkhodapour et al. [24] studied
the failure mechanism of I-WP and F-RD TPMS structures using 10 mm × 10 mm × 10 mm
cubic cell size composed of 5 × 5 × 5 unit cells. They observed bilateral layer-by-layer
failure due to the buckling of micro-struts in I-WP while F-RD-type failed due to global
shearing bands. They reported the Young’s modulus of 2168–2809 MPa for I-WP and
2520 MPa for F-RD.

Surface-based lattice structures have superior mechanical properties [7]; however, it
is important to investigate its buckling behavior experimentally and numerically using
various geometries columns. The buckling behaviors of cellular structure with circular
and elliptical holes and strut-based lattice morphologies have been analyzed in different
studies [1,25–29]. However, countable researchers have investigated surface-based lattice
structures. Therefore, it is necessary to explore the effect of unit cell morphology and
column height on the critical buckling load and post-buckling behavior of surface-based
lattice structures. Considering these research gaps, the buckling behavior of surface-based
lattice structures have been investigated.

In this paper, the authors aim to investigate and reveal the effect of unit cell shape
and height of the column on the critical buckling load constructed from various unit cell
of TPMS which is a subset of surface-based lattices. Lattice structures were designed by
using nTopology (US) [30] software followed by printing using HP MultiJet fusion [31]. To
analyze the critical buckling load, uniaxial compressive tests were performed on samples of
various heights and unit cell shape. Furthermore, the experimental results were validated
by finite element analysis (FEA) using ANSYS Workbench software [32]. The unit cell
size is kept constant for each unit cell for comparison purposes. The effect of the unit cell
shape and column height on the buckling properties of surface-based lattice structures
was studied, which had not been performed previously. The deformations of the lattice
structures, including local and global buckling, were examined after compressive force was
applied to the samples.

2. Material and Methodology
2.1. Design of Unit Cell and Samples

In this study, four different TPMS based unit cells were selected for buckling study, i.e.,
Diamond, Gyroid, Neovius and Schwarz-P. Three samples were taken for each unit cell to
examine the influence of critical buckling load on column height and unit cell morphology,
namely 2 × 2 × 4, 2 × 2 × 8 and 2 × 2 × 16. For this study, unit cell geometry and the
entire sample scheme were designed using nTopology [30] software. The dimensions and
the design parameters are listed in Table 1. During the design stage, providing the structure
with the best surface quality as much as possible was the primary concern. Some of the
design samples are shown in Figure 1.

Table 1. The dimension and the design parameter of sample used in this study.

Geometry Sample Unit Cell
Size (mm)

Thickness
(mm)

Sample
Height
(mm)

Sample
Width
(mm)

Sample
Breadth

(mm)

Relative
Density of
Designed
Parts (%)

Relative
Density of
Fabricated

Parts
(%)

2 × 2 × 4 48 36

Diamond 2 × 2 × 8 96 35 33
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Table 1. Cont.

Geometry Sample Unit Cell
Size (mm)

Thickness
(mm)

Sample
Height
(mm)

Sample
Width
(mm)

Sample
Breadth

(mm)

Relative
Density of
Designed
Parts (%)

Relative
Density of
Fabricated

Parts
(%)

2 × 2 × 16 1.8 192 39

2 × 2 × 4 48 30

Gyroid 2 × 2 × 8 12 96 24 24 29 31

2 × 2 × 16 192 30

2 × 2 × 4 48 39

Neovius 2 × 2 × 8 96 38 41

2 × 2 × 16 1 192 40

2 × 2 × 4 48 27

Schwarz-P 2 × 2 × 8 96 28 29
2 × 2 × 16 192 27

2.2. Additive Manufacturing of Samples

Although cellular structures possess several advantageous qualities, their complexity
precludes their fabrication without the use of a high-speed additive manufacturing machine.
Therefore, a recently developed high-speed AM technology called multi-jet fusion (MJF)
was used in this study [31]. The samples were fabricated using Polyamide (PA12) powder,
a material that is often utilized in the creation of various injection molded components
used in a variety of technical applications. Polyamides offer exceptional qualities, which
is why they are employed in a wide variety of sectors, including aircraft, autos, military,
medicine, and the environment. Polyamide is a material that is utilized in the manufacture
of working parts [6]. In this research study, the sample of different morphologies was
additively manufactured at a vertical position on MJF. Three samples for each lattice
morphology were printed to study the buckling behavior, particularly the critical bucking
load in uniaxial compression. This printer is capable of printing items with exceptional
precision, functionality and surface finish [2]. Additionally, this printer prints at a rate of
4115 cm cube per hour utilizing infrared light as an energy source, and the method achieves
a minimum feature size and spacing of 1 mm [6]. Three samples were printed for each
lattice morphology. Some printed samples are shown in Figure 2.

2.3. Mechanical Testing

The test was conducted using an MTS universal testing machine (MTS Systems Cor-
poration, Eden Prairie, MN, USA) [33]. Compression tests were conducted using a ten-
kilonewton load cell at a test speed of two millimeters per minute, according to a well-
established and generally recognized protocol for axial compression testing [26,29]. Force
and displacement data were continuously recorded using Testworks 4.0 software [34]. Once
the slope of the load–displacement curve started decreasing, the test was stopped as this
is an indication of buckling. The Young’s modulus of the PA 12 materials, which was
previously reported, was also used in this study, while the density and Poisson’s ratio were
determined using vendor data [35]. PA 12 material properties are listed in Table 2.
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Figure 1. Various design used in this study: (a) Schwarz-P unit cell; (b) Diamond unit cell;
(c) Gyroid unit cell; (d) Neovius unit cell; (e) Schwarz-P (2 × 2 × 8); (f) Diamond (2 × 2 × 8);
(g) Schwarz-P (2 × 2 × 4); (h) Diamond (2 × 2 × 4); (i) Gyroid (2 × 2 × 16); (j) Neovius (2 × 2 × 16).
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Figure 2. Various sample printed in this study: (a) Diamond 2 × 2 × 4; (b) Diamond 2 × 2 × 8;
(c) Diamond 2 × 2 × 16; (d) Neovius 2 × 2 × 4; (e) Neovius 2 × 2 × 8; (f) Neovius 2 × 2 × 16;
(g) Schwarz-P 2 × 2 × 4; (h) Schwarz-P 2 × 2 × 8; (i) Schwarz-P 2 × 2 × 16; (j) Gyroid 2 × 2 × 4;
(k) Gyroid 2 × 2 × 8; (l) Gyroid 2 × 2 × 16.

Table 2. PA 12 material properties.

Density (g/cm3) Young’s Modulus (MPa) Poisson’s Ratio

1.01 1250 0.33

2.4. Simulation Framework

The technique of this work depends on experimental investigation as well as simula-
tion using ANSYS Workbench software [32] to identify the buckling behavior of the lattice
structures. For the linear buckling investigation, the ANSYS eigenvalue buckling solver is
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employed to achieve the numerical solution [36]. Numerical analysis of the compressive
loaded unit cell was used to determine the efficiency of each design. After efficiency was
determined, the optimized design was printed in a 3D printer. The primary objective is
to create additively manufactured cellular structures with enhanced functional and me-
chanical properties. The stress at which a component buckles is determined by its stiffness
and not by the strength of its materials. Buckling is a term that refers to a component’s
lack of stability and is often unrelated to material strength. This loss of stability often
happens within the material’s elastic range. Different differential equations regulate the
two phenomena. Buckling failure is primarily defined by a loss of structural stiffness and
is modeled using a finite element eigenvalue–eigenvector Equation (1) solution:

|K + λm KF |δm = 0, (1)

where λm is the buckling load factor (BLF) for the m-th mode, KF is the additional “geomet-
ric stiffness” due to the loading stresses, F, and δm is the associated buckling displacement
shape for the m-th mode. While the load’s geographical distribution is critical, its propor-
tional amount is not. The computation of buckling produces a multiplier that scales the
magnitude of the increase or decrease the load to the point where buckling occurs [37].

As in experiment, the following boundary conditions are applied in ANSYS for simu-
lation: At the top end, the compressive load is applied, and at the bottom end, fix support is
applied. Fix support at bottom end means that the boundary condition was assumed to be
restrained in both lateral and longitudinal displacements as well as rotation. The boundary
condition at the top of the cellular column was assumed to have zero lateral displacements
(x = z = 0), free longitudinal displacements (y 6= 0) and no rotation. Boundary conditions
are shown in Figure 3.

Figure 3. (Left): FEA setup showing load application and boundary conditions (A, B and C are load,
remote displacement, and fix support respectively). (Right): Setup for uniaxial compression.

3. Results and Discussion

A total of 12 samples were selected for this research to explore the influence of unit
cell shape and column height on critical buckling load. For each sample, three specimens
were printed and evaluated using an MTS universal testing system with displacement
control. After testing three specimens of each design configuration, average findings are
determined and provided in this section.
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3.1. Buckling of 2 × 2 × 4 Samples

The samples were subjected to a uniaxial compression test to determine the critical
buckling load. The testing was conducted using an MTS universal testing machine (MTS
Systems Corporation, Eden Prairie, MN, USA). Because the Diamond design includes a
share plane, the sample demonstrates buckling in that plane direction. The Gyroid design
exhibits homogeneous deformation at the start; the sample compresses layer by layer
but deforms at the bottom end with bigger displacements. The Gyroid structures behave
similarly to springs because the intermediate walls transmit the weight to the bottom end.
The cells of the middle unit remain unaltered. The Neovius structure deforms from top
to bottom, preserving the integrity of the center unit cells. There is a stress concentration
point, and the sample begins to fail at this point, propagating the crack until the sample
fractures entirely. The Schwarz-P sample deformed uniformly at low displacement as the
circular holes transformed to parabola forms, and then it buckled at the top and bottom
ends after substantial displacement. In comparison to the end unit cells, the intermediate
unit cell was less distorted. Because to the outer shell carrying the load, the outer shells
buckled, and due to their low relative density, they exhibit the least resistance to buckling.
Figure 4 illustrates the 2 × 2 × 4 samples compressed to 0%. The uniform deformation of
2 × 2 × 4 samples is shown in Figure 5, while the deformed 2 × 2 × 4 samples are depicted
in Figure 6. Figure 7 illustrates load compression graphs.

Figure 4. Configuration samples at 2 × 2 × 4 compressed to 0% compression. (a) Schwarz-P,
(b) Diamond, (c) Gyroid and (d) Neovius.

Figure 5. Configuration samples at 2× 2× 4 at uniform deformation. (a) At this stage, the Schwarz-P
sample shows deformation in holes as the shape of the hole’s changes from circular to parabola.
(b) Diamond design deforms in the share plane. (c) Gyroid samples show layer by layer deformation
and act like spring. (d) Neovius structures show deformation in stress concentration points from
where the crack began.
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Figure 6. Samples with deformation in the 2 × 2 × 4 arrangement. Design failures occur in the
following ways: (a) Schwarz-P design fails due to the propagation of crack from stress concentration
points; (b) Diamond design fails in the same share plane where uniform deformation occurred.
(c) Gyroid design fails at the bottom end where the load is transferred and (d) Neovius design fails
due to the propagation of crack from stress concentration points.

Figure 7. Load-compression graphs. The graphs a, b, c and d indicate that the three specimens of each
sample exhibit the same behavior in the compression test, which suggests that printing performance
is satisfactory. Average values are taken for future calculations: (a) Schwarz-P samples, (b) Gyroid
samples, (c) Diamond samples and (d) Neovius samples. (e) Four sample average values comparison.
The Diamond design exhibits the maximum buckling resistance, whereas Schwarz-P design displays
the least resistance to buckling.
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3.2. Buckling of 2 × 2 × 8 and 2 × 2 × 16 Samples

Both the Gyroid and Diamond samples buckle from the middle, with the Diamond
buckle in the direction of the share plane. Thus, because the Neovius and Schwarz-P
designs lack an inner wall, the entire load is carried by the outer shell, and these samples
exhibit less buckling resistance. In Schwarz-P, the outer shells cause buckling, and the
sample fails in the thin neck region. At stress concentration points, Neovius samples buckle.
Schwarz-P and Neovius 2× 2× 8 samples exhibit local deformations at the top and bottom
ends, whereas Diamond and Gyroid 2 × 2 × 8 samples exhibit no local deformation. There
is no evidence of local deformation in any of the designs’ 2 × 2 × 16 columns. The buckled
samples of 2 × 2 × 8 and 2 × 2 × 16 specimens are shown in Figures 8 and 9, respectively.
Figure 10 illustrates load-compression graphs. The local deformation of Schwarz-P and
Neovius samples can be seen in Figure 8e,h, where the Schwarz-P type exhibited local
deformations at the bottom end as the holes deform, while the Neovius sample exhibited
local deformations of the stress concentration points at the bottom end.

Figure 8. Samples of the 2× 2× 8 setup reduced to 0 percent compression: (a) Schwarz-P, (b) Diamond,
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(c) Gyroid and (d) Neovius. Buckled samples of the 2× 2× 8 arrangement. (e) The Schwarz-P design
displays global deformation in the center and local deformation at the bottom end, where the design’s
hole is distorted, as shown in the large view. (f) Diamond design demonstrates global buckling in the
center whereas no local deformation is seen. (g) Gyroid design displays no local deformation. (h) The
Neovius design reveals local deformation at the bottom end, which may be observed in large view.

Figure 9. Samples of the 2 × 2 × 16 configuration reduced to 0 percent compression. (a) Schwarz-
P, (b) Diamond, (c) Gyroid and (d) Neovius. Sample of the 2 × 2 × 16 configuration indicates
all samples are buckled only globally; no local buckling is detected. (e) Schwarz-P, (f) Diamond,
(g) Gyroid (h) Neovius.
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Figure 10. Cont.
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Figure 10. Graphs of load compression. The graphs a, b, c, d, e, f, g and h reveal that the compression
test results for the three specimens of each sample are identical, indicating that printing performance
is excellent. For subsequent calculations, average values are used. Samples at 2 × 2 × 8: (a) Schwarz-
P, (b) Gyroid, (c) Diamond and (d) Neovius. Samples at 2 × 2 × 16: (e) Schwarz-P, (f) Gyroid,
(g) Diamond and (h) Neovius. (i) Comparison of four 2 × 2 × 16 samples reveals a significant
variance in their critical buckling loads average values. (j) Comparing the average results of four
2 × 2 × 8 samples reveals that Diamond and Neovius exhibit roughly the same load, but Diamond’s
critical buckling load is the greatest, whilst Schwarz-P structures shows least value.

3.3. Comparison of Critical Buckling Load
3.3.1. Effect of Lattice Morphologies

The investigation of the influence of lattice morphologies on critical buckling loads
is an essential objective of this work. It is the relative density of lattice structures that
is most critical to the mechanical characteristics of these structures. According to this
definition, the relative density is the ratio between the visible lattice structure density
and the mass density of the solid substance that makes up the lattice structure. Relative
density is a common unit of measure for lattice structure mechanical characteristics [38,39].
For example, the critical buckling load is highly dependent on the relative density of the
material. Because the relative density of the samples used in this study varied, the ratio
between critical buckling load and relative density was used as a point of comparison in
this study. Regardless of relative density, the Diamond samples demonstrate the greatest
resistance to buckling, followed by the Neovius and Gyroid samples, and the Schwarz-P
samples demonstrate the least resistance. It is the uniform material distribution and large
load bearing area of Diamond unit cells that provide its superior buckling resistance when
compared to other types of unit cells. Diamond structures have internal walls that can
withstand compression loads as well, as opposed to Schwarz-P structures, which can
withstand the entire compression load due to the outer shells. Gyroid unit cells exhibit
uniform layer-by-layer deformation due to the fact that this unit cell transmits the load
from top to bottom through internal walls, as opposed to Neovius unit cells, which exhibit
deformations beginning at stress concentration points and propagating until fractures.
Figure 11 depicts the load/relative density-compression graphs derived from the data.

3.3.2. Effect of Column Height

In long columns, buckling occurs when the large transverse deformation is exhibited
visibly in the structure and resistance to deformation rapidly decreases. This failure
is caused by the compression of the column [40]. The critical buckling load of lattice
structures depends on various parameters, such as the length of the column, wall thickness,
relative density, tessellation, the presence of the column inside the structure and lattice pore
size [21,41–44]. Among the designs employed in this research, Diamond samples exhibit
a consistent drop in critical buckling load with increasing height; hence, the Diamond
design may be used for columns when height is necessary. Diamond samples display local
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deformations in 2 × 2 × 4, but only global buckling is detected in 2 × 2 × 16 designed due
to the fact that the sample critical buckling load reduces equally with height. Schwarz-P
unit cell design for 2 × 2 × 4 and 2 × 2 × 8 samples shows nearly the same critical load
because local deformation is prominent in both samples; hence, this kind of structure is
best suited in short columns as the Schwarz-P’ unit cell’s relative density is likewise low
compared to Neovius. For Gyroid and Neovius designs, the difference between 2 × 2
× 4 and 2 × 2 × 8 is quite modest as opposed to the difference between 2 × 2 × 8 and
2 × 2 × 16, as seen in Figure 12a,b, respectively. For the comparison of height to critical
buckling load, the load versus compression graph is provided in Figure 12 for all samples
evaluated in this research study.

3.4. Validation Using Simulation Results

The material properties used in FEA are listed in Table 2, while the simulation frame-
work section describes the methods for performing the eigenvalue buckling simulation
and the boundary conditions used. This analysis makes use of a 1 mm mesh size for the
Tet10 elements in the simulation of all lattice structures. Table 3 compares the experimental
and simulation results for eight design lattice structures with identical unit cell sizes where
FEA and experimental data agree well apart from these. Due to the high computational
requirements, the other four designs are not simulated. Geometric imperfections, variability
in load and boundary conditions, material properties and surface thickness variability all
contribute to the discrepancy between experimental and FEA results [43,45,46].

Figure 11. Regardless of relative density, the effect of lattice morphologies on critical buckling load.
(a) Comparison of 2× 2× 16 configurations. (b) Comparison of 2× 2× 8 configurations. (c) Comparison
of 2× 2× 4 configurations. The same result holds true for all three graphs: Diamond has the highest
value, followed by Neovius and Gyroid, respectively, while Schwarz-P has the lowest value.
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Figure 12. Height’s influence on critical buckling load. The letters D, G, N, and P are used in Graphs
to represent Diamond, Gyroid, Neovius and Schwarz-P designs, respectively. The number 4 denotes
a 2 × 2 × 4 arrangement, whereas the number 8 denotes a 2 × 2 × 8 configuration and 16 denotes
a 2 × 2 × 16 configuration. (a) The Gyroid design exhibits a considerable reduction in G8 and G16
of critical buckling load compared to G4 and G8. (b) The Neovius design exhibits a considerable
reduction in N8 and N16 of critical buckling load when compared to N4 and N8. (c) The critical
buckling load of Diamond structures decreases uniformly with height. (d) Because local deformation
is prevalent in Schwarz-P, it may be exploited in short column applications.

Table 3. Comparison of FEA and experimental results.

Experiment No. Geometry Sample
FEA Result for

Critical Buckling
Load (N)

Experimental
Result for

Critical Buckling
Load (N)

Error (%)

1 Diamond 5708 5193 9.93
2 Neovius 2 × 2 × 4 4196 4708 10.86
3 Gyroid 2390 3163 24.40
4 Schwarz P 2174 2250 3.35

5 Diamond 3470 4340 20.04
6 Neovius 2 × 2 × 8 3877 4387 11.61
7 Gyroid 2715 2880 5.70
8 Schwarz P 2555 2271 12.52
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The Euler buckling formula can be used to theoretically predict the critical buckling
load. The end restrictions on Euler long column buckling are quite important. Several
examples of end restraints and the corresponding k value are possible, which may be
utilized for both the limiting slenderness ratio and the buckling load. Euler’s critical
buckling force (FEuler) is defined in Equation (2).

FEuler = k π2 E I/L2 (2)

The radius of gyration, r, is defined in Equation (3).

r = (I/A)1/2 (3)

Euler’s critical buckling force formula is defined in Equation (4) after substituting
Equation (3) in Equation (2).

FEuler = k π2 E A/(L/r)2 (4)

where I and A are the area moment of inertia and area of the cross-section, respectively,
while E is the elastic modulus. L/r is slenderness ratio” where L denotes the length of
the component. k is a constant that depends on the restraints of the two ends of the
column [6,37].

Applying the load at the precise center of the design is highly critical; however, under
experimental boundary circumstances, the load may not be totally eccentric. Figure 13
demonstrates the comparable pattern of experimental and FEA behavior of the designs,
which indicates that the linear eigenvalue buckling analysis may approach the same be-
havior of the buckling, as shown in experimental data. Based on these eight numerical
simulations, the additional four experiments may be estimated to demonstrate excellent
agreement with FEA. The comparison is also described in Figure 14. The critical buckling
(bifurcation) load of structures was estimated using eigenvalue buckling analysis. A linear
perturbation approach is used in the analysis. It may be used to simulate measured initial
overall and local geometric defects, as well as to investigate a structure’s imperfection
sensitivity when measurements are unavailable. To determine the critical buckling loads of
stiff structures, eigenvalue buckling is commonly utilized (classical eigenvalue buckling).
Rather than bending, stiff structures transmit their design loads predominantly by axial or
membrane action. Prior to buckling, they normally exhibit relatively little deformation. The
specimens in this study were printed using MJF, and their properties are not fully isotropic
due to various reasons such as porosity, build orientation, the effect of post-processing,
residual powder and different printer constraints due to which the parts possess some
non-linear behavior. Most of these cannot be considered during finite element analysis.
Due to this, there are some variations between experimental and simulation results [47,48].
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Figure 13. Numerical and experimental patterns of buckling behavior for uniaxial compressive
samples of various morphologies. The figures reveal that the experimental and FEA results show
good agreement. Samples with 2 × 2 × 8 configuration: (a) Schwarz-P, (b) Neovius, (c) Gyroid and
(d) Diamond.

Figure 14. Comparison of experimental and simulation results as indicated in Table 3.

4. Conclusions

In this study, twelve columns of four different triply periodic minimal surface unit
cells of the same size were successfully printed using multi-jet fusion technology. The in-
vestigation of the critical buckling load is performed by performing a uniaxial compression
test. Among these four different unit cells, the Diamond design showed the maximum
resistance to buckling, followed by Neovius and Gyroid, respectively, while Schwarz-P
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showed the least resistance to buckling. The effect of height column on critical buckling load
is also investigated, which reveals that Diamond design shows a uniform decrease with
height, while in the Schwarz-P sample, the samples 2 × 2 × 4 and 2 × 2 × 8 show plastic
deformation dominancy. Diamond and Gyroid samples show buckling in the share plane
and layer-by-layer compression, respectively, while in Schwarz-P and Neovius designs,
crack propagation from the stress concentration points causes failure.

It is concluded that the Diamond design showed the highest critical buckling load
irrespective of relative density due to uniform stress distribution and more load bearing
cross-section area. The Schwarz-p structure show the least critical buckling load due to
stress concentration points. The Neovius sample has high load bearing areas due to the
unit cell joined in the inner part, but at the outer shells, there are stress concentration points.
Overall, the unit cell morphologies greatly affect the critical buckling load irrespective of
relative density, which enables the researchers to select the specific lattice structure for
specific applications according to the required load applications.

An FEA analysis was performed to validate experimental results, which showed a
resemblance with experimental results. Although the buckling pattern is the same for both
experimental and FEA, there are considerable variations in the specimen of specific lattice
structure design due to changes in material properties during printing, build orientation
and residual powder; moreover, the structure was not truly isotropic, but it may be approx-
imated as isotropic. Further analysis needs to be performed by designing different unit
cells size columns of the same unit cells and studying the effect of unit cell size in terms of
critical buckling loads.
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