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C. elegans-on-a-chip for in situ and 
in vivo Ag nanoparticles’ uptake and 
toxicity assay
Jin Ho Kim1,*, Seung Hwan Lee2,*, Yun Jeong Cha1, Sung Jin Hong3, Sang Kug Chung3, 
Tai Hyun Park2,4 & Shin Sik Choi1,5

Nanomaterials are extensively used in consumer products and medical applications, but little is 
known about their environmental and biological toxicities. Moreover, the toxicity analysis requires 
sophisticated instruments and labor-intensive experiments. Here we report a microfluidic chip 
incorporated with the nematode Caenorhabditis elegans that rapidly displays the changes in body 
growth and gene expression specifically responsive to the silver nanoparticles (AgNPs). C. elegans 
were cultured in microfluidic chambers in the presence or absence of AgNPs and were consequently 
transferred to wedge-shaped channels, which immobilized the animals, allowing the evaluation of 
parameters such as length, moving distance, and fluorescence from the reporter gene. The AgNPs 
reduced the length of C. elegans body, which was easily identified in the channel of chip. In addition, 
the decrease of body width enabled the worm to advance the longer distance compared to the animal 
without nanoparticles in a wedge-shaped channel. The transgenic marker DNA, mtl-2::gfp was highly 
expressed upon the uptake of AgNPs, resulting in green fluorescence emission. The comparative 
investigation using gold nanoparticles and heavy-metal ions indicated that these parameters are 
specific to AgNPs. These results demonstrate that C. elegans-on-a-chip has a great potential as a rapid 
and specific nanoparticle detection or nanotoxicity assessment system.

Since nanotechnology emerged, it has grown rapidly and expanded into a variety of areas. Nanoparticles have 
been developed and are manufactured as building blocks or sources of various materials and devices1. As nano-
particles have unique physical and chemical properties, they are widely applicable for advanced, electrical, optical, 
mechanical, and structural purposes, and indeed are now being used in a range of commercialized products2–4. 
Owing to their widespread use, nanoparticles have been released into the environment, and consequently, they 
are now considered a risk for humans5. The properties of nanoparticles differ from their respective bulk compo-
nents, making it difficult to predict any potential toxicity6. While the mechanisms behind the nanoparticles’ tox-
icity remain unknown7,8, the development of improved methods for assessing nanoparticle toxicity has become 
an area of increasing importance9,10.

In particular, silver nanoparticles (AgNPs), which display beneficial antimicrobial activity, are among the most 
widely used metal-derived nanomaterials and are found in a wide range of everyday consumer products, includ-
ing cosmetics, clothing, household items, medical devices, and food packaging11,12. Due to their prevalence in 
everyday products, AgNPs have now been released into the environment4,13 and make a threat to human health. 
In fact, AgNPs have been shown of late to be toxic in a variety of organisms1,14–16.

Caenorhabditis elegans (C. elegans) has the promise of being a useful model organism for assessing nanopar-
ticle toxicity. These animals are free-living, transparent nematodes, ~1 mm in length, that have a life cycle of a 
few days. They are therefore considerably less complex than mammals and can be easily grown and studied17. The 
C. elegans genome has been completely sequenced, and its genetic mechanisms have been studied extensively. 
Furthermore, there is a high degree of homology between the C. elegans genes and the human genes (60–80% 
homology)18,19. For these reasons, C. elegans has been used as a model system to study the toxic effects of AgNPs. 
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In fact, AgNPs have been shown to be toxic to C. elegans in multiple ways, causing protein or DNA damage, oxida-
tive stress, reduced survival, reduced reproductive capacity, and inhibition of growth20–22. In many of these stud-
ies, immobilization of the worms is required for accurately observing the changes in the organism23,24. Typically, 
one of several immobilization methods can be used; worms can be immobilized using glue25,26, by treatment 
with sodium azide27, or by using anesthetics such as levamisole28. Although these methods are well established 
and broadly accepted, they have limitations, including the potential for the occurrence of changes in the worm’s 
biochemical state and the potential for toxicity. These methods are also labor-intensive and time-consuming24. 
Therefore, alternative methods are required to overcome the limitations of these immobilization methods.

Microfluidic devices that are capable of handling and immobilizing C. elegans have been developed of late, 
and these devices have been successfully applied in sorting29, imaging30,31 and chemo-sensing32–34. In these 
approaches, the moving worm can be immobilized using one of the available techniques, including the intro-
duction of a gelatinous fluid35, compression or restriction by pneumatic valves36, or physical restriction using 
a wedge-shaped clamp channel24. Although these microfluidic devices have successfully immobilized moving 
worms for a variety of purposes, no study to date has used an immobilization strategy in the evaluation of the 
toxic effects of nanomaterial/nanoparticles37–39.

In this report, a novel nanoparticle assessment system based on a microfluidic chip that efficiently and rapidly 
visualizes the uptake and toxicity of the silver nanoparticles in C. elegans has been demonstrated for the purpose 
of both in situ and in vivo monitoring of nanomaterials. The system uses AgNPs as representative nanomaterials, 
and the entry of AgNPs into a chip was detected by measuring the body size, moving distance, and fluores-
cence intensity of animals. The results were compared with the observation conducted using multi-well plates to 
emphasize the sensitivity of C. elegans chip. Other heavy metal ions and nanoparticles with a similar size were 
examined using the developed system to determine a selectivity of the animal-on-a-chip.

Results and Discussion
Characterization of AgNPs. The size and morphology of the AgNPs dispersed in deionized water were 
determined by the analysis of the transmission electron microscope (TEM) images. The AgNPs that were 
observed in the TEM images had a mean diameter of 96.4 ±  35.6 nm and existed as spherical single particles 
(Fig. S1a,b). The hydrodynamic size distribution (Fig. S1c) and zeta potential (− 28.2 ±  2.4 mV) of AgNPs were 
determined by DLS (dynamic light scattering) measurement. These results indicate that the particles are nega-
tively charged and maintain a distance between themselves in an aqueous solution, suggesting the prevention of 
self-aggregation of AgNPs. Based on the aforementioned measurements, the AgNPs appeared to be well dispersed 
with suitable sizes, and they were considered unlikely to cause mechanical damage such as scratches or tears to 
the worm.

Detection of AgNPs-induced body growth inhibition. The effect of AgNPs on growth inhibition in 
C. elegans has been previously reported21. In the study, a measurement of the body size was more difficult due 
to the continuous movement of the nematode. Therefore, the immobilization of the worm is being employed to 
obtain an accurate measurement. Many groups have used the anesthetic levamisole to immobilize the worm on 
an agarose pad, or have used heat-killed worms. Since these methods cause changes in the skin elasticity, however, 
the accurate determination of the body size change is difficult. Initially, we attempted to obtain a photographic 
image of the control or AgNPs-exposed worms, without chemical treatment, to determine whether a change in 
the body size was detectable using image analysis. The body’s wave form, however, caused by the worm’s natural 
swimming or crawling motion (Supplementary Video V1), has been an obstacle to the accurate assessment of the 
body size (Fig. 1a).

To precisely measure the body size of C. elegans, a microfluidic chip for incubation and immobilization of the 
individual worm was designed as previously described23. Briefly, the chip integrates a single chamber for incu-
bation (Supplementary Video V1) and an adjacent channel for worm immobilization (Fig. S2) (Supplementary 
Video V2). In this study, the chip was fabricated using the standard soft lithography (Fig. S3)40. Using this chip, 
the body size changes in the control and AgNPs-exposed worms were successfully determined (Fig. 1b). The 
exposure of the worms to AgNPs resulted in the smaller body size in comparison with the size of worms in the 
absence of particles. The assessment of the body size in the clamp channel of the microfluidic chip was found to 
be significantly easier than that in the well plate (Fig. 1a and b).

To investigate the dose-dependent inhibitory effect of AgNPs on growth in C. elegans, the wild-type worms in 
the microfluidic chip were exposed to different concentrations of AgNPs for 24 h (0– 1 mg/L), and their body size 
changes were monitored (Fig. 1c). The 0.01 mg/L AgNPs concentration resulted in the smallest worm size (and 
hence, the greatest inhibition of worm growth) among all the concentrations of AgNPs. For this reason, this AgNPs 
concentration was used in the remainder of the studies. In case of the lower (0.005 mg/L) or higher (1 mg/L) 
concentrations, a statistically significance in the body size inhibition was not found in wild-type C. elegans  
after 24 h of exposure to AgNPs. When the hydrodynamic size of 1 mg/L AgNP suspension was measured using 
DLS, the z-average diameter of particles was 239.6 ±  33.6 nm at 0 h of incubation. Moreover, the hydrodynamic 
size of AgNP suspension increased up to 375.6 ±  95.4 nm at 12 h of incubation. The AgNP suspensions are dose- 
and time-dependently able to form self-aggregates with a large size, which leads to the lower cellular uptake of 
particles by worms.

In addition to the shorter time and the less labor in the use of C. elegans-on-a-chip than multi-well plate, the 
more precisely measurement of body length led to a statistical significance in the chip system. The relative body 
lengths of the worms fed with AgNPs were 92.1% of those of control animals without nanoparticles (Fig. 1d). 
In the microfluidics-based assay, however, the body sizes of the AgNP-exposed worms were found to be 88.1% 
of those of the control group with a statistical significance (Fig. 1d). These results demonstrate that the body 
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length measurement using a microfluidic chip is more sensitive and accurate than the time- and labor-intensive 
multi-well plate method.

Detection of AgNPs-induced longer migration. The growth of C. elegans involves the occurrence of 
changes in the body length as well as in the body width. The clamp channel of the microfluidic chip can be 
used to quantitatively assess the effect of AgNPs on the nematode body width (Supplementary Video V2). The 
wedge-shaped channel in the clamp chamber gradually decreases in width from 100 to 20 μ m (Fig. S2). When a 
suction force is applied through the outlet reservoir, the distance of migration differs depending on the C. elegans 
body width. The widths of worms that have been exposed to AgNPs are shorter than those of the non-exposed 
worms. Therefore, after applying a suction force through the outlet reservoir, a worm that has been exposed 
to AgNPs should migrate further along the wedge-shaped channel compared to a non-AgNPs-exposed worm. 
Indeed, as shown in Fig. 2a, the images of C. elegans migration confirmed that an AgNPs-exposed worm moved 
farther along the channel than a non-exposed worm.

To quantitate this movement, the distance from the end of the chamber to the head of the worm was meas-
ured. The AgNPs exposure allowed the worm to move 20% farther than a non-AgNPs-exposed worm (Fig. 2b). 
As discussed above, the thickness or width of the worm is one of the key factors indicating the growth inhibition 
by nanoparticles. Due to the small size and swimming motion of C. elegans, however, it is difficult to directly 
measure the thickness of the worm. The measurement of the distance covered along the wedge-shaped clamp 
channel of a microfluidic chip under suction force is therefore an alternative method for monitoring the worm 
thickness, and provides another useful parameter for assessing the AgNPs’ toxicity as well as uptake.

The C. elegans develops into its adulthood through embryonic and post-embryonic four larval stages (L1 – L4). 
Since there is a specific range of body length and width at each developmental stages, both of them are important 
parameters to evaluate the body growth of C. elegans41. The adult hermaphrodite C. elegans of wild-type N2 have 
1250–1400 μ m of length and 70–90 μ m of width when they grow in the normal culture conditions. However, the 
L4-stage larvae of C. elegans fed with AgNPs shows an abnormal body size in their adulthood with reduction of 
length or width. Because it is difficult to determine a significant change in body width by measuring the actual 
size, the length of migration distance has been employed to easily identify the reduction of body width. The 
wedge-shaped channel enables the difference in the body width of C. elegans to be amplified and visualized on 
the chip.

Figure 1. Images of wild-type C. elegans (a) in a well plate and (b) on a microfluidic chip. (c) Effect of various 
concentration of AgNPs on worm body size following 24 h exposure in microfluidic chip. (d) Quantitative 
analysis of worm body size following 24 h exposure of the worm to 0.01 mg/L AgNPs in either a well plate or on 
a microfluidic chip, respectively. Scale bars are (a) 200 μ m and (b) 100 μ m.
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Detection of AgNPs-induced specific gene expression. Given that C. elegans has a translucent body, 
the expression of specific genes can be easily visualized fluorescently in transgenic animals containing the DNA 
construct with a gene of interest fused to GFP (green fluorescence protein)17,42. Depending on the gene that was 
selected for analysis, the fluorescence intensity can provide quantitative information about the effect of toxic 
materials on gene expression42,43. To assess heavy metal toxicity using C. elegans, metallothionein expression has 
been used as a biomarker42. Metallothionein is a small, cysteine-rich protein associated with metal detoxification 
and sequestration. It has a high affinity for the heavy metals such as Cd, Cu, Zn, and Hg44. C. elegans has two iso-
forms of metallothionein, namely mtl-1 and mtl-245. Transgenic strains of C. elegans that express GFP under the 
control of the mtl-1 and mtl-2 promoters (mtl-1::gfp and mtl-2::gfp), respectively, have been developed42.

In this study, the mutant strain CL2122, which contains the mtl-2::gfp reporter gene, was used to monitor 
the uptake of AgNPs and to demonstrate the usability of the microfluidic chip by quantitative measurements of 
fluorescence intensity. The acute or chronic response of mtl-2 gene to nanoparticle uptake was not sufficiently 
reported in C. elegans system. However, we found the overexpression of mtl-2 gene in the wild-type C. elegans 
strain (N2) by real-time PCR analysis (data not shown, unpublished data) after feeding AgNPs. The CL2122 
worms were exposed to AgNPs in either multi-well plates or microfluidic chips for 24 h. Based on the real-time 
PCR analysis, the exposure of C. elegans to AgNPs is expected to promote the transcription of the mtl-2 gene, 
which can be easily monitored by measuring the GFP fluorescence46. The optically transparent nature of PDMS 
allowed the examination of the fluorescence intensity of GFP in the worm intestine24. Figure 3a,b show both 
the bright field and fluorescence images of the worms in the multi-well plate. When the transgenic worms were 
exposed to AgNPs in the multi-well plate assay, no significant difference in fluorescence intensity was noted 
(Fig. 3c). Figure 3d and e show the bright field and fluorescence images of the worms that were exposed to AgNPs 
in the microfluidic chip assay. The fluorescence signal of the AgNPs-exposed worms increased about four folds 
compared to the non-AgNPs-exposed worms (Fig. 3f).

These results demonstrate that using this transgenic strain, the proposed microfluidic assay system is more 
sensitive than the well plate assay in detecting the changes in metallothionein-2 gene expression brought about by 
AgNPs exposure. Although the precise reason for the increased sensitivity has not been fully understood, it was 
suggested that the shorter and simple procedure for the sample preparation in the microfluidics system was pre-
sumably contributed to the stronger fluorescence signal. On the contrary, the multi-well plate method required 
the more experimental steps for the sample preparation and mounting worms, which gave an adverse effect on 
the fluorescence signal from worms fed with AgNPs. As an alternative tool, BioSort (COPAS) has been used to 
observe the fluorescence signals in worms with an advantage of being able to monitor a large number of worms 
in a short time47. This sophisticated instrument is, however, expensive and known to require a large space and 
trained operators47. However, the microfluidic system proposed herein allows incubation, immobilization, and 

Figure 2. (a) Images of wild-type C. elegans migration along the wedge-shaped microfluidic chip channel 
following exposure to 0.01 mg/L AgNPs for 24 h. (b) Quantitative analysis of migration distance moved by the 
worm. Scale bars are 200 μ m.
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data collection on a single chip. It is believed that this simplicity allowed the users to observe the effect of AgNPs 
on metallothionein-2 expression with improved assay sensitivity.

Rapid monitoring of AgNPs’ toxicity by C. elegans-on-a-chip. In monitoring the toxicity of nano-
materials, an important consideration is that a rapid assessment should be able to be made. Towards this end, 
the toxic effects of AgNPs on C. elegans were investigated in this study at different endpoints. The wild-type (N2) 
and mutant (CL2122 dvIs15) strains were injected into the microfluidic chip. After the exposure of the worms 
to various concentrations of AgNPs (0, 0.005, 0.01, 0.1, and 1 mg/L) for 6 h, the change in the body size for the 
wild-type strain and the change in the fluorescence signal for the mutant strain were determined. When the 
wild-type worms were exposed to AgNPs concentrations ranging from 0.005 to 0.01 mg/L, their body size became 
smaller than that of the non-AgNPs-exposed worms. It was noteworthy that the growth of the nematode from the 
L4 stage to the young adult stage was inhibited by such a low concentration (0.005 mg/L) of AgNPs (Fig. 4a). As 
the AgNPs concentration increased, the effect on growth inhibition actually decreased. This result is potentially 
explained by the aggregation of the AgNPs at higher concentrations, thus causing a decreased effect of the AgNPs 
on growth inhibition. In the previous case of 24 h exposure (Fig. 1c), the lower concentration of 0.005 mg/L did 
not affect the inhibition of body size, whereas only 0.01 mg/L AgNPs shortened the worms’ body length. During 
the longer period (24 h) of incubation, the inhibitory effect of AgNPs (0.005 mg/L) on body growth was thought 
to be diminished or overcome because of the smaller AgNPs’ concentration.

The mtl-2, a specific gene to AgNPs was significantly overexpressed in the concentration range from 0.005 to 
1 mg/L in spite of a short exposure time (6 h) (Fig. 4b). The fluorescence intensity indicating mtl-2 gene expression 
increased in the AgNPs’ concentration range from 0 to 0.1 mg/L by dose-dependent manner. However, the high-
est concentration (1 mg/L) showed less fluorescence intensity than that of the other smaller concentrations. Given 
that the hydrodynamic size of AgNPs increased over 200 nm at the higher concentration (1 mg/L) by forming 

Figure 3. Images of the mutant strain (CL2122 dvIs15) after 24 h culture without (w/o) (a,d) and with (w/) (b,e) 
0.01 mg/L AgNPs. The cultures of C. elegans were performed in both well plate (a,b) and in a microfluidic chip 
(d,e). The quantitative measurements of the GFP fluorescence from mutant mtl-2::gfp worms cultured on a well 
plate (c) and on a microfluidic chip (f). Scale bars are 100 μ m.
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self-aggregates, the 1 mg/L AgNPs reduced the onset of mtl-2 gene expression due to the lower cellular uptake 
of large particles. However, these results suggest that the proposed system can detect the uptake and toxicity of 
the very small concentration (5 ppb) of AgNPs at the early time point (6 h) without multiple steps of time- and 
labor-intensive sample preparation. The overexpression of mtl-2 gene triggered by the uptake of AgNPs is consid-
ered as the earlier process rather than other physiological or phenotypic processes such as the inhibition of body 
growth, the reproduction of reduction rate and the decrease of survival ratio. Therefore, the fluorescence signal 
was larger upon incubation for 6 h (Fig. 4b) as compared with 24 h (Fig. 3f). In addition, the L4 larvae fed with 
AgNPs grew to the young adult and 1-day adult after 6 h (Fig. 4b) and 24 h (Fig. 3f), respectively48. The different 
developmental stage might lead to the difference in fluorescence signal between 6 h and 24 h of incubation time.

Selectivity of C. elegans-on-a-chip. To determine whether the microfluidic C. elegans-on-a-chip was 
only specific to AgNPs or responsive to other nanoparticles and ions, AuNPs, Ag+, and Cd2+ along with AgNPs 
were prepared and tested using the chip. The changes in the body size and fluorescence signal were monitored 
using chips containing both the wild-type (N2) and mutant (CL2122 dvIs15) strains. Figure 5a,b show the changes 
in the body size and fluorescence signal that were obtained after the exposure of the worms to the indicated 
metal ions and nanoparticles. Among the particles and ions, the AgNPs displayed the most significant differences 
in both body size and fluorescence. Metal ions triggered the overexpression of mtl-2::gfp with resulting in the 
increase of fluorescence, while it did not affect the body growth of C. elegans. We have also tested carbon-based 
nanoparticles including fullerene (nC60) and fullerol (nC60-OH), however, they did not induce the overexpression 
of mtl-2::gfp on the chips (data not shown, unpublished data).

It was known that AgNPs release Ag+ ions in the presence of water, and that the Ag+ ions exert a toxic effect 
on processes such as bacterial cell electron transfer, DNA replication, and oxidative stress49–51. In the proposed 
system, the exposure of worms to Ag+ did not affect worm growth, but as expected, it induced an increase in mtl-2  
gene expression. These results indicate that worm growth was inhibited by the AgNPs but not by Ag+, whereas 
the expression of the mtl-2 gene was affected by both the AgNPs and Ag+. The effect of Cd2+ on C. elegans body 
growth and mtl-2 gene expression was also tested using the microfluidic system. The worms that were exposed to 
Cd2+ showed an increase in mtl-2 expression, as shown by the increase in fluorescence signal; however, the body 
growth was not inhibited by Cd2+.

There are two independent pathways, the body growth inhibition and the metallothionein gene overexpres-
sion, in the AgNPs’ toxicology or the regulatory process. Therefore, there is no correlation between the size reduc-
tion and the fluorescence signals. The metal ions including Ag+ and Cd2+ only trigger the overexpression of mtl-2 

Figure 4. The dose-dependent toxic effect of AgNPs in C. elegans after 6 h of exposure to AgNPs. (a) Body 
size in wild-type animals and (b) GFP fluorescence signal in the mutant strain (CL2122 dvIs15).
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gene without a change of body growth, whereas the uptake of AgNP affects both pathways in C. elegans due to the 
co-existence of two faces, the heavy metal property and the nanoparticle characteristic, in the AgNP. The mtl-2 
gene is responsible for the uptake of metals including Ag, and the growth inhibition is a resultant phenotype by 
the uptake of nanoparticle including AgNP.

The different profile between Fig. 5a,b emphasizes the usability of two parameters, body size and fluorescence 
intensity, as specific and quantitative indicators for the assessment of AgNPs because the only silver nanoparticle 
significantly influences both parameters. Given that the concentration (0.01 mg/L) is much lower than that used 
in the previous studies52,53, these indicators also possess a sensitivity in addition to the selectivity. These results 
demonstrate that the C. elegans-on-a-chip loaded with N2 and CL2122 strains has a potential applicability for 
the detection of nanoparticles or assay of their toxicities using multiple parameters including the body size, the 
migration distance and the fluorescence from a specific gene overexpression.

The proposed C. elegans-on-a-chip has a potential as the platform device to determine nanoparticles’ existence 
and toxicity if the strains with an overexpressed fluorescence protein DNA fused with a gene responsive to the 
target nanoparticle are adequately selected and loaded on the chip for the target nanoparticle. The overexpressed 
genes responsive to a specific nanoparticle can be discovered by the help of real-time PCR or DNA chips. Using a 
chip containing multiple channels entrapped with various types of marker strains, it is also possible to identify or 
predict what nanoparticles exist in the unknown real sample dropped onto the chip.

Conclusions
In this study, the microfluidic C. elegans-on-a-chip capable of AgNPs detection and its toxicity assay was devel-
oped to minimize time, labor and the use of sophisticated instruments. This chip-based assessment allows the 
incubation, immobilization, and quantitative measurement of C. elegans parameters, including growth (worm 
length and width), behavior (moving distance), and levels of metallothionein (mtl-2) gene expression. These 
parameters indicating the uptake of nanoparticles are more sensitively and accurately obtained on the chip 
in comparison with the conventional method using multi-well plate or petri dish-based assay. The proposed  
C. elegans-on-a-chip detected the uptake and toxicity of the very small concentration (5 ppb) of AgNPs at the 
early time point (6 h) without multiple steps of time- and labor-intensive sample preparation. In addition, the 
only AgNPs led to both the overexpression of mtl-2 gene and the reduction of body size among the used nanopar-
ticles and metal ions, suggesting a strong selectivity of the chip. These results demonstrated that the animal chip 
exerts an efficient monitoring performance, with a significant reduction in labor, space, and time. Therefore, the 

Figure 5. The comparative toxicity assessment on C. elegans-based microfluidic chips using metal 
nanoparticles and ions including AgNPs, AuNPs, Ag+ and Cd2+. (a) Body size in wild-type animals and 
(b) GFP fluorescence signal in the mutant strain (CL2122 dvIs15).
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proposed C. elegans-on-a-chip has a great potential as a rapid and on-site system for monitoring the uptake and 
nanotoxicity of AgNPs.

Materials and Methods
Chemicals and nanoparticles. AgNPs (SKU: 576832) and AuNPs (SKU: GRF-60-20) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA) and Cytodiagnostics (Burlington, ON, Canada), respectively. According 
to the manufacturer’s protocol, the AgNPs (< 100 nm) were obtained using PVP as a dispersant with the purity 
of 99.5% trace metal basis. The reactant free AuNPs (60 nm) were stabilized using citric acid and dispersed in 
0.1 mM phosphate buffered saline (PBS) with the purity of 99.0% reactant free. Both AgNPs and AuNPs suspen-
sions were prepared by diluting the particles in deionized water. The hydrodynamic size distribution and zeta 
potential of the nanoparticles were measured using a dynamic light scattering (DLS) spectrometer (NanoZS, 
Malvern, UK). The morphology and size of the nanoparticles were analyzed by TEM (transmission electron 
microscopy, JEM1010-80 kV, JEOL, Japan). The silver nitrate (AgNO3, Sigma, St. Louis, MO, USA) and cadmium 
chloride (CdCl2, Sigma, St. Louis, MO, USA) were prepared by dissolving their respective powders in deionized 
water.

Fabrication of a microfluidic chip for nanotoxicity assay. The master mold was manufactured 
by photolithography using photoresist SU-8 2025 (MicroChem Corp., Newton, MA, USA) (Fig. S3). The 
poly-dimethylsiloxane elastomer (PDMS; Sylgard 184, Dow Corning, Midland, MI, USA) was mixed with its 
curing agent (10:1). After degassing of the mixture under vacuum, the PDMS/curing agent mixture was poured 
onto the master mold and baked at 70 °C. The cured PDMS was peeled from the master wafer and punched to 
form an inlet and an outlet. After cleaning, the PDMS was treated with oxygen plasma and bonded to a glass slide. 
The diameter of the incubation chamber was 1.5 mm with a depth of 50 μ m. The width of the immobilization 
channel was tapered from 100 μ m to 20 μ m at a constant depth of 50 μ m.

Maintenance of C. elegans. C. elegans, including Bristol N2 (Wild-type), and CL2122, dvIs15 (mtl-2::GFP) 
and Escherichia coli strain OP50 were obtained from the Caenorhabditis Genetic Center (CGC, at University of 
Minnesota, Minneapolis, MN, USA). All nematodes were maintained at 20 °C on nematode growth medium 
(NGM) seeded with OP50 as a food source7,17.

Preparation of synchronous C. elegans. For the multi-well plate-based assay, the synchronization 
of worms was achieved using the following process. C. elegans eggs were isolated from mature adults using a 
hypochlorite solution (1.5% NaOCl and 1.5 M NaOH) and allowed to hatch on fresh NGM agar plates with 
OP50 as a food source7,17. The synchronized worms were prepared and grown until the middle of the L4 larval 
stage. For the microfluidic chip-based assay, the 20 mature adults were transferred to a fresh NGM agar plate 
supplemented with OP50 as a food source, and the plates were incubated at 20 °C to allow egg laying to occur. 
After 1 h of incubation, all adults were removed from the plate, and the synchronized worms were cultured 

Figure 6. C. elegans-on-a-chip to display animals’ body size, moving distance and specific gene expression 
for Ag nanoparticles’ uptake and their nanotoxicity assay. 



www.nature.com/scientificreports/

9Scientific RepoRts | 7:40225 | DOI: 10.1038/srep40225

until the middle of the L4 larval stage. The worms were then loaded into the microfluidic chip by injection 
through the inlet reservoir.

C. elegans growth assay. For the multi-well plate-based assay, the 10 synchronized L4 stage worms 
(wild-type, N2) were added to each well. The worms were consequently incubated, in the presence of food, with 
the 0.01 mg/L nanomaterials for either 6 or 24 h. The nematodes were then rinsed with deionized water and 
transferred manually to fresh NGM media17. For the microfluidic chip-based assay, a single L4 stage worm was 
injected into the chamber through the inlet reservoir. The worm was incubated with the appropriate nanomate-
rial for either 6 or 24 h with a food source. The worm was then washed and moved to the clamp channel of the 
chip by applying a suction force (Fig. 6). The worm’s body size was estimated by microscopy (SZ61, Olympus, 
Tokyo, Japan) and the resulting microscopic image was analyzed using ImageJ software (http://imagej.nih.gov) 7. 
Additionally, the distance covered by the worm in the microfluidic chip clamp channel was determined by obtain-
ing microscopic, or photographic images, and analyzing the images. At least 10 replicates were conducted for the 
precise growth inhibition assay.

Metallothionein gene expression-related GFP reporter assay. For the multi-well plate-based assay, 
10 synchronized (L4 stage) mutant worms (mtl-2::gfp) were cultured in the well in the presence of the appropriate 
nanomaterial in the presence of a food source. After 6 or 24 h exposure, the nematodes were rinsed with deion-
ized water and were treated with 5 mM levamisole solution (as an anesthetic) to immobilize the worm7,17. For the 
microfluidic chip-based assay, a single L4 stage worm was injected into the chamber through the inlet reservoir. 
The mutant worm was incubated with the appropriate nanomaterial for either 6 or 24 h with a food source. The 
worm was then washed and moved to the clamp chamber of the chip by applying a suction force (Fig. 6). The 
green fluorescence protein (GFP) fluorescence intensity was monitored using a fluorescent microscope (Axio 
Imager A2, Carl Zeiss, Jena, Germany) equipped with a Peltier cooled CCD camera. All nematodes were photo-
graphed at a fixed fluorescence exposure time. The worms GFP fluorescence intensity was analyzed using ImageJ 
software7.

Data and statistical analysis. The comparison of experimental data from at least three independent exper-
iments was conducted using a mean value with the error bar (standard deviation, ± S.D.), and the statistical sig-
nificance was determined by Student t-test (Sigma Plot 10.0, SPSS Inc., Chicago, IL, USA). When the p-values are 
less than 0.05 or 0.01, the data are considered statistically significant (*p <  0.05 and **p <  0.01).
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