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Abstract: The joint detection and tracking of multiple targets from raw thermal infrared (TIR) image
observations plays a significant role in the video surveillance field, and it has extensive applied
foreground and practical value. In this paper, a novel multiple-target track-before-detect (TBD)
method, which is based on background subtraction within the framework of labeled random finite
sets (RFS) is presented. First, a background subtraction method based on a random selection strategy
is exploited to obtain the foreground probability map from a TIR sequence. Second, in the foreground
probability map, the probability of each pixel belonging to a target is calculated by non-overlapping
multi-target likelihood. Finally, a δ generalized labeled multi-Bernoulli (δ-GLMB) filter is employed to
produce the states of multi-target along with their labels. Unlike other RFS-based filters, the proposed
approach describes the target state by a pixel set instead of a single point. To meet the requirement of
factual application, some extra procedures, including pixel sampling and update, target merging and
splitting, and new birth target initialization, are incorporated into the algorithm. The experimental
results show that the proposed method performs better in multi-target detection than six compared
methods. Also, the method is effective for the continuous tracking of multi-targets.

Keywords: joint detection and tracking of multi-target; thermal infrared (TIR) image;
track-before-detect (TBD); background subtraction; labeled random finite sets (RFS); δ-GLMB filter

1. Introduction

The detection and tracking of moving targets is a challenging vision task that has attracted
extensive research. Because of the comparatively lower cost, omnipresence, and 24 × 7 applicability,
thermal infrared (TIR) sensors have provided new application areas [1]. Since pedestrians are
the major participants in many events of interest, the joint detection and tracking of multi-targets
(usually meaning pedestrians, but not exclusively in this paper) becomes one primary task borne
by the TIR surveillance system [2]. The main advantages of thermal sensors are their ability to
see in complete darkness, their robustness to illumination changes and shadow effects, and their
comparatively lower degree of intrusion regarding privacy. Despite many superiorities, the main
disadvantages of TIR imaging include low resolution, many dead pixels, lack of color information,
low foreground/background contrast, and associated heavy noise [2,3]. As well as the above
disadvantages, in top-down surveillance scenes, the target usually occupies fewer pixels and it
is difficult to extract the effective appearance features, including textural and contour information.
Moreover, the targets in surveillance scenes are highly variable in pose, size, shape, and intensity [2].
Multiple moving-target detection and tracking remain crucial objectives and are identified as the key
issues in the TIR surveillance system.

Usually, detection and tracking tasks are separable in computer vision, and most multi-target
tracking objectives require a detection operation to produce measurements [4]. Emerging technologies,
such as proposal detection method and deep convolution neural network method, usually cannot
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achieve as admirable detection performance in the TIR surveillance images as the optical images
due to the above-mentioned shortcomings. The traditional method still plays a significant role
in moving-target detection. In addition, the detection methods in video streams can be divided
into three categories: frame difference, optical flow, and background subtraction methods [5].
Because of its low computational cost and high accuracy, the background subtraction method is
more popular [6,7]. Unfortunately, the classic background subtraction method has two debilitating
drawbacks. First, it achieves detection tasks based on a threshold, which results in information loss [8].
During detection, information loss can significantly degrade tracking performance, especially in
obscure feature cases [4,9]. Second, the detection foreground pixels from different targets are not
discriminable. To track different targets individually, some post-processes must be executed to
differentiate them. Therefore, the joint processing of detection and tracking tasks is of fundamental
interest to reduce information loss and simplify the process. Some typical algorithms such as dynamic
programming [9,10], Bayesian existence process [11], and multi-modal distributions [12] have shown
great success. Among them, the random finite set (RFS) framework approaches that jointly detect and
track have attracted significant attention [4,13,14].

The RFS-based methods consist of two procedures in a Bayesian framework: prediction and
update. Two methods can be used to implement them, one based on the Gaussian mixtures (GM)
model and the other based on the sequential Monte Carlo (SMC) model; the latter is also known as
particle implementation. The RFS-based filters can be divided into unlabeled filters and labeled
filters. The probability hypothesis density (PHD), cardinalized PHD (CPHD), and multi-target
multi-Bernoulli (MeMBer) filters are the typical unlabeled category [15–17]. Although these filters
have been successfully applied to visual tracking [4,18,19], they provide only unidentified estimates
and require additional post-processing to form tracks. The generalized labeled multi-Bernoulli
(GLMB) filter and δ-GLMB filter belonging to the label class of RFS-based filters can distinguish
and maintain different tracks by adding a label to each target [20,21]. Based on the labeled RFS filter,
a δ-GLMB track-before-detect (TBD) approach with a separable likelihood function was introduced
in a radar-tracking scenario in [22]. Subsequently, an improved GLMB-TBD algorithm, which can
handle non-separable likelihood situations, was proposed in [23] for generic measurement models,
although the considerable computational cost limits its application. Currently, the labeled RFS-based
methods focus on non-overlapping targets and point target tracking [14,18,22].

To alleviate the above problem in multi-target detection and tracking of TIR surveillance
system, a joint detection and tracking approach based on particle implementation, which combines
a background subtraction method with a GLMB filter, is proposed. First, according to the ViBe
algorithm [24], a random selection strategy background subtraction method without threshold
detection is designed to yield a TIR foreground probability map. Second, a multi-target likelihood
function is used to calculate the probability of each pixel belonging to a target in the foreground
probability map. Finally, the δ-GLMB-TBD filter is applied to produce the state of the multi-target
along with their labels. Most RFS-based TBD methods describe a target in the image as a rectangle
or a single point [14,18], which is too rough for a target with complex contour and may degrade the
detection and tracking performance. In the proposed method, the target is represented by its own
pixel set. This means that the δ-GLMB-TBD filter is extended to track irregular areas of a target by
benefiting from shape similarity in consecutive frames. To be practical, the algorithm also includes
some extra procedures, such as pixel sampling and update, target merging and splitting, and new birth
target initialization, which accommodate target deformation and overlapped and dynamic change via
gathering, splitting, birth, and death.

The main contribution of this paper is the proposal of a joint multi-target detection and tracking
method based on background subtraction and a δ-GLMB-TBD filter for infrared surveillance system,
along with its particle implementation. As well as producing a multi-target state estimate, the proposed
method can track the multi-targets successfully and individually keep their labels. Based on the
proposed method, we also developed the following:
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• More effective multi-target estimates which are from a pixel set instead of a rectangle or a
single point;

• Several procedures to accommodate target deformation and multi-target dynamic processes,
such as pixel sampling and update, target merging, splitting, and new target initialization;

• A random selection strategy background subtraction method which can be used to pre-process
the images without threshold segmentation.

This paper is organized as follows. Section 2 describes the proposed algorithm in detail,
including the background subtraction method, multi-target likelihood calculation, and the recursion
of the δ-GLMB-TBD filter. The results and analysis of the experiments are presented in Section 3.
Conclusions are drawn in Section 4.

2. Background-Subtraction-Based δ-GLMB-TBD Filter

In this section, the background-subtraction-based δ-GLMB-TBD filter is introduced in three major
parts: background subtraction, multi-target likelihood function calculation, and implementation of the
δ-GLMB-TBD filter [22]. A block diagram is presented in Figure 1. Background subtraction transforms
the original TIR image to a foreground probability map where each pixel can be interpreted as the
probability of the pixel belonging to the foreground. Then the map is used to generate new birth targets
and to calculate the multi-target likelihood. Finally, the δ-GLMB-TBD is used to produce multi-target
estimates. To accommodate target deformation and dynamic change, some extra procedures, such as
splitting and merging, are included.

TIR image sequence

Background 

subtraction

Likelihood 

function

calculation

Prediction Update
Splitting 

Merging

New target 

inilizaiton

Multi-target state estimate
d -GLMB-TBD filter

Figure 1. Schematic of the proposed method.

2.1. Background Subtraction Method for TIR

Figure 2 shows three typical TIR surveillance scenes, in which it is difficult to detect all
targets because of low foreground/background contrast, fewer pixels, heavy noise, and lack of
textural and contour information. One popular method is background subtraction. However,
background subtraction usually produces two segmentations that denote background and foreground
by threshold detection, which results in information loss and then leads to inferior tracking
performance. To alleviate these problems, the GLMB-TBD filter without the need to detect targets is
employed to achieve the joint detection and tracking of multi-target on a background suppression
image. Many methods have the potential to subtract the background, such as ViBe [24], KDE [25],
GMM [26] and so on. In this paper, we propose a random selection strategy based on ViBe
algorithm [24] to subtract the background, which is because the ViBe algorithm has the characters of
low complexity, high stability, and excellent background subtraction effect [27]. The new background
subtraction method consists of two parts: background model initialization and background model
update. The differences between the new approach and the ViBe method are as follows: (1) less missing
detection without threshold segmentation; (2) pixel background model update with respect to the
probability of being a foreground pixel; (3) morphology operations to eliminate scattered noise and
maintain shape. The details are introduced in the following sections.
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(a) (b) (c)

Figure 2. Three typical TIR images. (a) Campus; (b) Parking lot; (c) Community.

2.1.1. ViBe Method

Before discussing the proposed method, we will first summarize the standard ViBe method.
The background subtraction is regarded as a classification problem in the ViBe method. However,
as there is no way to model each background pixel as a probability density function (PDF),
then, no estimation or classification result could be given directly from the PDF. Therefore, the ViBe
method establishes a background pixel set for each pixel, and each element in this set can be seen as a
sample obtained by the true PDF of the background [24].

The key problems of the ViBe method are: (1) how to get the background pixel set, effectively;
and (2) how to classify a pixel as a background or foreground according to its given background
pixel set. For the first problem, a random selection strategy-based method is employed to update the
background pixel set. This can make the samples be more compliant to the pdf of the background
without increasing the number of the samples and discarding the earlier samples. For the second
problem, the new pixel should compare with its background pixel set. The steps are listed as follows.

Step 1: Calculate the Euclidean distances between the new sample and each sample in its
background pixel set;

Step 2: Obtain the number of the Euclidean distances shorter than a given threshold;
Step 3: Compare the number with another given threshold; if the number is greater than the

threshold, then the new pixel is classified as a background pixel and vice versa.

2.1.2. Background Model Initialization

Regarding the proposed method, the background model initialization will be discussed first.
The proposed method only employs the first frame to initialize the background model. Let yi denote
the ith pixel value in the original TIR image Iori (1 ≤ i ≤ Nimg , where Nimg denotes the number of
all pixels in the TIR image), and Mi (k) denotes the background model of pixel i at time k (in the
background model initialization, set k = 1); all Mi (k) make up the image background model M(k).
Each Mi (k) is a collection of N background samples.

Mi(k) = {mi,1, mi,2, ..., mi,N}. (1)

where mi,n (1 ≤ n ≤ N) is a sample and initialized as follows:

mi,n = yi + vran(vl , vh) (2)

where vran(vl , vh) denotes a uniform random number between vl and vh. The main parameter in initial
model is: N.

2.1.3. Background Model Update

The background model will be updated with each new frame. The update step is the core
procedure used to yield accurate results over time. In this step, a conservative update policy is used.
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For each pixel i in frame Iori at time k (k > 1), its equivalent background is the average of its
background model Mi (k) given by

yi,equ =
1
N
(mi,1 + mi,2 + ... + mi,N). (3)

We compare the absolute difference between its current value yi and its equivalent yi.equ with a
threshold thdi f f . The comparison result si can be obtained by

si =

{
abs(yi − yi,equ)/thdi f f i f abs(yi − yi,equ) < thdi f f

1 i f abs(yi − yi,equ) ≥ thdi f f
(4)

where abs(·) denotes the “absolute” operation. si = 1 means the pixel i is classified as foreground.
According to a conservative update policy, a foreground pixel should never be used to update the
background. Thus, only when si < 1 can the current pixel value yi replace one sample in the
background model Mi (k− 1) with the probability of (1− si). So thdi f f plays a significant role in
updating the background model. When thdi f f is too small, si is sensitive to the pixel change and noise;
when thdi f f is too large, the background model may be polluted by the pixel belonging to moving
target. In contrast with the first-in-first-out strategy, the sample substituted by yi is chosen randomly
by a uniform probability density function. These operations can extend the time windows covered
by the background models. The long lifespan of the background samples significantly aids in the
detection of slow-moving multi-targets. The conservative update policy can make a sharp detection of
a moving target without introducing the foreground.

Unfortunately, one disadvantage of the conservative update policy is that it can lead to deadlock
situations and ghosts. To eliminate these influences, an improved “detection support map” method [28],
which counts the number of times a pixel is classified as foreground consecutively, is employed.
At frame k, the detection support map DSMi (k) is given by

DSMi(k) =

{
DSMi(k− 1) + 1 si = 1

0 otherwise
(5)

We assume the maximum duration of a target remaining stationary is tsta and that the
corresponding frame number is Nsta. If the time of one target remaining stationary reaches tsta,
this target is then classified as a background target. When the DSMi (k) reaches the threshold Nsta,
a random strategy is then used to update the background model. During the update, nran samples
(nran is a uniform random positive integer between 1 and N) in the background model of pixel i
are replaced by new samples. To speed up ghost elimination, when a sample has been updated,
one sample from its 8-connected neighborhood pixel background model should be replaced by a
new value according to a uniform law. This operation uses the spatial consistency assumption of the
background, as in the ViBe method. The assumption is that the background pixel shares a similar
distribution as its immediate neighbors. In addition, each new sample is obtained by (2). The detection
support map is updated following (6), and the updated background model Mi (k) at time k is obtained.

DSMi(k) = DSMi(k)− nran (6)

Based on the above steps, the whole update background model M(k) can be obtained by recursion
with the new TIR frame Iori. Then, (4) can be executed with the updated yi,equ calculated from Mi(k);
all si (1 ≤ i ≤ Nimg) constitute the foreground probability map S(k). Figure 3a shows the foreground
probability map of Figure 2a. The whole target is separated into several small targets and there is
some scattered noise in S(k) in Figure 3a. Morphology erosion with small structure can be used to
eliminate the scattered noise. Before normalizing the absolute difference by thdi f f in (4), we conduct
erosion and dilation operation on the absolute difference image whose pixel value is abs

(
yi − yi,equ

)
.



Sensors 2018, 18, 3944 6 of 23

Figure 3b shows the foreground probability map with dilation following erosion. The pseudo-code
for the background model update is presented in Algorithm 1. Lines 1–3 determine a pixel to be
a foreground pixel (si = 1) or a background pixel (si < 1). If the pixel belongs to the background,
then we update its background model as lines 4–9. If it belongs to the foreground, besides updating
Mi(k− 1) lines 11–18 also show how to use the detection support map to eliminate deadlock situations
and ghosts.

(a) (b)

Figure 3. The two foreground probability maps of Figure 2a. (a) The original foreground probability
map; (b) the foreground probability map with dilation following erosion.

Algorithm 1: Background model update

Input: M(k− 1): background model. Iori: the kth TIR image. thdi f f : normalization threshold.
DSMi(k): detection support map. Nsta: the frame number of a target remaining
stationary.

Output: M(k): background model. S(k): foreground probability map.
1 for i = 1:Nimg do
2 calculate yi,equ according to (3);
3 calculate si according to (4);
4 if si 6= 1 then
5 DSMi(k)← 0;
6 if vran(0, 1) > si then
7 mi,n ← yi, where n is a random positive integer between 1 and N ;
8 update Mi(k− 1) with mi,n;
9 end

10 else
11 DSMi(k)← DSMi(k− 1) + 1 ;
12 if DSMi(k) == Nsta then
13 for j=1:nran,(where nran is a random positive integer between 1 and N) do
14 update Mi(k− 1) according to (1) and (2);
15 update Mq(k− 1) according to (1) and (2), where q is a random pixel index and

yq is located at the 8-connected neighborhood of pixel i;
16 DSMi(k)← DSMi(k− 1)− 1 ;
17 end
18 end
19 end
20 end
21 M(k)← M(k− 1);
22 do morphology operation on the absolute difference image;
23 update si and make up S(k);
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2.2. Multi-Target Likelihood Function Calculation

In the foreground probability map S(k), each si (1 ≤ i ≤ Nimg) lies in the interval [0, 1], which can
be interpreted as the probability that pixel i should be classified as the foreground. In S(k), each target x
illuminates a set of pixels denoted by T(x). Inspired by [4], if a pixel i ∈ T(x), its intensity distribution
follows the foreground likelihood function gF(x), and if i /∈ T(x), its intensity distribution follows
the background likelihood function gB(x). These two likelihood functions (or probability density
functions of intensity) are of the form:

gF(x) = ςF exp(x/δF) (7)

gB(x) = ςB exp(−x/δB) (8)

where δF and δB determine the spread rates of the foreground and background intensities respectively,
and ςF and ςB are normalizing factors. In general, the ratio of δF to δB determines the detection
threshold for judging whether a pixel belongs to a target or background. The greater the ratio
is, the lower the associated target threshold will be. Because the TBD method allows more
suspected targets to be input into the δ-GLMB-TBD filter, δB should be significantly smaller than
δF. The background intensity remains constant unless it is quite close to the target, whereas the
foreground intensity has a significantly more variable and spreading intensity function [4,29]. As the
references state, the fluctuation of the ratio does not cause significant changes to the tracking results.

Let s̄(x) denote the average of all pixels in T(x), i.e.,

s̄(x) =
1

|T(x)| ∑
i∈T(x)

si (9)

where |·| denotes the cardinality (the number of elements) of a set. We assume that all illumination
regions of influences of the multi-target in the TIR image are not overlapped, i.e., x 6= x′ ⇒ T(x) ∩
T(x′) = ∅. This assumption is reasonable, because an individual cannot recognize the identities
and states of overlapped targets. For example, in the TIR image when some pedestrians overlap
with each other, an individual cannot determine whether one of the pedestrians has disappeared,
whether a pedestrian appears in the surveillance scene, or when or whether the group of pedestrians
will separate from each other. In practical application, tracking is a dynamic process. When targets are
overlapped, the merging procedure (seen in Section 2.3) will guarantee that all targets are treated as
one. After separation, they will be tracked individually by the splitting procedure (seen in Section 2.3).
The GLMB-TBD filter will generate the separable likelihood function based on the assumption that
the targets do not overlap. Then, if given a target set X with statistically independent pixel values,
the likelihood that the set X illuminates the region

⋃
x∈X T(x) can be expressed as ∏x∈X gF(s̄(x)).

Let s̄B(X) denote the average intensity of the map S(k) after filling all target regions with the
background pixel value of 0, i.e.,

s̄B(X) =
1

Nimg
(∑

Nimg
i=1 si − ∑

x∈X
∑

i∈T(x)
si). (10)
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Substituting s̄B(X) into (8),

gB(s̄B(X)) = ςB exp

−
∑

Nimg
i=1 si − ∑

x∈X
∑

i∈T(x)
si

δBNimg


= ςB exp

−∑
Nimg
i=1 si

δBNimg

∏x∈X exp

(
∑i∈T(x) si

δBNimg

)

= ςB exp

−∑
Nimg
i=1 si

δBNimg

∏x∈X exp

(
|T(x)| · s̄(x)

δBNimg

)
.

(11)

Then, given the target set X, the multi-target likelihood of S(k) is the product of the foreground
and background, i.e.,

g(S(k)|X) = gB(s̄B(X))∏x∈X gF(s̄(x))

= ςB exp

−∑
Nimg
i=1 si

δBNimg


︸ ︷︷ ︸

independent o f X

∏
x∈X

exp

(
|T(x)| · s̄(x)

δBNimg

)
gF(s̄(x))︸ ︷︷ ︸

dependent on x

. (12)

(12) shows that this likelihood is separable.

2.3. δ-GLMB-TBD Filter

After obtaining the multi-target likelihood for the foreground probability map, we describe
how to detect and track multi-targets using the improved δ-GLMB-TBD filter with a separable
likelihood function [30]. The main contribution in this part is that the improved filter can produce
the appearance of the target in contrast to the center position or rectangle estimates obtained by the
standard δ-GLMB-TBD filter. Based on this, we also develop the following: (1) merging and splitting
procedures are employed to handle situations where multi-targets merge into one group and one
group splits into several multi-targets; (2) pixel sampling and updating are used to accommodate
target deformation; (3) birth target initialization procedure is to open up the applications of the filter.
We discuss each of these improvements in the following subsections.

2.3.1. Basic Theory

In this subsection, the standard δ-GLMB-TBD filter, consisting of two steps, prediction and update,
with a separable likelihood function, is briefly discussed [23]. Before introducing the recursion of the
standard δ-GLMB-TBD filter, some notations are shown for convenience.

(1) Notation

For the remainder of the paper, let lowercase letters (e.g., x) denote single-target state and
uppercase letters (e.g., X) denote multi-target states. The labeled target states are indicated by boldface
letters (e.g., x, X). Space is represented by a letter with a tilde (e.g., X̃ denotes the state space, L̃ denotes
the discrete label space). A labeled target can be written as x = (x, l), where l ∈ L̃ and l = (k, i), k means
the target birth time, and i is a unique index to distinguish targets born at the same time. A labeled
multi-Bernoulli (LMB) RFS with state space X̃ and label space L̃ can be written as v = {r(l), p(l)}l∈L̃,
where r(l) and p(l) mean the existence probability and the probability density of a target with label
l. 〈α, β〉 =

∫
α(x)β(x)dx denotes the standard inner product, and hX = ∏x∈X h(x) denotes the
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multi-target exponential, where h∅ = 1 by convention and α(x), β(x), and h(x) are real-valued
functions. The generalized Kronecker delta function and inclusion function are defined as

δY(X) =

{
1 i f X = Y
0 otherwise

, (13)

1Y(X) =

{
1 i f X ⊆ Y
0 otherwise

. (14)

(2) Standard δ-GLMB-TBD Filter

From [23], the multi-target posterior at time k has the following δ-GLMB form:

vk(X) = ∆(X) ∑
I∈F (L̃0:k)

δI(L(X))w
(I)
k [p(I)

k ]
X

(15)

where X is the current multi-target state; ∆(X) = δ|X|(|L(X)|) denotes the distinct label indicator,
which means that the cardinalities of the set of labels and the set of state vectors are identical;
L̃0:k denotes the label space of targets born between time 0 and time k, where the subscript 0:k
means time interval [0, k]; F (·) denotes collections of all finite subsets of a given space; L is a projection
from space X̃× L̃ to L̃ and hence L(X) = {L(x) : x ∈ X} is the set of labels of X; and w(I)

k denotes the

joint existence probability of the label set I, while the multi-target exponential [p(I)
k ]

X
denotes the joint

probability density of X, conditional on their corresponding label set I.
The new birth model covering labeled Poisson, labeled identically and independently distributed

cluster and labeled multi-Bernoulli filter can be given by [20]

fB = ∆(Y)wB(L(Y))[pB]
Y. (16)

where Y is the state of new birth targets, and wB and [pB]
Y are the joint existence probability and

probability density. This model can also be written as the LMB birth model [23,31] as follows:

wB(L) = ∏
i∈L̃k

(1− r(i)B )∏
l∈L

1L̃k
(l)r(l)B

1− r(l)B

(17)

pB(x, l) = p(l)B (x) (18)

where r(l)B and p(l)B (x) mean the existence probability and the probability density of a birth target with
label l.

Proposition 1. If the multi-target state posterior with δ-GLMB form is given as (15) at time k, with the new
birth model (16), the multi-target prediction density also has a δ-GLMB form [23]:

vk+1|k(X) = ∆(X) ∑
I∈F (L̃0:k+1)

δI(L(X))w(I)
k+1|k[p

(I)
k+1|k]

X
(19)

where
w(I)

k+1|k = w(I)
S (I ∩ L̃0:k)wB(I ∩ L̃k+1) (20)

w(I)
S (L) = [η

(I)
S ]L ∑

J∈L̃0:k

1J(L)[1− η
(I)
S ]

J−L
w(I)

k (J) (21)

p(I)
k+1|k(x, l) = 1L̃0:k

(l)P(I)
S (x, l) + (1− 1L̃0:k

(l))pB(x, l) (22)
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P(I)
S (x, l) =

〈
pS(·, l) fk+1|k(x|·, l), p(I)

k (·, l)
〉

η
(I)
S (l)

(23)

η
(I)
S (l) =

〈
pS(·, l), p(I)

k (·, l)
〉

(24)

fk+1|k(·) denotes a single-target transition function. pS(x, l) denotes the survival probability of target x. L̃k+1
is the label space of a target born at time k + 1.

Proposition 2. If the multi-target prediction density has the form of δ-GLMB as (19), then, with the
measurement set S and separable likelihood function γS(x), the multi-target posterior density also has the
same form [23]:

vk+1(X|S) = ∆(X) ∑
I∈F (L̃0:k+1)

δI(L(X))w(I)
k+1(S)[p

(I)
k+1(·|S)]

X
(25)

where
w(I)

k+1(S) ∝ w(I)
k+1|k[ηS]

I (26)

p(I)
k+1(x, l|S) = p(I)

k+1|k(x, l)γS(x, l)
/

ηS(l) (27)

ηS(l) =
〈

p(I)
k+1|k(·, l), γS(·, l)

〉
. (28)

Proposition 3. If the multi-target state posterior with the δ-GLMB form is given as (15) at time k, the
cardinality distribution ρk(n) can be given by [20]

ρk(n) = ∑
I∈F (L̃0:k)

δn(|I|)w(I)
k . (29)

The cardinality estimates can be obtained by

n̂ = arg max
n

ρk(n) (30)

The multi-target state estimate is the mean estimate of the multi-target state conditioned on the
estimated cardinality n̂ as in [20].

2.3.2. Recursion

Particle implementation is based on the standard δ-GLMB filter implementation [20,21].

Each target density p(l)k with label l in p(I)
k is modeled as a set of weighted samples {(Ω(l)

k,n, xk,n)}
J(l)k
n=1,

where J(l)k is the number of particles, and xn denotes the state xn and label l. Besides the prediction and
update steps, we add four other parts: pruning, splitting, merging, and new birth target initialization
to form the whole solution. The details are as follows.

(1) Prediction

The pixels illuminated by the target can describe the target more effectively than a single point
or a rectangle. Let us assume the single-target state x have two fields: a geometric center location
x.cen and cover area x.cov, which can be obtained from T(x). For convenience, let x.cen = x.cen and
x.cov = x.cov in this paper. This new approach representing a single-target benefits from the similar
target shape in consecutive frames. To accommodate the small amount of deformation, pixel sampling
is executed in this prediction step. Each pixel in x.cov has the probability of ppix to be selected to
survive, the value of which depends on the deformation degree. In general, when the deformation is
small, ppix is close to 1. It is obvious that sampling may reduce the covered area in the final estimates.
Fortunately, this can be alleviated in the update step.
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If at time k, the multi-target state posterior is given by (15), when the LMB new birth model
{(r(l)B,k+1, p(l)B,k+1)}l∈L̃k+1

is known (in practice for the unknown birth model, the third part in this

subsection describes how to initialize the new birth model), where p(l)B,k+1 is {(Ω(l)
B,k+1,n, xB,k+1,n)}B(l)

n=1

and B(l) is the number of particles, according to proposition 1, we obtain

η
(I)
S (l) =

J(l)k

∑
n=1

Ω(l)
k,n pS(xk,n) (31)

and p(I)
k+1|k(x, l) can be represented as

{(1L̃0:k
(l)Ω̃(l)

S,k+1|k,n, xS,k+1|k,n)}
J(l)k
i=n ∪ {(1L̃0:k

(l)Ω(l)
B,k+1,n, xB,k+1,n)}B(l)

i=n, (32)

where xS,k+1|k,n.cen ∼ q(·|xk,n.cen) (n = 1, 2, ..., J(l)k ), xS,k+1|k,n.cov is generated by a random

pixel sample as described above; Ω(l)
S,k+1|k,n =

Ω(l)
k,n fk+1|k(xS,k+1|k,n |xk,n ,l)pS(xk,n ,l)

q(xS,k+1|k,n .cen|xk,n .cen) ; Ω̃(l)
S,k+1|k,n =

Ω(l)
S,k+1|k,n

/
J(l)k
∑

n=1
Ω(l)

S,k+1|k,n; and q(·|xk,n.cen) is a proposal density. The procedure for calculating w(I)
k+1|k

in (20) is bothersome and complex; however, reference [21] offers a method based on a K-shortest
paths algorithm to carry it out. To understand the procedure more clearly, reference [21] is strongly
recommended.

(2) Update

With the assumption that targets are not overlapped, we obtain a separable likelihood function
shown as (12). After adding a distinct label to each target, (12) can be written as

g(S(k)|X) ∝ ∏x∈X γS(x) (33)

where γS(x) = gF(s̄(x)).
According to proposition 2, if each single-target density p(l)k+1|k is modeled by a particle set

{(Ω(l)
k+1|k,n, xk+1|k,n)}

J(l)k+1|k
n=1 . Then,

ηS(l) =
Jk+1|k(l)

∑
n=1

wk+1|k,n(l)γS(xk+1|k,n) (34)

and p(I)
k+1(x, l|S) can be represented as

{(Ω(l)
k+1,n, xk+1,n)}

J(l)k+1
n=1, (35)

where wk+1,n(l) = wk+1|k,n(l)γS(xk+1|k,n)

/
Jk+1|k(l)

∑
n=1

wk+1|k,n(l)γS(xk+1|k,n); xk+1,n = xk+1|k,n;

and J(l)k+1 = J(l)k+1|k. Substituting (34) into (26), we obtain w(I)
k+1(S).

Analogous to the standard particle filter, resampling each target density {(Ω(l)
k+1,n, xk+1,n)}

J(l)k+1
n=1

must be executed to reduce the degeneracy. For simplicity, in this paper, multinomial resampling is
used for numerical studies that would otherwise be carried out with other multi-Bernoulli filters [17].

To eliminate the influence of pixel sampling in the prediction step, a pixel set update procedure is
used to correct the shape of the target. Taking target x as an example, the procedure is described as
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follows. First, for all J(l)k+1 particles representing target x, count the pixel i (i ∈ ⋃J(l)k+1
j=1 T(xk+1,j)) occupied

times OT
J(l)k+1
i . The occupied times are initialized to 0, i.e., OT0

i = 0, and for the jth (1 ≤ j ≤ J(l)k+1)

particle state xk+1,j, OT j
i is given by

OT j
i =

{
OT j−1

i +1 i f i ∈ T(xk+1,j)

OT j−1
i otherwise

. (36)

Second, compare the OT
J(l)k+1
i with a threshold ppix J(l)k+1

/
2. When OT

J(l)k+1
i reaches the threshold,

the pixel i is classified as an occupied pixel. Third, if the occupied pixel i is greater than an extremely
low value in the foreground probability map, then it is considered to be a pixel in the updated pixel
set for target x. The updated pixel set is the estimated cover area of target x. The pseudo-code for
the pixel set update procedure is presented in Algorithm 2. Algorithm 2 shows us that for each pixel
belonging to the covered areas occupied by all particles representing x, the occupied time is calculated
(line 3) and then it will be used to determine the true cover area of the target (lines 5–9). The filter will
propagate a pixel set as the target state in the recursion and will directly produce the pixel set as its
output. This operation can facilitate target recognition and extraction and subsequent processing in
computer vision applications.

Algorithm 2: Pixel set update

Input: S(k): foreground probability map. x: single-target state. J(l)k+1: the number of particles
describing target x. ppix: the pixel sampling rate in the prediction step. xk+1,j: the jth

particle state (1 ≤ j ≤ J(l)k+1).
Output: x: the update target state.

1 for i ∈ ⋃J(l)k+1
j=1 T(xk+1,j) do

2 for j = 1 : J(l)k+1 do
3 calculate OT j

i according to (36);
4 end

5 if OT
J(l)k+1
i > ppix J(l)k+1

/
2 then

6 if the pixel i in S(k) is greater than an extremely low threshold then
7 pixel i is classified as an updated pixel of target x;
8 end
9 end

10 end
11 output the updated target state x ;

(3) Pruning, Splitting, Merging and Birth Target Initialization

To reduce computational complexity, besides the truncation [20,21], the pruning procedure is
also needed. The multi-target set X should be discarded if its weight w(I)

k+1 is less than a threshold
thpr. In practical application, the dynamic processes of multi-targets are complex. To accommodate
these processes, we propose splitting and merging, which are described as follows. For each target x,
clustering is executed to check whether the target x should be split into several small targets. If yes,
the small target with the most pixels inherits the identity (label) of target x, while the others are labeled
as new birth targets. For two targets in X with substantial overlap, if the overlap ratio of the pixel
intersection area to the smaller target area is higher than a threshold thme, these two targets should be
merged; the merged label is the same as the earlier born target.
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Birth target initialization has two pre-processing steps. Step 1: clustering the foreground
probability map to obtain current cluster target xc,i (0 ≤ i ≤ n, n denotes the number of all current
cluster targets). Step 2: for each cluster target xc,i, calculate the overlap ratio between the xc,i and
all existing targets. If the maximum overlap ratio is higher than a threshold thbir, then remove
this xc,i. Subsequently, we use the remaining xc,i to initiate the new birth target LMB modeled as

vB,k+1 = {(r(l)B,k+1, p(l)B,k+1)}l∈L̃k+1
. For simplicity, the r(l)B,k+1 is initialized as a constant and the target

density p(l)B,k+1 is modeled as {(Ω(l)
B,k+1,n, xB,k+1,n)}B(l)

n=1, where all Ω(l)
B,k+1,n have equal weight; and

xB,k+1,n.cen ∼ N (u(l)
B , Q(l)

B ), where N (·) denotes the Gaussian distribution, u(l)
B is the geometric center

location of one remaining xc,i, and Q(l)
B is the variance. xB,k+1,n.cov can be obtained from T(xc,i) using

random sampling by probability ppix.
These procedures are designed to broaden the applications of the filter. Without splitting and

merging, this filter would produce a cardinality estimation error. Missing the new target birth process
would invalidate the δ-GLMB-TBD filter. Using proposition 3 can produce a multi-target estimate.

3. Experimental Results

In this section, the optimal parameters of the background-subtraction-based δ-GLMB-TBD filter
are determined. Based on the optimal parameters, detection performance is compared to several
state-of-the-art techniques. Then, tracking performance is tested. Based on experimental results,
the advantages and disadvantages of the proposed algorithm are discussed. In these experiments,
the kinematic transition is modeled as the random walk model; the survival probability of a target is
0.98; the maximum number of frames in which the target remains stationary Nsta is 60; the morphology
erosion and dilation operators are executed once with the same flat disk-shaped structuring element
whose radius is 1. The particle number for each target is 200; the pruning threshold thpr is 0.01;
the DBSCAN method is chosen for clustering [32]; the threshold thbir in birth targets initialization
is 0.5; the merging threshold thme is 0.7; the existence probability r(l)B,k+1 is 0.3; and the variance

Q(l)
B is [1,0;0,1]. Theoretically, the same detection result and data association can achieve the same

tracking performance. Therefore, the detection performance is the main evaluation criteria for the
joint detection and tracking method. This novel TBD filter emphasizes detection by exploiting the
trajectory information. The measure metrics of recall, precision, and F-measure (FM) are used to
evaluate performance, and they are defined as:

recall =
tp

tp + f n
, precision =

tp
tp + f p

, FM =
2 · precision · recall
precision + recall

(37)

where tp denotes the number of true positives, and f p and f n represent the number of false positives
and false negatives.

3.1. Determination of Parameters

From previous discussions, the parameters to be determined are as follows: (1) the threshold
thdi f f in (4), (2) the number of samples N, (3) δF and δB, and (4) pixel sampling rate ppix. The tested
sequence is OTCBVS Dataset 03 2a [33]. The fluctuation of the δF to δB ratio does not cause obvious
changes in the tracking result, where δF = 0.2 and δB = 0.05 are suitable for our experiments.

The proposed method can be divided into two parts: detection and tracking, which are connected
by the foreground probability map S(k). The two parts can be considered as conditional independence
(CI) based on S(k). Therefore, the parameters also can be divided into two groups: (1) thdi f f and
N (before obtaining S(k)); (2) ppix (after obtaining S(k)). Let us use the “trial-and-error” method to
determine the two groups of parameters respectively as follows.

To choose the optimal value for thdi f f and N, the performance metrics are calculated for thdi f f
as: 20, 40, 60, 80, and 100 while N as: 10, 20, 30, 40, and 50. The other parameters are fixed at δF = 0.2,
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δB = 0.05 and ppix = 0.8. The results are shown in Tables 1–3. From Table 1, we can see that the
recall decreases with increasing thdi f f . When thdi f f is set 20, the recall can achieve the highest value.
The number of samples N has less influence on recall; in general, with the increase of N, the recall
tends to become higher. From Table 2, the result of precision is opposite to the recall metric. Table 3
shows that the balance metric FM has the highest value at thdi f f = 60. In this TBD method, recall plays
a more important role than precision. The range of thdi f f can be set between 40 and 60, N is between
20 and 40.

Table 1. Average recall with different thdi f f and N.

thdi f f

N
10 20 30 40 50

20 0.9315 0.9219 0.9057 0.9082 0.9241
40 0.8560 0.8532 0.8549 0.8756 0.8654
60 0.7311 0.7880 0.8031 0.8121 0.8213
80 0.6343 0.6996 0.7146 0.7108 0.7288

100 0.5083 0.5804 0.6307 0.6316 0.6423

Table 2. Average precision with different thdi f f and N.

thdi f f

N
10 20 30 40 50

20 0.4710 0.3937 0.3557 0.3361 0.3158
40 0.7279 0.6752 0.6461 0.6206 0.6039
60 0.8311 0.8296 0.8146 0.8056 0.8049
80 0.8910 0.8949 0.8931 0.8889 0.8853

100 0.9316 0.9304 0.9374 0.9349 0.9338

Table 3. Average FM with different thdi f f and N.

thdi f f

N
10 20 30 40 50

20 0.6221 0.5482 0.5061 0.4847 0.4665
40 0.7848 0.7479 0.7303 0.7228 0.7077
60 0.7709 0.8052 0.8050 0.8048 0.8031
80 0.7358 0.7796 0.7909 0.7849 0.7964

100 0.6480 0.7062 0.7498 0.7477 0.7552

Now, let us determine the pixel sampling rate ppix. When we set thdi f f to 60, δF to 0.2, δB to 0.05,
and N to 20, Table 4 shows the experimental results. From Table 4, the evaluation metrics do not
change significantly, because the ppix mainly affects the detection and tracking of dim targets that
occupy few pixels and may be deformed in consecutive frames. A ppix closer to 1 is of minimal help in
detecting and tracking deformation targets, and a smaller ppix may cause a dim target to be undetected.
In the experiment, the ppix is set to 0.8.

Table 4. Average evaluation metrics of different ppix.

ppix 0.6 0.7 0.8 0.9 1

recall 0.9204 0.9157 0.9234 0.9296 0.9299
precision 0.8085 0.8047 0.8020 0.8037 0.8020

FM 0.8532 0.8431 0.8510 0.8545 0.8539

3.2. Comparison with Other Techniques

To the best of our knowledge, there is no common dataset for TIR multiple moving-target detection
and tracking in the surveillance scene. We collected 15 sequences containing about 14,753 images in
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7 different locations at different times from OTCBVS [34] (IEEE OTCBVS WS Series Bench and Roland
Miezianko, Terravic Reasearch Infrared Database) and PTB-TIR [35]. The moving targets are mainly
pedestrians, but also include pets, cars, and trucks. In this subsection, the performance of the proposed
method is compared with 6 methods: ViBe [24], pixel-based adaptive segmenter (PBAS) [36], and kernel
density estimator (KDE) [25], SLIC-based method [37], orthogonal rank-one matrix pursuit method
(OR1MP) [38], and robust PCA via Gradient Descent (RPCA-GD) [39]. The ViBe, PBAS, and KDE are
classic state-of-the-art methods. The SLIC, OR1MP, and RPCA-GD are 3 new methods. Among them,
SLIC is a proposal method designed for infrared target detection; OR1MP and RPCA-GD can be
recursive and unable to give instantaneous detection because of the non-causality. The programs of the
ViBe, KDE, OR1MP, and RPCA-GD methods are provided by their authors, and the parameters used
in the experiments are suggested by the authors. The PBAS method is available in the BGSlibrary [40].
SLIC is implemented by us using MATLAB; we define thd = means + 4stds as the detection threshold,
where means and stds are the mean and the standard deviation of all saliency scores, respectively.

First, we use four typical sequences to validate the effectiveness of the proposed method.
They cover many typical situations such as targets crossing, entering/leaving, gathering/separation,
occlusion, stopping /restarting, and irregular motion. The sequences are divided into two categories:
sparse target scenarios and dense target scenarios. The results of the four sequences are well
represented for examining the performance of the proposed method. The parameters used in our
model are thdi f f = 60, N = 20, δF = 0.2, δB = 0.05, and ppix = 0.8. For the proposed method, the output
results are the estimates of the filter, while for other methods, the results are the foreground detections.

Figures 4–7 shows examples of moving-target detection for four typical frames chosen from four
different sequences. Table 5 presents the average evaluation metrics of the seven methods. For all four
sequences, the proposed method can detect all moving targets, despite some false alarms. Compared
with our method, ViBe detects more false alarms and PBAS produces missing detections. The KDE
produces obvious worse detection results than the proposed method. Because the proposal-based
method only uses the features of the target to detect and pay no attention to the information in inter
frame, SLIC can only detect the highlight areas in the images. In general, other algorithms that do
not use information between consecutive frames, such as the SLIC method, will obtain similar results.
OR1MP and RPCA-GD can also obtain good detection performance on Seq. 2; this is because their
non-causality allows them to use the follow-up frames to build the current time model to eliminate
the ghost. The non-causality will limit their application. However, for Seq.1, OR1MP and RPCA-GD
detection results occupy more pixels than the ground truth; for Seq. 3 and Seq. 4 they produce obvious
missing detection. These results are validated by the metric scores in Table 5. The good performance of
the proposed method benefits from the detection support map, the neighbor pixel update processing,
and the use of trajectory information. Figures 4–7 and Table 5 indicate that the proposed method
outperforms the other six methods obviously.
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Table 5. Average evaluation metrics of different methods.

Metrics Proposed Method ViBe PBAS KDE SLIC OR1MP RPCA-GD

Seq. 1
recall 0.9996 0.9875 0.9434 0.8477 0.6090 0.9992 0.9996

precision 0.9487 0.8489 0.7743 0.8266 0.8411 0.5716 0.6175
FM 0.9587 0.8952 0.8269 0.8295 0.6216 0.7169 0.7533

Seq. 2
recall 0.9625 0.7127 0.6132 0.3660 0.0679 0.9598 0.9621

precision 0.8231 0.8487 0.8523 0.7512 0.0633 0.67851 0.8031
FM 0.8663 0.7893 0.7150 0.4547 0.0611 0.8076 0.8651

Seq. 3
recall 0.9656 0.9632 0.9007 0.5276 0.3869 0.5238 0.5778

precision 0.8477 0.4931 0.6529 0.5408 0.1362 0.7826 0.7743
FM 0.8764 0.6240 0.7096 0.5107 0.1874 0.5618 0.6020

Seq. 4
recall 0.8847 0.8311 0.6150 0.7524 0.0210 0.7477 0.7786

precision 0.7909 0.7142 0.8731 0.6306 0.0257 0.8103 0.7776
FM 0.8244 0.7626 0.7035 0.6784 0.0173 0.7716 0.7669

(a) Original image (b) Ground truth (c) Proposed method

(d) ViBe (e) PBAS (f) KDE

(g) SLIC (h) OR1MP (i) RPCA-GD

Figure 4. The detection results of the 190th frame in Seq 1.
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(a) Original image (b) Ground truth (c) Proposed method

(d) ViBe (e) PBAS (f) KDE

(g) SLIC (h) OR1MP (i) RPCA-GD

Figure 5. The detection results of the 758th frame in Seq. 2.

(a) Original image (b) Ground truth (c) Proposed method

(d) ViBe (e) PBAS (f) KDE

(g) SLIC (h) OR1MP (i) RPCA-GD

Figure 6. The detection results of the 173th frame in Seq. 3.
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(a) Original image (b) Ground truth (c) Proposed method

(d) ViBe (e) PBAS (f) KDE

(g) SLIC (h) OR1MP (i) RPCA-GD

Figure 7. The detection results of the 741rd frame in Seq. 4.

In addition, Table 6 shows average evaluation metrics and runtime per frame for all 15 sequences.
From Table 6, we can see that the proposed method can get the highest recall, precision, and FM
metrics even compared with the non-causal method. Also, Table 6 validates that the proposed method
has the best detection performance among the 7 methods.

Table 6. Average evaluation metrics for all sequences.

Proposed Method ViBe PBAS KDE SLIC OR1MP RPCA-GD

recall 0.9839 0.9332 0.8619 0.7682 0.4435 0.8449 0.8714
precision 0.8732 0.6116 0.8121 0.5993 0.3082 0.7871 0.7935

FM 0.9094 0.6438 0.8001 0.5600 0.1441 0.7543 0.7775

3.3. Discussion of Tracking Performance

The background-subtraction-based δ-GLMB-TBD method can also produce target trajectories
without additional post-processing, and accommodate multi-target dynamic process and measurement
process, although its main task is target detection. In this section, the optimal sub-pattern
assignment (OSPA) metric [41] interpreted as per-target tracking error containing cardinality error
and state estimation error with parameters p = 1 and c = 50 pixel will be employed as the main
performance metric.

In this section, the tracking performance of the proposed method is compared with the standard
Kalman filter whose detections are provided by ViBe and PBAS methods. The models and parameters
used in Kalman filter are the same as the proposed method, but in Kalman filters, the target state is
represented by its centroid. The cardinality estimates and OSPA curves tested on Seq. 1 and Seq. 4 are
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shown in Figures 8 and 9. From Figure 8; we can see that without overlapped targets, our method and
PBAS + Kalman method can almost produce the correct cardinality; and with complex multi-target
motion and occlusion, the 3 filters produce obvious cardinality estimation error, but they still can reflect
the trend of cardinality change. From Figure 9, we can see, in both simple and complex scenarios,
the proposed method can obtain the lowest OSPA value, this means the proposed method has the
best multi-target tracking performance in the 3 methods. This is because the proposed method can
yield accurate appearance and centroid estimation. The average OSPA values of all 15 sequences
is shown in Table 7. Also, Table 7 indicates the proposed method can obtain the best multi-target
tracking performance.
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Figure 8. The cardinality estimates of different trackers.
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Figure 9. The OSPA of different trackers.
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Table 7. Average OSPA values for all sequences.

Proposed Method ViBe + Kalman PBAS + Kalman

5.00 11.13 9.16

Figure 10 shows two typical frames with estimation error. The proposed method outputs targets
that are filled with different colors. From Figure 10, we can see the “ghost” (seen in Figure 10b),
similarity between the targets and background (red rectangles with number 1, 2, 6, 7 in Figure 10b) can
cause the over estimation; occlusions between targets or between target and background (red rectangles
with number 6, 9 in Figure 10b) is the main reason to produce low estimation.

(a) (b) (c) (d)

Figure 10. The two typical results of the proposed method. (a) The 20th frame in Seq. 1; (b) the
proposed method estimates of (a); (c) the 486th frame in Seq. 4; (b) the proposed method estimates
of (c).

As described above, this new filter can add a label to the target to maintain the track. Figure 11
shows the estimated trajectories of moving targets whose duration exceeds 30 frames. The different
colors in Figure 11 denote different trajectories. According to Figure 11, the filter can track the targets
successfully along with their labels without overlap or occlusion. When a target is separated from the
crowd, this new filter can continue tracking it as a new target. The estimates from the labeled filter can
facilitate tracking, recognition, and other subsequent processing in computer vision. In future, the trace
association could be used to merge the tracks before and after occlusion to form a long-time trajectory.

(a) Seq. 1 (b) Seq. 4

Figure 11. The trajectory estimate results.

4. Conclusions

A novel method for moving-target detection and tracking directly from the TIR sequence in
surveillance scenes was proposed based on background-subtraction and the δ-GLMB-TBD filter.
First, a background subtraction method using a random selection strategy was used to produce the
foreground probability map. Separable non-overlapped multi-target likelihood was exploited to
obtain the probability of the pixels belonging to the foreground. Then, the δ-GLMB-TBD filter was
used to provide estimates. Unlike other RFS-based filters, the proposed method used the pixel set,
which was the target projection in the image, to describe the target instead of a rectangle or a single
point. This means the δ-GLMB-TBD filter directly produced a continuous trajectory as well as accurate
multi-target shape estimates. In implementation, several procedures including pixel sampling and
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update, target merging and splitting, and new birth target initialization were combined in the method
to accommodate target deformation and multi-target dynamic change: gathering, splitting, birth,
and death. After describing the method, the optimal parameters were determined by experiments.
Then, the performance of the novel method was compared with six existing methods. According to
the experimental results, the proposed TBD method obtained the highest FM scores, meaning that it
outperformed the other six methods in the detection of moving targets. The experiments also show that
the proposed method can achieve better tracking performance than the Kalman filters with different
detections. In future, the proposed method could be extended to the detection and tracking of moving
targets without non-overlap assumptions.
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