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Abstract: High-grade serous ovarian cancer (HGSOC) is one of the deadliest cancers that can occur in
women. This study aimed to investigate the molecular characteristics of HGSOC through integrative
analysis of multi-omics data. We used fresh-frozen, chemotherapy-naïve primary ovarian cancer
tissues and matched blood samples of HGSOC patients and conducted next-generation whole-exome
sequencing (WES) and RNA sequencing (RNA-seq). Genomic and transcriptomic profiles were
comprehensively compared between patients with germline BRCA1/2 mutations and others with
wild-type BRCA1/2. HGSOC samples initially divided into two groups by the presence of germline
BRCA1/2 mutations showed mutually exclusive somatic mutation patterns, yet the implementation
of high-dimensional analysis of RNA-seq and application of epithelial-to-mesenchymal (EMT) in-
dex onto the HGSOC samples revealed that they can be divided into two subtypes; homologous
recombination repair (HRR)-activated type and mesenchymal type. Patients with mesenchymal
HGSOC, characterized by the activation of the EMT transcriptional program, low genomic alteration
and diverse cell-type compositions, exhibited significantly worse overall survival than did those
with HRR-activated HGSOC (p = 0.002). In validation with The Cancer Genome Atlas (TCGA)
HGSOC data, patients with a high EMT index (≥the median) showed significantly worse overall
survival than did those with a low EMT index (<the median) (p = 0.030). In conclusion, through a
comprehensive multi-omics approach towards our HGSOC cohorts, two distinctive types of HGSOC
(HRR-activated and mesenchymal) were identified. Our novel EMT index seems to be a potential
prognostic biomarker for HGSOC.

Keywords: ovarian cancer; high-grade serous carcinoma; gene signature; epithelial-to-mesenchymal
transition; homologous recombination repair

1. Introduction

Ovarian cancer, one of the deadliest gynecologic malignancies, is a global burden with
an estimated 313,959 new cases and 207,252 cancer deaths each year [1]. The majority of
ovarian cancers are epithelial ovarian cancers, and high-grade serous ovarian carcinoma
(HGSOC) is the most prevalent histologic type [2]. In patients with HGSOC, germline
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or somatic mutations in BRCA1 or BRCA2 gene are frequently observed, and women
harboring germline BRCA1/2 mutations are at high risk of developing HGSOC [3].

The patients’ BRAC1/2 mutational status is of high interest because several poly
(adenosine diphosphate-ribose) polymerase (PARP) inhibitors are currently available for the
treatment of primary and recurrent HGSOC, based on the phase 3 clinical trials, which have
demonstrated the significant survival benefit brought by PARP inhibitors [4–8]. Beyond
BRCA1/2 genes, there is a need to discover other genetic mutations and altered gene
expression programs that might be possible prognostic biomarkers or therapeutic targets.

One important feature of HGSOCs is that they are commonly diagnosed at an ad-
vanced stage, therefore showing high disease recurrence and mortality rates despite the
primary treatment [9]. Researchers have noted epithelial-to-mesenchymal transition (EMT),
a process referring to the conversion of an epithelial to a mesenchymal cell, as the mech-
anism for invasion and metastasis of ovarian cancer cells [10], as well as for achieving
chemoresistance [11]. Interestingly, in breast cancer, loss of BRCA1 protein is associated
with EMT [12]. However, such a relationship has been poorly investigated in ovarian
cancer. Broadening the molecular understanding of HGSOC and elucidating the underly-
ing mechanisms for EMT in terms of BRCA1/2 gene alterations is expected to open a new
horizon in the treatment of HGSOC [13].

In this regard, we carried out next-generation whole-exome sequencing (WES) and
RNA sequencing (RNA-seq) to find the causal variants that bring about HGSOC in terms
of homologous recombination repair (HRR) genes and EMT.

2. Materials and Methods
2.1. Study Population

Inclusion criteria for the study population were as follows: (1) diagnosed with HGSOC
between January 2013 and December 2016; (2) having undergone primary debulking
surgery; (3) having donated their blood samples, obtained one day before surgery, and fresh-
frozen primary ovarian cancer tissues, obtained at the time of surgery, for scientific purposes
after providing written informed consent; and (4) having an identifiable germline BRCA1/2
mutational status. In addition, patients were excluded if (1) they had any malignancy other
than HGSOC; (2) received neoadjuvant chemotherapy; or (3) had insufficient clinical data
or were lost to follow-up.

Among patients who met these criteria, we further selected patients referring to their
germline BRCA1/2 genetic test results as follows: (1) five patients harboring germline
deleterious BRCA1 mutations and wild-type BRCA2 (gBRCA1mut); (2) five patients harbor-
ing germline deleterious BRCA2 mutations and wild-type BRCA1 (gBRCA2mut); and (3)
10 patients with wild-type BRCA1/2 genes (gBRCA1/2wt). Details of the germline BRCA1/2
gene testing methods at our institution were described in a previous study [14].

We collected the patients’ baseline clinicopathologic characteristics, such as age at
diagnosis, International Federation of Gynecology and Obstetrics (FIGO) stage, initial
serum CA-125 levels, and residual tumor size after surgery. In terms of survival outcomes,
progression-free survival (PFS) was defined as the time interval between the date of
diagnosis to the date of disease progression, while overall survival (OS) was defined as the
time interval between the date of diagnosis to the date of cancer-related death or last visit.

2.2. Whole-Exome Sequencing, RNA Sequencing, and Data Analysis

The fresh-frozen, primary ovarian cancer tissues and blood samples of 20 patients
were retrieved from Seoul National University Hospital Human Biobank. One expert
gynecologic pathologist (Cheol Lee) in Seoul National University Hospital reviewed and
confirmed all the HGSOC cases in our study population according to the World Health
Organization Classification of Tumors, 5th edition. Detailed methods for WES on the tumor
tissues and matched blood samples, RNA-seq on the tumor tissues, and their analysis are
presented in Supplementary Methods. The sequencing coverage and quality metrics of
WES and RNA-seq are provided in Tables S1 and S2.
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2.3. Transcription Factor Enrichment Analysis

Adding to the differentially expressed gene (DEG) analysis, principal component
analysis (PCA), K-means clustering, and unsupervised hierarchical clustering (HC), we
performed transcription factor enrichment analysis (TFEA) for a particular set of genes by
using ChIP-X Enrichment Analysis version 3 [15]. Particularly, we used a complete list of
transcription factors (TFs) and their target gene-set libraries from ARCHS4 [16], which is a
compendium of publicly available, processed RNA-seq data (https://maayanlab.cloud/
chea3/assets/tflibs/ARCHS4_Coexpression.gmt, accessed on 14 April 2021). We only used
the top 10 enriched TFs with false discovery rate <0.05 for subsequent analyses.

2.4. Caculation of EMT Index

To analyze RNA-seq data in relation to EMT, we manually coined an index, the “EMT
index”. Specifically, the EMT index was calculated for each sample based on the geometric
mean of transcripts per million (TPM) values for five core EMT-TFs (TWIST1, SNAI1,
SNAI2, ZEB1, and ZEB2) and 33 EMT-related TFs (KLF4, GSC, TCF7L2, ALX1, GATA6,
RUNX2, TCF3, SOX4, FOXC2, NFKB1, KLF2, KLF6, TBX3, TCF4, PRRX1, HOXB7, JUN, FOS,
TAZ, TGIF1, ATF1, ERG, ETS1, ID1, TEAD1, YAP1, NFYA, KLF8, SOX9, SIX1, TBXT, GATA4,
and TWIST2) according to the consensus statement on EMT led by the EMT International
Association (TEMTIA) [17].

2.5. Identification of Co-Expressed Gene Modules and Interaction Networks

To identify gene co-expression modules and interaction networks from RNA-seq data,
we used CEMiTool [18] version 1.14.0. In total, 19,023 genes, upon which was applied
variance-stabilizing transformation (vst) implemented in DESeq2 [19], were used as in-
puts and samples were divided into two pre-annotated clusters by K-means clustering,
namely, cluster A and cluster B, with the following settings: corr_method = “spearman”,
network type = “signed”, tom_type = “signed”, rank_method = “mean”, gsea_max_size
= 2000. Calculated modules were considered significant only if the absolute value of
normalized enrichment scores (NES) for both cluster A and cluster B was above 4 and with
a Benjamini–Hochberg adjusted p value < 0.0001. For the input-constructing interaction
network of each co-expressed gene module, we retrieved TFs target gene-set libraries
from ARCHS4 [16] as a Gene Matrix Transposed (gmt) file format with a minor modifica-
tion, putting TF genes and their target genes in the first column and the second column,
respectively (https://github.com/ryansohny/HGSOC/blob/main/RNA-seq/ARCHS4
_Coexpression_interaction.csv). Then, we performed overrepresentation analysis imple-
mented in CEMiTool using HALLMARK gene sets from the Molecular Signature Database
(MSigDB) [20].

2.6. Cell-Type Enrichment Analysis

To further validate our findings regarding classification of our samples into two groups
based on their genomic and transcriptomic profiles, we performed cell-type enrichment
analysis from gene expression data. An expression profile of samples was uploaded to
XCell [21] web interface with default parameters using “xCell (N = 64)” gene signature.

2.7. Analysis of TCGA Data

We downloaded The Cancer Genome Atlas (TCGA) RNA-seq data of 376 HGSOC
samples and corresponding clinicopathological profiles from the National Cancer Institute
Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/, accessed on 22
February 2018) and cBioPortal for Cancer Genomics (https://www.cbioportal.org, accessed
on 22 February 2018) website. TPM values were calculated by dividing each gene’s
fragments per kilobase per million (FPKM) value with the sum of FPKM of that particular
sample. To divide the TCGA cohort in terms of EMT index, the median value of the EMT
indices of all samples was used; samples having a higher EMT index than the median value
(11.999) were classified as EMT-high, while the remainders were classified as EMT-low.

https://maayanlab.cloud/chea3/assets/tflibs/ARCHS4_Coexpression.gmt
https://maayanlab.cloud/chea3/assets/tflibs/ARCHS4_Coexpression.gmt
https://github.com/ryansohny/HGSOC/blob/main/RNA-seq/ARCHS4_Coexpression_interaction.csv
https://github.com/ryansohny/HGSOC/blob/main/RNA-seq/ARCHS4_Coexpression_interaction.csv
https://portal.gdc.cancer.gov/
https://www.cbioportal.org
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2.8. Statistical Analysis

Differences in baseline characteristics and genomic or transcriptomic profiles between
two groups (gBRCA1mut and gBRCA1/2wt) or among three (gBRCA1mut, gBRCA2mut,
and gBRCA1/2wt) were assessed: Pearson’s chi-square or Fisher’s exact tests were used for
categorical variables, while Student’s t-, Mann–Whitney U, ANOVA, or Kruskal–Wallis
tests were used for continuous variables. Tukey’s HSD was used for multiple comparisons.
Pearson correlation coefficients were calculated between patient characteristics and somati-
cally mutated genes. Survival outcomes were compared using Kaplan–Meier analysis with
log-rank test. R statistical software version 4.0.2 (R Foundation for Statistical Computing,
Vienna, Austria) was used for the statistical analyses. P values < 0.05 were considered
statistically significant unless otherwise noted.

3. Results
3.1. Characteristics and Survival Outcomes of Patients with HGSOC

Between the gBRCA1/2mut and gBRCA1/2wt groups, no differences were observed in
baseline clinicopathologic characteristics (Table 1). None of the study population received
PARP inhibitors at their primary treatment, whereas three patients in the gBRCA1/2mut
group received PARP inhibitor maintenance therapy to treat relapsed disease. A median
observation period was 63.4 months. The two groups showed a similar PFS (median, 26.0
vs. 24.6 months; p = 0.895) and OS (mean, 76.8 vs. 71.6 months; p = 0.519; Figure 1A,B).

Table 1. Patients’ clinicopathologic characteristics.

Characteristics All
(n = 20, %)

BRCA Mutation
(n = 10, %)

BRCA Wild-Type
(n = 10, %) p

Age, years
Mean ± SD 52.8 ± 8.4 54.2 ± 9.4 51.4 ± 7.4 0.705

Family Hx of breast cancer 1 (5.0) 1 (10.0) 0 >0.999
Family Hx of ovarian cancer 1 (5.0) 1 (10.0) 0 >0.999
FIGO stage 0.779

IIIA 2 (10.0) 1 (10.0) 1 (10.0)
IIIB 1 (5.0) 1 (10.0) 0
IIIC 11 (55.0) 5 (50.0) 6 (60.0)
IV 6 (30.0) 3 (30.0) 3 (30.0)

CA-125, IU/mL
Median (range) 798.5 (5.1–3545.0) 798.0 (5.1–3545.0) 798.5 (47.0–2433.0) 0.940

Lymph node metastasis 12 (60.0) 6 (60.0) 6 (60.0) >0.999
Residual tumor after surgery 0.139

No gross 14 (70.0) 9 (90.0) 5 (50.0)
<1 cm 5 (25.0) 1 (10.0) 4 (40.0)
≥1 and <2 cm 1 (5.0) 0 1 (10.0)

Chemotherapy at primary treatment 0.628
6 cycles of paclitaxel–carboplatin 14 (70.0) 6 (60.0) 8 (80.0)
9 cycles of paclitaxel–carboplatin 6 (30.0) 4 (40.0) 2 (20.0)

Recurrence 16 (80.0) 9 (90.0) 7 (70.0) 0.582
Treatment-free interval, months

Median (range) 20.4 (3.0–73.0) 20.9 (13.5–73.0) 19.6 (3.0–67.9) 0.496
Germline BRCA1 mutational status 0.033

Wild-type 15 (75.0) 5 (50.0) 10 (100.0)
Mutation 5 (25.0) 5 (50.0) 0

Germline BRCA2 mutational status 0.033
Wild-type 15 (75.0) 5 (50.0) 10 (100.0)
Mutation 5 (25.0) 5 (50.0) 0

Abbreviations: CA-125, cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; Hx, history; SD, standard
deviation.
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Figure 1. Comparisons of survival outcomes between germline BRCA1/2 mutation and wild-type groups. (A) Progression-
free survival. (B) Overall survival.

3.2. Genomic Profiling of HGSOC

WES of 20 blood samples revealed the same germline BRCA1/2 mutations as those
identified by our in-house gene testing (Figure S1, Table S3). In detail, samples from
the gBRCA1mut group had a frameshift insertion (gBRCA1mut_1), a frameshift deletion
(gBRCA1mut_3, gBRCA1mut_4), and a stop-gain SNV (gBRCA1mut_2) in the BRCA1 gene,
which were all heterozygous, and a hemizygous deletion of exon 1 through 14 of the BRCA1
gene (gBRCA1mut_5). All samples from the gBRCA2mut group had the frameshift deletion
of a single BRCA2 gene in five different sites (gBRCA2mut_1 to 5). Next, we investigated
somatic mutations and putative drivers of HGSOC progression from tumor–normal pairs
(Figure 2). Interestingly, we observed a mutually exclusive variants pattern with few co-
occurring somatic single nucleotide variants (SNVs) and indels across our samples, except
for the TP53 mutation (pairwise Fisher’s exact test p > 0.05). The lack of TP53 somatic
mutations in some of our samples, which is rare in HGSOC, might originate from their
low tumor purity. In particular, two gBRCA1/2wt samples lacked any apparent driver
mutations of SNVs or indels. Tumor mutational burden (TMB) was assessed for each
sample, but no significant difference was detected among the gBRCA1mut, gBRCA2mut,
and gBRCA1/2wt groups (one-way ANOVA test p = 0.313) (Figure S2). In terms of somatic
copy number alterations (SCNAs), we observed amplification of genes, such as CSF3R,
LCK, MPL, MUTYH, SFPQ, STIL, and TAL1, and loss of genes, such as GNA11, MLLT1,
MAP2K2, and SH3GL1 (Figure S3).
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Figure 2. Genomic mutational characterization of 20 HGSOC samples. The distribution of somatic mutations among three
categories of samples. Each column displayed here represents an individual case. LN, LVSI, TMB, and SCNA stand for
lymph node, lymphovascular space invasion, tumor mutational burden, and somatic copy number alteration, respectively.

3.3. Transcriptomic Profiling of HGSOC in Terms of HRR and EMT

Based on the RNA-seq data from 20 HGSOC samples, we conducted PCA to cluster
the samples on the basis of the top 5000 variable genes out of 19,023 genes, and observed
highly similar transcriptomic profiles between the gBRCA1mut and gBRCA2mut groups
(Figure 3A). Six out of 10 samples in the gBRCA1/2wt group were clustered into “cluster
A” together with the gBRCA1mut and gBRCA2mut groups, with the exception of one
gBRCA2mut sample. Meanwhile, the remaining four samples in the gBRCA1/2wt group
and the gBRCA2mut sample were segregated into “cluster B” (Figure 3A). To determine
the causal or regulatory variants for clusters A and B, we first performed TFEA for genes
exhibiting a negative correlation (r < −0.9, n = 60) with the principal component (PC1) and
that were upregulated in cluster A rather than in cluster B (Table S4). The most significantly
enriched TF gene was GRHL2, known as an EMT suppressor in various cancers (Table S5).
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Figure 3. Two distinctive patterns of molecular subtype identified through RNA-seq data analysis.
(A) Transcriptional landscape of HGSOC samples through principal component analysis. Samples
are represented by different shapes and colors by their origin and grouped according to K-means
clustering with k = 2 (cluster A and cluster B). (B) Hierarchical clustering of samples represents the
expression profile of 30 HRR genes. (C) Hierarchical clustering of samples with the expression profile
of 38 EMT-TFs reproduced the result from the PCA analysis. (D) Violin plots showing difference in



Genes 2021, 12, 1103 8 of 16

EMT index and gene expressions of CDH1, VIM, and TGFB1 between cluster A and cluster B. Each p
value was calculated via Mann–Whitney U test. (E) A violin plot-view of HRD score distribution
between cluster A and cluster B (left), and relationship between EMT-index and HRD sum scores
(right). HRD scores between cluster A and cluster B were compared using Mann–Whitney U test.
Statistical dependence between EMT index and HRD scores were computed through Spearman’s rank
correlation coefficients. LoH, NtAI, and LST stand for loss of heterozygosity, number of telomeric
allelic imbalances, and large-scale transition, respectively.

Next, considering that cluster A included most samples of the gBRCA1/2mut group,
we investigated transcriptomic aberration of the HRR genes (Table S6). Unsupervised
hierarchical clustering of 30 HRR genes recapitulated the PCA result, and 18 out of 30 HRR
genes (e.g., ATR, FANCA, and FANCD2) were significantly upregulated in cluster A rather
than in cluster B (Figure 3B). The activation of HRR pathways might be explained by
a genetic compensation for the dysfunction of BRCA1 or BRCA2 in the gBRCA1/2mut
group, which accounts for a large part of cluster A. Furthermore, six samples from the
gBRCA1/2wt group that fell into cluster A had several somatic alterations in HRR genes:
missense mutations in BRCA1, ATRX, and ATR, copy number loss of BRCA2, FANCC,
FANCG, and RAD50, and copy number gain of RAD51B and RAD54L (Figure S4). Then, in
order to find specific TFs regulating the expression of HRR genes, we again conducted TFEA
for the 18 upregulated HRR genes and discovered that E2F8, E2F2, E2F3, PRDM9, CENPA,
and TGIF were the core regulators or components of the gene networks overexpressed in
cluster A (Table S7).

Focusing on genes upregulated in cluster B compared to their expression in cluster A,
we also performed TFEA for genes exhibiting a positive correlation (r > 0.9, n = 180) with
PC1 (Table S3). Interestingly, among the enriched TFs (Table S8), TCF21, TWIST2, MEOX2,
OSR1, PRRX1, PRRX2, and TWIST1 were associated with EMT [22]. Investigation of the
RNA expression of these TFs indicated that most of them were upregulated in cluster B
rather than in cluster A (Figure S5).

Analyzing RNA-seq data in relation to EMT, we calculated the EMT index (Table S9).
Unsupervised hierarchical clustering of samples with these 38 TFs accurately separated
20 HGSOC tissue samples into clusters A and B (Figure 3C). Between the two clusters, the
EMT index was significantly different (p = 0.001; Figure 3D, top left).

In addition to the 38 genes used to calculate the EMT index, CDH1 (E-cadherin), known
to be highly expressed in epithelial tissue and downregulated in mesenchymal tissue [17],
was downregulated in cluster B (Figure 3D, top right). In contrast, VIM (vimentin), another
key indicator of EMT highly expressed in mesenchymal rather than in epithelial tissue [23],
was upregulated in cluster B (Figure 3D, bottom left). In addition, TGFB1 (TGFβ), known
as a key accelerator of EMT [24], was also upregulated in cluster B (Figure 3D, bottom
right).

Interestingly, homologous recombination deficiency (HRD) score [25], a genomic scar
estimate combining three measures (loss of heterozygosity, telomeric allelic imbalance,
and large-scale state transitions) was higher in cluster A, compared to that of cluster B
(Figure 3E, left, Figure S6). Moreover, EMT index was found to be negatively correlated
with the genomic scar estimate (Figure 3E, right).

To dissect variation in the transcriptional network of our samples and further validate
the transcriptional nature of two groups, cluster A and cluster B, we performed gene
co-expression network analysis [18]. With this approach, we were able to identify one
module (Co-expression Module 1) enriched in samples from cluster B, and two modules
(Co-expression Modules 2 and 3) enriched in samples from cluster A (Figure 4A and
Figure S7). Co-expression Module 1 had EMT-TFs (e.g., KLF2 and PRRX1) as interaction
hub genes, consistent with the finding that EMT gene signature was enriched in cluster
B. Co-expression Modules 2 and 3 were characterized by distinctive hub genes such as
SLC2A1, which is known to be regulated by estrogens [26], and MYBL2, a core regulator of
cellular differentiation [27], was among the main components of the complex network of
gene expression in cluster A.
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Fig. 4

B
Cluster A (n=15) Cluster B (n=5)

*
*

*
*
*

High

Low

Cancer-associated Fibroblast 

Mesenchymal Stromal Cell

Epithelial cell

Immune Score

Stroma Score

Microenvironment Score

EMT index

A

Figure 4. Co-expression gene module identification and cell-type enrichment. (A) Interaction network of identified gene
modules and over representation analysis using HALLMARK gene sets. (B) EMT index and cell-type enrichment analysis
results across 20 HGSOC samples divided by cluster A and cluster B and by order of increasing EMT-index. * Mann–Whitney
U test p < 0.05 between cluster A and cluster B.
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Meanwhile, we found a negative correlation between PC1 and tumor purity, derived
from WES data (r = −0.84, p < 0.001; Figure S8, Table S10), consistent with the finding
that mesenchymal-type ovarian cancers tend to have lower tumor purity than do other
types [28,29]. Using the gene expression data, we also conducted cell-type enrichment
analysis [21]: the mesenchymal stromal cell, the intra-tumoral cancer-associated fibroblast
(CAF), and epithelial cell signature were investigated (Figure 4B). Samples in cluster B
were enriched in mesenchymal stromal cells and CAFs compared to samples in cluster A
enriched in epithelial cells. Consistently, we also observed that two CAF marker genes,
DCN and PDPN, were significantly upregulated in cluster B compared to their expression
in cluster A (Figure S9).

Taken together, we could classify 20 HGSOC tissue samples into two categories: (1)
HRR-activated HGSOC (cluster A) and (2) mesenchymal HGSOC (cluster B).

3.4. EMT Index and Survival Outcomes

We performed survival analysis between patients with mesenchymal HGSOC (n = 5)
and those with HRR-activated HGSOC (n = 15). While the two groups showed similar
PFS (p = 0.708), patients with mesenchymal HGSOC exhibited significantly worse OS than
those with HRR-activated HGSOC (p = 0.002) (Figure S10).

Next, we investigated the reproducibility of our study findings using TCGA HGSOC
data [30]. Processing 379 RNA-seq samples, we calculated each sample’s EMT index
(Figure 5A) and examined its correlation with known EMT markers (Figure 5B). Although
the expression of CDH1, which was expected to be decreased with the increasing EMT
index, had a weak positive correlation with the EMT index (r = 0.177, p < 0.001), its
presence in EMT-high samples might indicate epithelial/mesenchymal intermediate states
or reflect transient activation and repression of the EMT program [31,32]. CDH2, encoding
N-cadherin and serving as an indicator of EMT [33], was positively correlated with the EMT
index (r = 0.255, p < 0.001), suggesting the possibly increased mesenchymal population
within the EMT-high samples. VIM and TGFB1 also increased with the rise in the EMT
index (r = 0.582, p < 0.001; and r = 0.591, p < 0.001, respectively).

Figure 5. Cont.
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Figure 5. Application of the EMT index to TCGA HGSOC data. (A) Distribution of EMT index of
TCGA HGSOC displayed on a box plot. (B) Scatter plots illustrating relationship between the EMT
index and EMT-related gene expression in the cohort. Each dot represents each sample analyzed, and
red lines are a linear trend representation of the scatter plots. (C) Kaplan–Meier plot depicting overall
survival of TCGA HGSOC samples falling into EMT-high (red) and -low (blue) groups. (D) EMT
index for four TCGA subtypes was compared and the mesenchymal subtype exhibited the highest
EMT index (one-way ANOVA test p < 0.001; Tukey’s HSD adjusted p < 0.005 ** and < 0.05 *). Red
dots and blue dots inside the violin plots represent EMT-high and -low samples, respectively.

Then, we analyzed the survival outcomes by the level of EMT index in TCGA HGSOC
samples for which survival data were available (n = 374) (Figure 5C). The OS of patients
whose samples had a high EMT index (≥the median, n = 187) was significantly worse than
that of patients whose samples had a low EMT index (<the median, n = 187) (median, 44.0
vs. 47.4 months; p = 0.030). Checking how the EMT-high and -low groups were distributed
in the four subtypes of TCGA HGSOC (Figure 5D), we observed that the EMT-high samples
were mostly enriched in the mesenchymal subtype (Chi-square test p < 0.001; Benjamini–
Hochberg corrected p < 0.001 for all pairwise Fisher’s Exact test between mesenchymal and
others). Moreover, among the four subtypes of TCGA HGSOC, the mesenchymal subtype
exhibited the highest level of EMT index (one-way ANOVA test p < 0.001; adjusted p < 0.05
for all Tukey’s HSD).

4. Discussion

In this study, we investigated the molecular characteristics of HGSOC through an
integrative analysis of genomic and transcriptomic data obtained from chemotherapy-naïve
primary HGSOC tissues. Consequently, we could simplify the molecular classification of
HGSOC to HRR-activated and mesenchymal types. The prognostic value of the EMT index
was also validated using TCGA HGSOC data. Our study results demonstrate that the EMT
index would be a potential prognostic biomarker for HGSOC.

Of two distinctive types of HGSOC, HRR-activated HGSOC was characterized by
a malfunction of the HRR program caused by deficient BRCA1/2 or HRR genes and the
transcriptomic aberration of other HRR genes. Furthermore, we revealed that genes
regulating or co-expressed with HRR genes are members of the E2F family (E2F8, E2F2,
and E2F3), known as cell cycle regulators [34]; PRDM9, related to the process of meiosis
and responsible for directing the positions of HRR [35]; CENPA, involved in accurate
chromosome segregation [36]; and TGIF, reported to be over-expressed among ovarian
cancer cell lines [37].

The other type, mesenchymal HGSOC, was characterized by low genomic alter-
ation, transcriptional activation of EMT-TFs, decreased epithelial cell marker expression,
increased mesenchymal cell marker expression, and diverse cell type composition. Regard-
ing activation of EMT-TFs, a previous study in colorectal cancer reported that ZEB1, one
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of the core EMT-TFs, was activated through the β-catenin/TCF4 complex [38]. Similarly,
we also observed upregulation of both β-catenin and TCF4 and of their target ZEB1 in
mesenchymal HGSOCs (Figure S11). However, we could only infer the association of these
three genes, but not their causal relationship.

EMT is currently known as one of the cancer hallmarks, being involved in tumori-
genesis, metastasis, and obtaining chemoresistance [11,13,39,40]. Unlike in breast cancer,
the link between BRCA1 and EMT has not been investigated in HGSOC. The relationship
between expression profiles of HRR and EMT genes might be explained by the following
hypotheses: (1) the co-existence of deficient BRCA1/2 or HRR genes and altered expression
of EMT genes together lead cancer cells to extinction; or (2) altered expression of EMT
genes may contribute to the tumor microenvironment being nonviable for cancer cells with
defects in BRCA1/2 or HRR genes. To confirm these hypotheses, additional experiments
using ovarian cancer cell lines are warranted.

In the current study, we invented the EMT index, composed of 38 genes—five for core
EMT-TFs and 33 for EMT-related TFs—which can be utilized in identifying mesenchymal
HGSOC. In addition, it may be used as a prognostic marker in HGSOC; both in our samples
and TCGA HGSOC data, a high EMT index was associated with significantly worse OS. At
the same time, it should be noted that the proportion of stromal cells within samples might
be reflected in the EMT index. Indeed, a higher proportion of stromal cells in HGSOC
is known to be associated with worse OS [41]. Furthermore, various molecules, such as
E-cadherin, N-cadherin, EpCAM, and vimentin, are involved in the EMT process [11].
A complex network of TFs is known to regulate EMT, leading to the downregulation of
epithelial genes and the upregulation of mesenchymal genes [11,42]. We also observed
various molecules or genes related to the EMT index and regulators of EMT, including
vimentin and TGFβ, which were differentially expressed between the two types of HGSOC.

In terms of anti-EMT therapy, TGFβ is one of the best-studied therapeutic targets in
cancer. Phase I and II clinical trials of fresolimumab (a monoclonal anti-TGFβ antibody)
have been conducted in renal cell carcinoma, melanoma, mesothelioma, and breast can-
cer [43–45]. In ovarian cancer, blockade of TGFβ signaling with antibodies reversed EMT
in epithelial ovarian cancer ascites-derived cell spheroids [46] and increased platinum
sensitivity in a xenograft mouse model [47]. More research is needed to elucidate the
therapeutic strategy of anti-EMT therapies in HGSOC.

Based on our study results, if an individual is identified to have a high-EMT-index HG-
SOC, so poor prognosis is expected, clinicians might prescribe additional targeted agents
(e.g., bevacizumab) more actively. Clinicians might also consider dose-dense chemotherapy
or extended chemotherapy cycles. After primary treatment, a more intensive surveillance
schedule might be administered for an individual. Incorporating the EMT index with the
well-known clinicopathologic risk factors of HGSOC, researchers might develop models
predicting treatment response and prognosis more accurately. In this manner, we believe
that precision cancer medicine can be facilitated in ovarian cancer with a relatively poorer
prognosis than any other cancer.

Our study has several limitations. First, the small sample size might be one of the
most problematic issues. In survival analysis, we could not conduct multivariate analysis
adjusting for clinicopathologic factors. Thus, our study results should be validated in a
large, multi-institutional HGSOC cohort. Second, our study results were only derived
from bulky specimens composed of various malignant and non-malignant cells. Therefore,
specific gene signatures of the mesenchymal HGSOC samples might be a mixed result
originating from malignant epithelial or mesenchymal cells and non-malignant cells, such
as CAFs, endothelial cells, and immune cells [29]. To elucidate the exact cellular com-
positions and heterogeneity in tumor cells, as well as the cell-to-cell interactions within
the tumor microenvironment, further singe-cell-level studies should be conducted. Such
studies might supplement and enhance our study results. Nevertheless, we believe that
the methodology of our study, especially the step-by-step integrative analysis methods,
can be also used in other malignancy types.
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5. Conclusions

In conclusion, we investigated the molecular characteristics of HGSOC by utilizing ex-
ome and transcriptome sequencing data. Two distinctive types of HGSOC (HRR-activated
and mesenchymal) were identified, which could be helpful for personalized HGSOC treat-
ment. Furthermore, our novel EMT index seems to be a potential prognostic biomarker for
HGSOC. Patients with high-EMT-index tumors showed significantly worse OS than those
with low-EMT-index tumors. As such, molecules or genes related to the EMT index can be
therapeutic targets for the treatment of HGSOC.
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