
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 627947, 15 pages
doi:10.1155/2011/627947

Research Article

Fast Random Permutation Tests Enable Objective Evaluation of
Methods for Single-Subject fMRI Analysis

Anders Eklund,1, 2 Mats Andersson,1, 2 and Hans Knutsson1, 2

1 Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
2 Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden

Correspondence should be addressed to Anders Eklund, anders.eklund@liu.se

Received 19 April 2011; Accepted 14 July 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Anders Eklund et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Parametric statistical methods, such as Z-, t-, and F-values, are traditionally employed in functional magnetic resonance imaging
(fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods,
however, have two major drawbacks. First, it is assumed that the observed data are Gaussian distributed and independent;
assumptions that generally are not valid for fMRI data. Second, the statistical test distribution can be derived theoretically only
for very simple linear detection statistics. With nonparametric statistical methods, the two limitations described above can be
overcome. The major drawback of non-parametric methods is the computational burden with processing times ranging from
hours to days, which so far have made them impractical for routine use in single-subject fMRI analysis. In this work, it is shown
how the computational power of cost-efficient graphics processing units (GPUs) can be used to speed up random permutation
tests. A test with 10000 permutations takes less than a minute, making statistical analysis of advanced detection methods in fMRI
practically feasible. To exemplify the permutation-based approach, brain activity maps generated by the general linear model
(GLM) and canonical correlation analysis (CCA) are compared at the same significance level.

1. Introduction

Functional magnetic resonance imaging (fMRI) is used
in neuroscience and clinic for investigating brain activity
patterns and for planning brain surgery. Activity is detected
by fitting an activity model to each observed fMRI voxel
time series and then testing whether the null hypothesis
of no activity can be rejected or not based on the model
parameters. Specifically, this test is performed by subjecting
a test statistic calculated from the model parameters to
a threshold. To control the randomness due to noise in
this test procedure, it is desirable to find the statistical
significance associated with the detection threshold, that is,
how likely it is that a voxel is declared active by chance.
When the statistical distribution of the data is known and
when the probability (null)distribution of the test statistic
can be derived, parametric statistics can be used to this
end. This is for example the case for the commonly used
general linear model (GLM), for which the well-known t-
test and F-test can be derived when the input data are

independently Gaussian distributed. However, when the data
distribution is not known or the distribution of the test
statistics cannot be derived, parametric statistical tests can
only yield approximate thresholds or cannot be applied
at all. This is generally the case in fMRI analysis as the
noise in fMRI data is not Gaussian and independent [1–5].
Even though the noise can be made uncorrelated through
a whitening procedure [6, 7], the noise structure must first
be estimated using methods that themselves are susceptible
to random errors. Accurately accounting for this variance in
the test statistic distribution is difficult. Furthermore, more
advanced detection approaches often adaptively utilize the
spatial context of fMRI activation patterns to improve the
detection, or they perform other operations that make the
derivation of the test statistic distribution mathematically
intractable [8–14]. Said otherwise, only for the very simplest
test statistics, such as the GLM, can a parametric test
distribution be derived theoretically. On top of the problems
described above, the multiple testing problem [15] must be
solved because one is generally interested to test whether

mailto:anders.eklund@liu.se

2 International Journal of Biomedical Imaging

there is any activity in the entire brain at all and not just
if there is activity in a single voxel. This complicates the
derivation of the test statistic distribution even further. To
conclude, the parametric statistical approach is applicable
only to a very limited set of tests and is subject to many
sources of error.

In contrast to the parametric approach, a nonparametric
approach does not assume the statistical properties of the
input data to be known [16]. Furthermore, there is no need
to derive the theoretical distribution of the test statistic,
and even thresholds corrected for multiple testing are
straightforwardly found. Nonparametric approaches have
been studied extensively in functional neuroimaging [10, 17–
28]. Semiparametric approaches have also been proposed
[29]. In particular, so-called resampling or permutation
methods have been studied, which randomly permute or
reshuffle the original fMRI data to remove any activation
signal but otherwise keep its statistical structure. Thus,
thousands of simulated null data sets without activation
can be generated and analysed to empirically simulate the
null distribution of the test statistic. The major drawback of
nonparametric statistical approaches for single-subject fMRI
analysis is the computational complexity, requiring hours or
days of processing time on regular computer hardware.

Graphics processing units (GPUs) have seen a tremen-
dous development during the last decade and have been
applied to a variety of fields to achieve significant speedups,
compared to optimized CPU implementations. The main
difference between the GPU and the CPU is that the
GPU does all the calculations in parallel, while the CPU
normally does them in serial. In the field of neuroimaging
and neuroscience the use of the GPU is quite new. As
single-subject fMRI analysis normally is done separately
for each time series in the fMRI data, it suits perfectly
for parallel implementations. In our recent work [30] we
therefore describe how to preprocess (i.e., apply slice timing
correction, motion correction, smoothing, and detrending)
and how to statistically analyze the fMRI data on the GPU.
The result is a significantly faster analysis than if the CPU is
used. For a small fMRI dataset (80 volumes of the resolution
64 × 64 × 22 voxels) all the preprocessing is done in
about 0.5 s and the statistical analysis is done under 0.5 ms.
Recently, GPUs have also been used to speed up functional
connectivity analysis of fMRI data [31, 32]. A final example
is the work by Ferreira da Silva [33] that used the GPU to
speed up the simulation of a Bayesian multilevel model for
fMRI analysis.

In this work, it is shown how nonparametric statistics can
be made practical for single-subject fMRI analysis by using
the parallel processing power of the GPU. The idea of using
the GPU for random permutation tests is not new; it has
recently been done in biostatistics [34, 35]. The GPU makes
it possible to estimate the null distribution of a test statistic,
corrected for multiple testing, in the order of minutes. This
has significant implications on the way fMRI analysis can be
carried out as it opens the possibility to routinely apply more
powerful detection methods than the GLM. As an example,
the results of the standard GLM detection is in this work
compared with a restricted canonical correlation analysis

Analyze statistical structure

Synthesize null data set

Analyze data set

Empirical distribution

Calculate nonparametric threshold

Figure 1: Flowchart containing the main building blocks for
nonparametric analysis of single-subject fMRI data.

(CCA) method [9] that adaptively incorporates spatial
context in the detection. The short processing time also
facilitates deeper investigations into the influence of various
noise and detrending models on the statistical significance,
as well as validation of approximate parametric approaches
such as Bonferroni and random field theory (RFT) [36–39].

2. Methods

2.1. Basics of Random Permutation Tests. One subset of
nonparametric tests is permutation tests where the statistical
analysis is done for all the possible permutations of the
data. Complete permutation tests are; however, not feasible
if the number of possible permutations is very large. For a
time series with 80 samples, there exists 7.16 · 10118 possible
permutations. It is therefore common to instead do random
permutation tests [40], also called Monte Carlo permutation
tests, where the statistical analysis is made for a sufficiently
large number of random permutations, for example 10 000,
of the data. The main idea is to estimate the null distribution
of the test statistics, by generating and analysing surrogate
data that is similar to the original data. The surrogate data
is generated by permuting, or reshuffling, the data between
the different groups to be compared. The main idea of the
nonparametric approach is given in Figure 1.

2.2. The Problem of Multiple Testing. By applying a threshold
to the activity map, each voxel can be classified as active
or inactive. The threshold is normally selected as a level
of significance, one may for example want that only voxels
that with at least 95% significance are to be considered
as active. If a statistical test is repeated and a family-wise
error rate α is desired, the error rate for each test must be
smaller than α. This is known as the problem of multiple
testing. If Bonferroni correction is used, the error rate for
each comparison becomes α/Nv, where Nv is the number
of tests (voxels). This is a correct solution if the tests are
independent. In fMRI it is common to perform the statistical
analysis for more than 20 000 brain voxels; if a threshold
of P = 0.05 is used to consider the voxel as active, the P
value becomes 0.05/20000 with Bonferroni correction. The
assumptions that are made about the behaviour of the tail of
the distribution are thereby critical.

International Journal of Biomedical Imaging 3

There are three problems with Bonferroni correction
in fMRI. First, the test statistics is assumed to, under
the null hypothesis, follow a certain distribution, such as
Student’s t-distribution. Second, the smoothness of the data
is not taken into account as the Bonferroni threshold only
considers the number of tests. The smoothing increases
the spatial correlation of the data and thereby reduces
the effective number of independent tests. Third, it is
assumed that all the voxels have the same null distribution.
To avoid Bonferroni correction, another approach based
on Gaussian random field theory [36, 38, 39] has been
developed and is used in the statistical parametric mapping
(SPM) software (http://www.fil.ion.ucl.ac.uk/spm/). While
this approach takes the smoothness of the data into account,
several assumptions are necessary for the theory to be valid
and it is still assumed that all the voxels have the same null
distribution.

The nonparametric approach can be used to solve
the problem of multiple testing as well. This is done by
estimating the null distribution of the maximum test statistic
[19, 21, 24, 39] by only saving the maximum test value from
each permutation, to get a corrected threshold. This means
that about 10 000 permutations have to be used [19, 21],
while as little as 10 permutations can be enough if an
uncorrected threshold is sufficient [18, 20, 22].

2.3. Preprocessing of fMRI Time Series. As fMRI time series
are temporally correlated [6, 36, 41], the time series have
to be preprocessed before they are permuted. Otherwise the
exchangeability criterion is not satisfied and the temporal
structure is destroyed. Most of the temporal correlations
originate from different kinds of trends. In this work these
trends are removed by a cubic detrending, such that the mean
and any polynomial trend up to the third order is removed,
but more advanced detrending is possible [42].

Several approaches have been proposed for the random
resampling, the most common being whitening transforms
[6, 18, 19], wavelet transforms [22, 26], and Fourier
transforms [43]. A comparison of these approaches [27]
indicates that whitening performs best, at least for fMRI data
that is collected during block-based stimuli paradigms. The
whitening transform is done by estimating an autoregressive
(AR) model for each time series. This can, for example, be
done by solving the equation system that is given by the Yule-
Walker equations.

To accurately estimate AR parameters from a small
number of time points (80 in our case) is quite difficult.
To improve the estimates a spatial Gaussian lowpass filter
(8 mm FWHM) is therefore applied to the estimated AR
parameters [7]. In statistics this technique is normally known
as variance pooling. The optimal amount of smoothing was
found by testing the AR estimation procedure on temporally
correlated Gaussian noise where the spatial patterns of the
AR parameters were known. Our amount of smoothing
(8 mm) is less than the first application of smoothing of the
parameters (15 mm) [7] but close to the optimal amount of
smoothing (6.5–7.5 mm) found by further investigation [44].
It has also been reported that the AR estimates are better
without the spatial smoothing [45].

Normalized convolution [46] is used to prevent that the
smoothing includes AR parameters from outside the brain.
With normalized convolution it is possible to use a certainty
value for each sample in the convolution. The certainty
weighted filter response cwr is calculated as

cwr = (c · s)∗ f

c ∗ f
, (1)

where c is the certainty, s is the signal, f is the filter, · denotes
point-wise multiplication, and ∗ denotes convolution. In
our case the certainty is set to 1 for the brain voxels
and 0 otherwise. Without the normalized convolution the
estimated AR parameters at the edge of the brain are too low,
as the AR parameters outside the brain are very close to 0.
To further improve the estimates, the whitening procedure is
iterated 3 times and the AR estimates are accumulated [7, 22]
(a higher number of iterations seem to impair the estimates).

To investigate if the time series really are white noise after
the whitening, several tests can be applied. One example is
the Durbin-Watson test that previously has been used to test
if the residuals from the GLM contain autocorrelation [2].
The problem with this test is, however, that it only tests if
there is an AR(1) correlation or not, it cannot handle higher-
order correlations. A more general test is the Box-Pierce
test that tests if at least one of the autocorrelations up to a
defined time lag h is significantly different from zero. The
Box-Pierce test has also been used for testing whiteness of
fMRI data [22]. The Ljung-Box test [47] has been proven to
be better than the Box-Pierce test for small sample sizes and
is therefore used in our case. The test statistic Q is calculated
as

Q = Nt(Nt + 2)
h∑

k=1

(rY (k))2

Nt − k
, (2)

where Nt is the number of time samples, rY (k) is the sample
autocorrelation at time lag k, and h is the number of time lags
being tested. The test statistic is asymptotically chi-square
distributed with h − p degrees of freedom, where p is the
order of the AR model used for the whitening, when Nt

grows towards infinity. Since our whitening is done with the
smoothed AR parameters, the Ljung-Box test is applied to
smoothed auto correlations.

Since the spatial correlation should be maintained, but
not the temporal, the same permutation is applied to all
the time series [19, 43]. When the time series have been
permuted, an inverse whitening transform is applied by
simulating an AR model, using the permuted whitened time
series as innovations.

2.4. Statistical Analysis, GLM and t-Test. The general linear
model (GLM) is the most used approach for statistical
analysis of fMRI data [37]. For each voxel time series, a linear
model is fitted according to

Y = Xβ + ε, (3)

where Y is the time series, X the regressors, β the parameters
to estimate, and ε the errors. The regressors were created by

http://www.fil.ion.ucl.ac.uk/spm/

4 International Journal of Biomedical Imaging

convolving the stimulus paradigm with the hemodynamic
response function (HRF) (difference of gammas) and its
temporal derivative [6]. The two regressors were mean cor-
rected, Euclidean normalized, and orthogonalized. No other
regressors were used in the design matrix. The regression
weights are estimated with ordinary least squares

β̂ =
(

XTX
)−1

XTY, (4)

and the t-test value is then calculated as

t = cT β̂√
var
(
ε̂
)

cT(XTX)−1c
, (5)

where c is the contrast vector.
Prior to the GLM the time series were whitened by using

the same AR(1) model for all the voxels [6, 18]. No additional
high-pass or low-pass filtering was used. The whitening step
prior to the GLM is not necessary for the permutation-
based analysis. The purpose of the whitening is to make
sure that the errors are temporally uncorrelated, otherwise
the assumptions that are necessary for the GLM to generate
a true t-value are violated. Without the whitening a true
t-value is not obtained, but a pseudo t-value. This is not
a problem for the permutation-based analysis as the null
distribution of the test statistics is estimated. If the thresholds
from random field theory and a random permutation test
are to be compared, the whitening has to be done in each
permutation.

2.5. Statistical Analysis, CCA. One statistical approach for
fMRI analysis that provides more adaptivity to the data is
canonical correlation analysis (CCA) [48]. While the GLM
works with one multidimensional variable (e.g., temporal
basis functions, [37]), CCA works with two multidimen-
sional variables (e.g., temporal and spatial basis functions,
[9]). Ordinary correlation between two one-dimensional
variables x and y with zero mean can be written as

ρ = Corr
(
x, y

) = E
[
xy
]

√
E[x2] E

[
y2
] . (6)

This expression can easily be extended to multidimensional
variables. The GLM calculates the correlation between
one multidimensional variable x and one one-dimensional
variable y according to

ρ = Corr
(
βTx, y

)
, (7)

where β is the weight vector that determines the linear
combination of x. Canonical correlation analysis is a further
generalization of the GLM, such that both the variables are
multidimensional. The canonical correlation is defined as

ρ = Corr
(
βTx, γTy

)
= βTCxyγ√

βTCxx β γTCyyγ
, (8)

where Cxy is the covariance matrix between x and y, Cxx is
the covariance matrix for x, and Cyy is the covariance matrix

Figure 2: The four smoothing filters that are used for 2D CCA, one
small isotropic separable filter and three anisotropic nonseparable
filters. For visualization purposes, these filters are interpolated to a
subpixel grid.

Figure 3: Left: A small isotropic lowpass filter can be used by
CCA by setting the weights of all the other filters to zero. Middle:
anisotropic lowpass filters with arbitrary orientation can be created
by CCA by first combining the anisotropic filters and then adding
the small lowpass filter. Right: by using the same weight for all the
filters, a large isotropic lowpass filter can be obtained.

for y. The temporal and spatial weight vectors, β and γ, that
give the highest correlation are calculated as the eigenvectors
of two eigenvalue problems. The canonical correlation is the
square root of the corresponding eigenvalue.

The temporal basis functions for CCA are the same as
for the GLM. The spatial basis functions can, for example, be
neighbouring pixels [8, 10, 49] or a number of anisotropic fil-
ters [9] that linearly can be combined to a lowpass filter with
arbitrary orientation, to prevent unnecessary smoothing. In
contrast to the GLM, an adaptive anisotropic smoothing
is obtained, instead of a fix isotropic smoothing. The four
smoothing filters that are used for our implementation of
2D CCA are given in Figure 2. Three filters that can be
constructed as a linear combination of the four filters are
given in Figure 3.

Compared to other approaches that adaptively include
spatial information [11–14], the advantage with CCA is that
there exists an analytical solution that gives the best weight
vectors, while the other approaches have to search for the best
combination.

One disadvantage with CCA is that it is difficult to
calculate the threshold for a certain significance level, as
the distribution of the canonical correlation coefficients is
rather complicated. If x and y are Gaussian distributed and
independent, the joint probability distribution for all the
sample canonical correlation coefficients is given by [50]

f =
m∏

i=1

⎛
⎝(r2

i

)(n−m−1)/2(
1− r2

i

)(N−n−m−1)/2
m∏

j=i+1

(
r2
i − r2

j

)
⎞
⎠,

(9)

International Journal of Biomedical Imaging 5

where N is the number of (time) samples, n and m are the
dimensions of the multidimensional variables x and y, and ri
are the canonical correlation coefficients.

Another problem is that restricted CCA (RCCA) [51]
normally is used instead of ordinary CCA, in order to
guarantee that the resulting combinations of the temporal
and spatial basis functions are plausible. To our knowledge
there is no theoretical distribution for restricted canonical
correlation coefficients. The only solution to get a signif-
icance threshold for RCCA is thus to use nonparametric
approaches.

As a 2D version of CCA already had been implemented
[30], it was easy to extend the random permutation tests to
include CCA as well. The problem with the original 3D CCA
approach [9] is that it uses a total of seven 3D filters, and
thereby a 7 × 7 matrix must be inverted for each time series.
Our GPU implementation, however, only supports inverting
4 × 4 matrices, and thereby a maximum of 4 filters. Another
approach [52] that uses two 3D filters, one isotropic Gaussian
kernel and its derivative (with respect to the width parameter
sigma), was therefore used. This makes it possible for CCA
to create filters with different sizes, such that the amount of
smoothing varies between the voxels. All the resulting filters
are, however, isotropic, which makes this version of 3D CCA
less adaptive.

2.6. Spatial Smoothing. The smoothing of the fMRI volumes
has to be applied in each permutation. If the data is
smoothed prior to the whitening transform, the estimated
AR parameters will change with the amount of smoothing
applied since the temporal correlations are altered by the
smoothing. For our implementation of 2D CCA, 4 different
smoothing filters are applied. If the smoothing is done prior
to the permutations, 4 time series have to be permuted
for each voxel and these time series will have different
AR parameters. The smoothing will also change the null
distribution of each voxel. This is incorrect as the surrogate
null data that is created always should have the same
properties, regardless of the amount of smoothing that is
used for the analysis. If the data is smoothed after the
whitening transform, but before the permutation and the
inverse whitening transform, the time series that are given by
simulating the AR model are incorrect since the properties of
the noise are altered. The only solution to this is to apply the
smoothing after the permutation and the inverse whitening
transform, that is, in each permutation. This is also more
natural in the sense that the surrogate data first is created
and then analysed.

Similarly, if the activity map is calculated as how
important each voxel is for a classifier [11–14], the classifier
has to be trained in each permutation in order to estimate
the null distribution.

2.7. The Complete Algorithm. The complete algorithm can
be summarized as follows. The reason why the detrending
is done separately, compared to having the detrending basis
functions in the design matrix, is that the detrending has to
be done separately for the CCA approach.

The whitening in each permutation is only performed
to be able to compare the corrected t-thresholds from the
random permutation test to the thresholds from Bonferroni
correction and random field theory.

(1) Preprocess the fMRI data, that is, apply slice timing
correction, motion correction, smoothing, and cubic
detrending. To save time, the statistical analysis
is only performed for the brain voxels. A simple
thresholding technique is used for the segmentation.

(2) Whiten the detrended time series (GLM only).

(3) Apply the statistical analysis to the preprocessed fMRI
data and save the test values. These are the original
test values tvoxel.

(4) Apply cubic detrending to the motion compensated
time series.

(5) Remove the best linear fit between the detrended time
series and the temporal basis functions in the design
matrix, by ordinary least squares, to create residual
data (as the null distribution is to be estimated).
Estimate AR parameters from the residual time series.
Apply a spatial smoothing to improve the estimates
of the AR parameters. Apply whitening with the
smoothed AR parameters. Repeat the whitening
procedure 3 times.

(6) For each permutation,

(i) apply a random permutation to the whitened
time series,

(ii) generate new fMRI time series by an inverse
whitening transform, that is, by simulating an
AR model in each voxel with the permuted
whitened time series as innovations,

(iii) smooth all the volumes that were generated by
the inverse whitening transform,

(iv) apply cubic detrending to the smoothed time
series,

(v) whiten the detrended time series (GLM only),
(vi) apply the statistical analysis,

(vii) find the maximum test value and save it.

(7) Sort the maximum test values.

(8) The threshold for a desired corrected P value is given
by extracting the corresponding test value from the
sorted maximum test values. If 10 000 permutations
are used, the threshold for corrected P = 0.05 is given
by the sorted maximum test value at location 9500.

(9) The corrected P value at each voxel is calculated as
the number of maximum test values, tmaxi, that are
greater than or equal to the original test value in the
voxel, tvoxel, divided by the number of permutations
Np

pcvoxel =
∑Np

i=1(tmaxi ≥ tvoxel)
Np

. (10)

A comparison of the flowcharts for a parametric analysis
and a nonparametric analysis is given in Figure 4.

6 International Journal of Biomedical Imaging

Slice timing correction

Motion correction

Detrending

Smoothing

Statistical analysis

Calculate parametric threshold

Whitening transform

(a)

Whitening transform

Whitening transform

Slice timing correction

Motion correction

Detrending

Permutation

Inverse whitening transform

Detrending

Smoothing

Statistical analysis

Calculate nonparametric threshold

BOLD removal

Save maximum test value

(b)

Figure 4: (a) Flowchart for conventional parametric analysis of fMRI data. (b) Flowchart for nonparametric analysis of fMRI data. In each
permutation a new null dataset is generated and analysed.

2.8. The Number of Permutations. The number of permuta-
tions that are required depends on the desired P value and
the accuracy that is required. The standard deviation of the

desired (one sided) P value is approximately
√
p(1− p)/Np,

where Np is the number of permutations [53]. Some
examples of desired P value, number of permutations, and
relative standard deviation are given in Table 1.

3. GPU Implementation

The random permutation test was implemented with the
CUDA (Compute Unified Device Architecture) program-
ming language by Nvidia [54], which is explained by Kirk
and Hwu [55]. In this section we will shortly describe how
to implement the whitening transform and the random
permutation test on the GPU. The interested reader is
referred to our recent work [30] for more details and how
to implement the other processing steps. The main principle
of our GPU implementation is that each GPU thread works
on a separate voxel time series.

Our CUDA implementation was compared with a stan-
dard C implementation and an OpenMP-based implemen-
tation. The Open MP (Open Multi-Processing) library lets

Table 1: Relative standard deviation of the desired P value, as
function of desired P value and number of permutations.

Number of
Permutations/P value

0.1 0.05 0.01

1000 9.48% 13.78% 31.46%

5 000 4.24% 6.16% 14.07%

10 000 3% 4.35% 9.95%

50 000 1.34% 1.94% 4.45%

100 000 0.95% 1.37% 3.14%

the user take advantage of all the CPU cores in an easy
way. All the implementations have been done in Matlab
(Mathworks, Natick, Mass), using the mex interface where
C and CUDA code can be used together with Matlab. For all
implementations, 32 bit floats were used. The used graphics
cards were three Nvidia GTX 480, each equipped with 480
processor cores and 1.5 GB of memory, giving a total of 1440
processor cores that run at 1.4 GHz. The used CPU was an
Intel Xeon 2.4 GHz with 12 MB of L3 cache and 4 processor
cores, and 12 GB of memory was used. The operating system
used was Linux Fedora 12 64-bit. The total price of the

International Journal of Biomedical Imaging 7

computer was about 4000 $, a fraction of the price for a PC
cluster with equivalent computational performance.

3.1. Whitening and the Random Permutations. Before the
data is permuted an AR model is first estimated for each
time series, as previously described. To solve the equation
system that is given by the Yule-Walker equations requires
a matrix inverse of the size p × p where p is the order of
the AR model. To actually do the matrix inverse in each
thread on the GPU is not a problem, even for matrices larger
than 4 × 4, but to do it for a 7 × 7 matrix requires a lot
of float registers and the Nvidia GTX 480 can only use 64
float registers per thread. The CUDA compiler will put the
rest of the float variables, that do not fit into the registers,
in the local memory which is extremely slow. Due to this
it is hard to achieve good performance for matrices that are
larger than 4 × 4. This is also the reason why the original 3D
CCA approach, that uses seven 3D filters, cannot be used.
Other than this the estimation of the AR parameters suits
the GPU well, as the parameters are estimated in exactly the
same way for each voxel time series. When the AR parameters
have been estimated, they are spatially smoothed in order
to improve the estimates. For this purpose a separable 3D
convolver, created for 3D CCA and 3D GLM, is used.

For the estimation of AR parameters, the whitening
transform, and the inverse whitening transform the shared
memory is used to store the p last time points and each GPU
thread loops along the time dimension for one voxel.

The permutation step is done by using randomized
indices. A permutation matrix of size Np × Nt is first
generated in Matlab, by using the function randperm, and
is then copied to the GPU. For each permutation one row of
the permutation matrix is copied to the constant memory
and is used to read the data in the randomized order. It
might seem difficult to achieve coalesced reads when the time
samples are to be read in a randomized order, in our case
this is however not a problem. The fMRI data is stored as (x,
y, z, t) (i.e., x first, then y and so on) and the permutation
is only done along the time dimension, and not along the
spatial dimensions. Due to this fact it is always possible to
read 32 values at the time along x, regardless of the current
time point. The code in Algorithm 1 generates a new time
series for one voxel, by simulating an AR(4) model using the
permuted whitened time series as innovations:

c Permutation Vector

is the index vector that contains the random time indices.
The inverse whitening transform and the permutation step
are thus performed at the same time. The help functions

Get 3D Index, Get 4D Index

calculate the linear index for the 3D and the 4D case.
For this kernel, and for most of the other kernels, each

thread block contains a total of 512 threads (32 along x, 16
along y, and 1 along z) and uses 16 KB of shared memory
(one 16 × 8 × 32 float array) which makes it possible to
run three thread blocks in parallel on each multiprocessor.
This results in 1536 active threads per multiprocessor and

thereby a total of 23 040 active threads on the GPU, which
is the maximum for the Nvidia GTX 480.

To find the maximum test value in each permutation,
one fMRI slice (64 × 64 pixels) is first loaded into shared
memory. The maximum value of this slice is then found by
comparing two values at the time. The number of values
is thus first reduced from 4096 to 2048, then to 1024
and after 12 reductions to the maximum test value. The
maximum values of the 22 slices are then compared. After
each permutation the maximum test value is copied to host
memory.

In order to calculate the P value for each voxel, the
maximum test values are first copied from host memory to
constant memory. Each GPU thread then loops over all the
maximum test values and calculates how many of the test
values are bigger than or equal to the test value for one voxel.

3.2. Multi-GPU. As our computer contains three graphic
cards, a multi-GPU implementation of the analysis was also
made, such that each GPU does one-third of the permuta-
tions. Each GPU first preprocesses the fMRI data, GPU 1
uses the first part of the permutation matrix, GPU 2 uses the
middle part, and GPU 3 uses the last part. The processing
time thus scales linearly with the number of GPUs. A short
demo of the multi-GPU implementation can be found at
http://www.youtube.com/watch?v=wxMqZw0jcOk.

4. Results

In this section we will present the processing times for
the different implementations, compare activity maps from
GLM and CCA at the same significance level, and compare
estimated thresholds from Bonferroni correction, Gaussian
random field theory, and random permutation tests.

4.1. Data. Four single-subject datasets have been used to test
our algorithms; the test subject was a 50-year-old healthy
male. The data was collected with a 1.5 T Philips Achieva MR
scanner. The following settings were used: repetition time 2 s,
echo time 40 ms, flip angle 90 degrees, and isotropic voxel
size 3.75 mm. A field of view of 240 mm thereby resulted
in slices with 64 × 64 pixels, and a total of 22 slices were
collected every other second. The experiments were 160 s
long, resulting in 80 volumes to be processed. The datasets
contain about 20 000 within-brain voxels.

4.1.1. Motor Activity. For the Motor 1 dataset the subject
periodically activated the left hand (20 s activity, 20 s rest),
and for the Motor 2 dataset the subject periodically activated
the right hand.

4.1.2. Language Activity. For the Language dataset the subject
periodically performed a reading task (20 s activity, 20 s rest).
The task was to read sentences and determine if they were
reasonable or not.

4.1.3. Null. For the null dataset the subject simply rested
during the whole experiment.

http://www.youtube.com/watch?v=wxMqZw0jcOk

8 International Journal of Biomedical Imaging

float alpha1 = alphas1[Get 3D Index(x,y,z,DATA W,DATA H)];
float alpha2 = alphas2[Get 3D Index(x,y,z,DATA W,DATA H)];
float alpha3 = alphas3[Get 3D Index(x,y,z,DATA W,DATA H)];
float alpha4 = alphas4[Get 3D Index(x,y,z,DATA W,DATA H)];

s Y[threadIdx.y][0][threadIdx.x] =
whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[0],DATA W,DATA H,DATA D)];
s Y[threadIdx.y][1][threadIdx.x] = alpha1 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[1],DATA W,DATA H,DATA D)];
s Y[threadIdx.y][2][threadIdx.x] = alpha1 ∗ s Y[threadIdx.y][1][threadIdx.x]
+ alpha2 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[2],DATA W,DATA H,DATA D)];
s Y[threadIdx.y][3][threadIdx.x] = alpha1 ∗ s Y[threadIdx.y][2][threadIdx.x]
+ alpha2 ∗ s Y[threadIdx.y][1][threadIdx.x] + alpha3 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[3],DATA W,DATA H,DATA D)];

permuted volumes[Get 4D Index(x,y,z,0,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][0][threadIdx.x];
permuted volumes[Get 4D Index(x,y,z,1,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][1][threadIdx.x];
permuted volumes[Get 4D Index(x,y,z,2,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][2][threadIdx.x];
permuted volumes[Get 4D Index(x,y,z,3,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][3][threadIdx.x];

// Loop over time points
for (t = 4; t < DATA T; t++){

s Y[threadIdx.y][4][threadIdx.x] =
alpha1 ∗ s Y[threadIdx.y][3][threadIdx.x]

+ alpha2 ∗ s Y[threadIdx.y][2][threadIdx.x]
+ alpha3 ∗ s Y[threadIdx.y][1][threadIdx.x]
+ alpha4 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[t],DATA W,DATA H,DATA D)];

permuted volumes[Get 4D Index(x,y,z,t,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][4][threadIdx.x];

// Save old values
s Y[threadIdx.y][0][threadIdx.x] = s Y[threadIdx.y][1][threadIdx.x];
s Y[threadIdx.y][1][threadIdx.x] = s Y[threadIdx.y][2][threadIdx.x];
s Y[threadIdx.y][2][threadIdx.x] = s Y[threadIdx.y][3][threadIdx.x];
s Y[threadIdx.y][3][threadIdx.x] = s Y[threadIdx.y][4][threadIdx.x];

}

Algorithm 1

4.2. Processing Times. The processing times for the random
permutation tests, for the different implementations, are
given in Tables 2 and 3. The reason why the processing time
does not scale linearly with the number of permutations is
that it takes some time to copy the data to and from the
GPU. Before the permutations are started, the fMRI data
is preprocessed on the GPU and this takes about 0.5 s. The
processing times for the different processing steps can be
found in our recent work [30].

The reason why the processing time for CCA is much
longer than for the GLM for the CPU implementations is
that the 2D version of CCA uses one separable filter and
three nonseparable filters for the smoothing while the GLM
uses one separable filter. For the GPU implementation the
2D smoothing can be done extremely fast by using the shared
memory.

4.3. Verifying the Whitening Procedure. To verify that the
whitening procedure prior to the permutations works cor-
rectly, the Ljung-Box test was applied to each residual time
series. The Ljung-Box test was applied to the four datasets
after detrending, BOLD removal, and whitening with AR
models of different order. The test was applied for 1–10 time
lags (i.e., 10 tests), and the mean number of nonwhite voxels
was saved. A voxel-wise threshold of P = 0.05 was used, that
is, χ2

0.95,h−p where h is the number of time lags tested and p
is the order of the AR model used. This means that the test

only can be applied to certain time lags, since the degrees
of freedom otherwise become zero or negative. The results
with spatial smoothing of the auto correlations are given
in Figure 5 and the results without spatial smoothing are
given in Figure 6. The results for Gaussian white noise are
included as reference when no smoothing is applied to the
auto correlations. With the spatial smoothing, the number of
voxels classified as nonwhite for the Gaussian noise is always
zero.

If no smoothing is applied to the estimated auto corre-
lations prior to the Ljung-Box test, the test statistic cannot
be trusted as the standard deviation of the estimated auto
correlations is too high. The reason why the number of
nonwhite voxels increases, when no smoothing is applied to
the auto correlations and when the degree of the AR model
increases, is that the critical threshold of the Ljung-Box test
decreases as the order of the AR model increases.

From the results in Figures 5 and 6 we draw the
conclusion that cubic detrending and an individual AR(4)
whitening is necessary to whiten the Motor 1, Motor 2,
and Language datasets while an individual AR(5) or AR(6)
whitening is necessary for the Null dataset. Long-term
autocorrelations have previously been reported for resting
state fMRI data.

For all the datasets an individual AR(4) whitening
was therefore used prior to the permutations and in each
permutation to generate new null data. For the null dataset
a higher-order AR model is necessary, but to estimate an

International Journal of Biomedical Imaging 9

Table 2: Processing times for random permutation tests with the GLM for the different implementations.

Number of permutations with GLM C OpenMP CUDA, 1 × GTX 480 CUDA, 3 × GTX 480

1000 25 min 3.5 min 25.2 s 8.4 s

5 000 2 h 5 min 17.5 min 1 min 42 s 33.9 s

10 000 4 h 10 min 35 min 3 min 18 s 65.8 s

50 000 20 h 50 min 2 h 55 min 16 min 30 s 5 min 30 s

100 000 1 day 17 h 40 min 5 h 50 min 33 min 11 min

Table 3: Processing times for random permutation tests with 2D CCA for the different implementations.

Number of permutations with 2D CCA C OpenMP CUDA, 1 × GTX 480 CUDA, 3 × GTX 480

1000 1 h 40 min 14 min 50 s 22.2 s 7.4 s

5 000 8 h 20 min 1 h 14 min 1 min 24 s 28 s

10 000 16 h 37 min 2 h 28 min 2 min 42 s 54 s

50 000 3 days 11 h 12 h 22 min 13 min 30 s 4 min 30 s

100 000 6 days 22 h 24 h 43 min 27 min 9 min

1 2 3 4 5 6 7

0

20

40

60

80

100

120

Order of AR model

M
ea

n
n

u
m

be
r

of
n

on
-w

h
it

e
vo

xe
ls

Motor 1
Motor 2

Language
Null

Figure 5: Mean number of voxels classified as nonwhite by the
Ljung-Box test (1–10 time lags were tested and the mean number
of nonwhite voxels for the 10 tests was saved). Prior to the Ljung-
Box test the estimated auto correlations were spatially smoothed.
The number of nonwhite voxels for Gaussian white noise is always
zero.

AR(5) model requires matrix inverses of 5 × 5 matrices for
each voxel time series, which our GPU implementation does
not support. Therefore, the voxels in the null dataset that
were considered as nonwhite after the AR(4) whitening were
instead removed from the random permutation test.

4.4. Verifying the Random Permutation Test. To verify that
our random permutation test works correctly, all the pre-
processing steps were removed and Gaussian white noise was
used as data. The stimulus paradigm convolved with the HRF
and its temporal derivative were used as regressors, and a t-
test value was calculated for each voxel. A spatial mask from
a real fMRI dataset was used to get the same number of brain

1 2 3 4 5 6 7
1500

2000

2500

3000

3500

4000

4500

5000

Order of AR model

M
ea

n
n

u
m

be
r

of
n

on
-w

h
it

e
vo

xe
ls

Motor 1
Motor 2

Language
Null

Gaussian white noise

Figure 6: Mean number of voxels classified as nonwhite by the
Ljung-Box test (1–10 time lags were tested and the mean number
of nonwhite voxels for the 10 tests was saved). No spatial smoothing
was applied to the estimated auto correlations prior to the Ljung-
Box test. The number of nonwhite voxels for Gaussian white noise
is included as reference (no whitening was applied to the noise).

voxels. A threshold for corrected P = 0.05 was calculated, by
using 100 000 permutations, and then 10 000 noise datasets
were generated (for each amount of smoothing), analysed,
and thresholded. If the calculated threshold is correct, 500 of
the noise datasets should contain a test value that is higher
than the threshold. The family-wise error rate (FWE) was
estimated for the thresholds from Bonferroni correction,
Gaussian random field theory, and the random permutation
test and is given in Figure 7.

4.5. GLM versus CCA. With the random permutation test it
is possible to calculate corrected P values for fMRI analysis
by CCA, and thereby activity maps from GLM and CCA

10 International Journal of Biomedical Imaging

0 5 10 15
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Amount of smoothing applied (mm FWHM)

RFT Truth

Fa
m

ily
-w

is
e

er
ro

r
ra

te

Bonferroni Permutation

Figure 7: A comparison of family-wise error rates for Gaussian
white noise for three different approaches to calculate an activity
threshold, corrected for multiple testing.

can finally be compared at the same significance level. The
activity maps are given in Figure 8. For these comparisons,
the Motor 1 dataset was used, 10 000 permutations were used
both for GLM and CCA. The activity maps were thresholded
at the same significance level, corrected P = 0.05. With 8
mm of 2D smoothing, GLM detects 302 significantly active
voxels while CCA detects 344 significantly active voxels. With
8 mm of 3D smoothing, GLM detects 475 significantly active
voxels while CCA detects 684 significantly active voxels. The
aim of this comparison is not to prove that CCA has a
superior detection performance, but to show that objective
evaluation of different methods for single-subject fMRI
analysis becomes practically possible by using fast random
permutation tests.

For RCCA there is no theoretical distribution to calculate
a threshold from, and therefore the corrected thresholds
for the restricted canonical correlation coefficients are also
presented, 10 000 permutations were used to calculate each
threshold. Figure 9 shows the found thresholds for 2D
CCA and 3D CCA for the Motor 1 dataset. Similar results
were obtained for the other datasets. Since fMRI analysis
by CCA results in an adaptive smoothing, compared to a
fix smoothing with the GLM, the amount of smoothing
varies between the voxels. Due to this, the plots show the
corrected thresholds for the different maximum amounts
of smoothing that can be applied by CCA. These plots
would have taken a total of about 14 days to generate
with a standard C implementation, with our multi-GPU
implementation they took about 30 minutes to gener-
ate.

4.6. Comparison of Methods for Calculating Corrected Thresh-
olds. As the null distribution of the maximum t-test statistics
can be estimated, it is possible to compare the thresholds that

2D GLM 2D CCA

3D GLM 3D CCA

1

0.99

0.98

0.97

0.96

0.95

Figure 8: Top: A comparison between corrected P values from
2D GLM (left) and 2D CCA (right), calculated from a random
permutation test with 10 000 permutations. The activity maps are
thresholded at the same significance level (corrected P = 0.05). The
GLM used one isotropic 8 mm FWHM 2D Gaussian smoothing
kernel while CCA used one isotropic 2D Gaussian kernel and 3
anisotropic 2D Gaussian kernels, designed such that the largest
possible filter that CCA can create has an FWHM of 8 mm. The
neurological display convention is used (left is left), 1−p is shown
instead of p. Note that CCA detects active voxels in the left motor
cortex and in the left somatosensory cortex that are not detected
by the GLM. Bottom: A comparison between corrected P values
from 3D GLM (left) and 3D CCA (right), calculated from a random
permutation test with 10 000 permutations. The activity maps are
thresholded at the same significance level (corrected P = 0.05). The
GLM used one isotropic 8 mm FWHM 3D Gaussian smoothing
kernel while CCA used one isotropic 3D Gaussian kernel and its
derivative, designed such that the largest possible filter that CCA can
create has a FWHM of 8 mm. The neurological display convention
is used (left is left), 1−p is shown instead of p. Note that CCA detects
active voxels in the left somatosensory cortex that are not detected
by the GLM.

are given by Bonferroni correction, Gaussian random field
theory, and a random permutation test (which should give
the most correct threshold); 10 000 permutations were used
for the random permutation test.

Figure 10 shows the found thresholds for the Motor 1
dataset, for different amounts of smoothing. Similar results
were obtained for the other datasets. To our knowledge,
a comparison of thresholds from Bonferroni correction,
Gaussian random field theory, and a random permutation
test has previously only been done for multi-subject fMRI
[24]. These plots would have taken a total of about 5.5 days
to generate with a standard C implementation; with our
multi-GPU implementation they took about 38 minutes to
generate.

International Journal of Biomedical Imaging 11

Motor1

1 5 10 15
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Maximum amount of smoothing applied (mm FWHM)

C
or

re
ct

ed
ca

n
on

ic
al

co
rr

el
at

io
n

th
re

sh
ol

d

Permutation 2D CCA
Permutation 3D CCA

Figure 9: Canonical correlation thresholds, for corrected P = 0.05,
as function of the maximum amount of smoothing that can be
applied by CCA. The Motor 1 dataset was used.

Motor1

0 5 10 15
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Amount of smoothing applied (mm FWHM)

RFT

C
or

re
ct

ed
t-

th
re

sh
ol

d

Permutation, mean AR(1) prior GLMBonferroni

Figure 10: A comparison of t-thresholds, for corrected P =
0.05, from three approaches to calculate a corrected threshold, as
function of the amount of smoothing applied. The Motor 1 dataset
was used.

Figure 11 shows the estimated maximum t distribution
for the Motor 1 dataset; 8 mm of smoothing was applied to
the volumes in each permutation.

4.7. Distributions of Corrected t-Thresholds. As a final result,
distributions of the corrected t-thresholds are presented. The
random permutation test for the GLM was repeated 1000
times and the resulting thresholds were saved. The Motor 1
dataset was used with 8 mm of smoothing. The threshold

0

2000

4000

6000

8000

10000

12000

Max t

C
ou

n
t

RPT

RFT
BC

2 3 4 5 6 7 8

Figure 11: The estimated null distribution of the maximum t-
test value from the GLM, when 8 mm smoothing was applied. The
calculated thresholds for corrected P = 0.05 for the three approaches
are marked with BC (Bonferroni correction), RFT (random field
theory), and RPT (random permutation test).

0

50

100

150

200

250

300

C
ou

n
t

Corrected t-threshold

5.8 5.9 6 .6 1

Figure 12: The distribution of the corrected t-threshold when 1000
permutations were used.

distribution for 1000 permutations is given in Figure 12 and
the threshold distribution for 10 000 permutations is given in
Figure 13. The standard deviation of the threshold calculated
with 1000 permutations is 0.0364, and the standard deviation
of the threshold calculated with 10 000 permutations is
0.0114. According to [53] the standard deviation should
decrease with

√
10 if 10 times more permutations are used.

The difference in standard deviation between the threshold
calculated with 1000 and 10 000 permutations is very close
to this approximation.

If 1000 permutations are used (and it is assumed that
the estimated distribution is correct), the estimated P value
varies between 0.044 and 0.059 if the standard deviation of
the corrected threshold is subtracted or added. For 10 000

12 International Journal of Biomedical Imaging

0

50

100

150

200

250

300

C
ou

n
t

Corrected t-threshold

5.8 5.9 6 .6 1

Figure 13: The distribution of the corrected t-threshold when
10 000 permutations were used.

permutations the estimated P value varies between 0.048 and
0.052. This is close to the expected relative standard deviation
given in Table 1. It is very important to know the variance of
the P values as it tells us how reliable the estimates are.

These plots would have taken a total of about 17.4 and
174 days to generate with a standard C implementation. With
the multi-GPU implementation they took about 2.3 and 18
hours to generate.

5. Discussion

With the help of fast random permutation tests it is possible
to objectively evaluate activity maps from any test statistics
easily, by using the same significance level. As an example
of this we compare activity maps from GLM and CCA. It is
also possible to investigate how a change in the preprocessing
(e.g., the amount of smoothing or the whitening applied)
affects the distribution of the maximum test statistics. The
search for the best test statistics, that gives the best separation
between active and inactive voxels, can now be started. To
use simple test statistics and hope that the data is normally
distributed and independent is no longer necessary.

5.1. Processing Times. As can be seen in the tables, a lot of
time is saved by using the GPU. Most of the time is saved in
the smoothing step. The tables clearly show that the GPU, or
an advanced PC cluster, is a must for random permutation
tests that include smoothing. To do 100 000 permutations
with CCA takes about 7 days with the C implementation,
about a day with the OpenMP implementation, and about 9
minutes with the multi-GPU implementation. The speedup
is about 1100 between the C implementation and the multi-
GPU implementation and about 170 between the OpenMP
implementation and the multi-GPU implementation.

It should be noted that these processing times are for 80
volumes and 20 000 brain voxels, but it is not uncommon

that an fMRI dataset contains 150 volumes and 30 000 brain
voxels, which triples the processing times.

The main problem with a long processing time is the
software development. In order to test and verify that a pro-
gram works correctly, the program has to be launched a large
number of times. During the development of the routines
and the writing of the paper we ran the complete analysis,
with 1000–100 000 permutations, at least 3000 times. For
the GLM this means that at least 6000 hours of processing
time were saved, compared to the C implementation. This is
equivalent to 750 working days.

With the power of the GPU it is even possible to look at
the distributions of the corrected thresholds that otherwise
could take as much as 6 months of processing time to
estimate.

The processing time for 10 000 permutations with GLM
and smoothing is about 3.5 minutes with one GPU. This is
perhaps too long for clinical applications, but we believe that
it is fast enough for researchers to use it in their daily work.

5.2. GLM versus CCA. With the help of the GPU it is finally
possible to compare activity maps from GLM and CCA at the
same significance level. Even if CCA has a superior detection
performance compared to the GLM, its use has been limited.
One major reason for this is that it is hard to set a (corrected)
threshold for CCA.

The presented activity maps show that the CCA approach
in general, due to its spatial adaptivity, finds a higher number
of significantly active voxels than the GLM approach. With
2D smoothing CCA finds some significantly active voxels in
the left motor cortex and in the left somatosensory cortex
that are not detected by the GLM. With 3D smoothing
CCA finds some significantly active voxels in the left
somatosensory cortex that are not detected by the GLM. We
have thereby confirmed previous results that fMRI analysis
by CCA can result in a higher number of significantly active
voxels [9, 10, 56].

It might seem strange that the corrected canonical
correlation thresholds do not decrease as rapidly as the
corrected t-thresholds when the maximum amount of
smoothing increases. By using CCA an adaptive smoothing is
obtained, such that the amount of smoothing varies between
the voxels. The CCA approach will choose the amount
(and orientation) of smoothing that results in the highest
canonical correlation, as shown in Figure 3. This is one of the
main advantages with CCA, since it, for example, prevents
that too much smoothing is used in small activity areas. If
the maximum canonical correlation is found by only using
the small lowpass filter, the maximum canonical correlation
might not change significantly when the maximum amount
of smoothing is increased since CCA probably will choose to
only use the small lowpass filter once again. The consequence
is that it is hard to predict how the maximum test value will
change as a function of the maximum amount of smoothing.

The corrected thresholds are lower for 3D CCA than for
2D CCA. This is explained by the fact that the 2D version is
adaptive in both scale and orientation, and it can thereby find
higher correlations than the 3D version that only is adaptive

International Journal of Biomedical Imaging 13

in scale. With more advanced GPUs, the original 3D CCA
approach, with 7 filters, can be used to obtain more spatial
adaptivity in 3D.

5.3. Comparison of Methods for Calculating Corrected Thresh-
olds. The comparison between the thresholds from Bon-
ferroni correction, Gaussian random field theory, and the
random permutation test shows some interesting results.
The thresholds from the random permutation test are the
highest. For the GLM approach to be valid, the data is
assumed to be normally distributed as well as independent.
For the multiple testing problem, the parametric approaches
also assume a common null distribution for each voxel
while the permutation approach does not [24]. There are
thus, at least, three sources of error for the parametric
approaches.

As a t-value is calculated for each time series, the
normality condition should be investigated for each time
series separately [2], for example, by a Kolmogorov-Smirnov
test or a Shapiro-Wilk test. These tests are, however, not
very reliable if there are only 80 time points for each voxel.
The maximum t-distribution is very sensitive to deviations
from normality [57], while the standard t-distribution is
rather robust. If a few voxel time series have a distribution
that deviates from normality, this is sufficient to affect the
maximum t-distribution and thereby the threshold [24].
This will be captured by the random permutation test but
not by the parametric tests.

The distribution of the t-test values from the Null dataset
does not strictly follow a Student’s t-distribution, especially
if 10 mm smoothing is used. The tails are not longer but
slightly thicker than a true t-distribution. When a mean
AR(1) whitening was used for a conventional analysis of the
Null dataset, the t-test value that is bigger than 95% of the test
values is 1.75 when no smoothing is used, 1.66 when 5 mm of
smoothing is used, and 1.59 when 10 mm smoothing is used.
The theoretical threshold for uncorrected P = 0.05, calculated
from the Student’s t-distribution, is 1.66. This explains why
the thresholds from the random permutation test are higher
than the thresholds from Bonferroni correction.

It is commonly assumed that the noise in MRI is
normally distributed, but due to the fact that only the
magnitude of the MRI data is used, the noise is actu-
ally Rician distributed [1]. The original (complex valued)
noise in MRI is normally distributed, but the magnitude
operation after the inverse Fourier transform in the image
reconstruction process is not linear and thereby changes the
distribution of the noise. The distribution of the fMRI noise
is more complicated as there are several sources of artefacts
and the difference between images is used to calculate the
test statistics [2–5]. The consequence for fMRI is that the
residuals from the GLM might not be normally distributed,
even if the model is valid. For the model to be valid,
all possible artefacts that can arise have to be modelled.
This includes motion-related artefacts, breathing artefacts,
pulse artefacts, and MR scanner imperfections. To make a
perfect model for all these artefacts is a big challenge on its
own.

Another problem for the random field theory approach
is that the activity map has to be sufficiently smooth in order
to approximate the behaviour of a continuous random field.
The smoothness also has to be estimated from the data and it
is assumed that it is constant in the brain. These assumptions
and several others [24, 39] have to be met in order for the
random field theory approach to be valid. For the random
permutation test some assumptions also have to be made,
for example that the time series are correctly whitened before
the permutations. The number of necessary assumptions for
the random permutation test is, however, significantly lower
than that for the parametric approaches.

5.4. Future Work. In this paper we have only described what
is known as a single-threshold permutation test, but other
types of permutation tests can be more powerful. Examples
of this are the so-called step-down and step-up permutation
tests. These permutation tests are even more computationally
demanding; it can, for example, be necessary to reestimate
the maximum null distribution for each voxel. It is also
possible to use the mass of a cluster [28, 58] instead of the
voxel intensity, or a combination of the voxel intensity and
the cluster extent [25]. The random permutation tests can
also be used in order to calculate significance thresholds for
functional connectivity analysis [31, 32].

The GPU can of course also be used to speed up permu-
tation tests for multi-subject fMRI and multi-subject PET,
and not only for single-subject fMRI. The only drawback
with the GPU that has been encountered so far is that some
test statistics, like 3D CCA, are harder to implement on the
GPU than on the CPU, due to the current limitations of the
GPU. It must also be possible to calculate the test statistics in
parallel, otherwise the GPU will not provide any speedup.

6. Conclusions

We have presented how to apply random permutation
tests for single-subject analysis of fMRI data by using the
graphics processing unit (GPU). Our work enables objective
evaluation of arbitrary methods for single-subject fMRI
analysis. As a pleasant side effect, the problem of multiple
testing is solved in a way that significantly reduces the
number of necessary assumptions. To our knowledge, our
implementation is the first where the smoothing is done
in each permutation. In previous papers about permutation
tests in fMRI, it is neglected that the smoothing has to be
done in each permutation for the analysis to be correct.

Acknowledgments

This work was supported the Linnaeus center CADICS,
funded by the Swedish research council. The fMRI data
was collected at the Center for Medical Image Science and
Visualization (CMIV). The authors would like to thank the
NovaMedTech project at Linköping University for financial
support of our GPU hardware and Johan Wiklund for
support with the CUDA installations.

14 International Journal of Biomedical Imaging

References

[1] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy
MRI data,” Magnetic Resonance in Medicine, vol. 34, no. 6, pp.
910–914, 1995.

[2] W. L. Luo and T. E. Nichols, “Diagnosis and exploration of
massively univariate neuroimaging models,” NeuroImage, vol.
19, no. 3, pp. 1014–1032, 2003.

[3] O. Friman, I. Morocz, and C.-F. Westin, “Examining the
whiteness of fMRI noise,” in Proceedings of the ISMRM Annual
Meeting, p. 699, 2005.

[4] T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E.
Nichols, “Non-white noise in fMRI: does modelling have an
impact?” NeuroImage, vol. 29, no. 1, pp. 54–66, 2006.

[5] A. M. Wink and J. B. T. M. Roerdink, “BOLD noise assump-
tions in fMRI,” International Journal of Biomedical Imaging,
vol. 2006, Article ID 12014, 2006.

[6] K. J. Friston, O. Josephs, E. Zarahn, A. P. Holmes, S. Rouquette,
and J. B. Poline, “To smooth or not to smooth? Bias and
efficiency in fMRI time-series analysis,” NeuroImage, vol. 12,
no. 2, pp. 196–208, 2000.

[7] K. J. Worsley, C. H. Liao, J. Aston et al., “A general statistical
analysis for fMRI data,” NeuroImage, vol. 15, no. 1, pp. 1–15,
2002.

[8] O. Friman, J. Cedefamn, P. Lundberg, M. Borga, and H.
Knutsson, “Detection of neural activity in functional MRI
using canonical correlation analysis,” Magnetic Resonance in
Medicine, vol. 45, no. 2, pp. 323–330, 2001.

[9] O. Friman, M. Borga, P. Lundberg, and H. Knutsson, “Adap-
tive analysis of fMRI data,” NeuroImage, vol. 19, no. 3, pp. 837–
845, 2003.

[10] R. Nandy and D. Cordes, “A novel nonparametric approach to
canonical correlation analysis with applications to low CNR
functional MRI data,” Magnetic Resonance in Medicine, vol. 49,
pp. 1152–1162, 2003.

[11] J. Mourão-Miranda, A. L. W. Bokde, C. Born, H. Hampel,
and M. Stetter, “Classifying brain states and determining the
discriminating activation patterns: support Vector Machine
on functional MRI data,” NeuroImage, vol. 28, no. 4, pp. 980–
995, 2005.

[12] N. Kriegeskorte, R. Goebel, and P. Bandettini, “Information-
based functional brain mapping,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 103,
no. 10, pp. 3863–3868, 2006.

[13] F. D. Martino, G. Valente, N. Staeren, J. Ashburner, R. Goebel,
and E. Formisano, “Combining multivariate voxel selection
and support vector machines for mapping and classification
of fMRI spatial patterns,” NeuroImage, vol. 43, no. 1, pp. 44–
58, 2008.

[14] M. B. Åberg and J. Wessberg, “An evolutionary approach
to the identification of informative voxel clusters for brain
state discrimination,” IEEE Journal on Selected Topics in Signal
Processing, vol. 2, no. 6, pp. 919–928, 2008.

[15] Y. Hochberg and A. C. Tamhane, Multiple Comparison Proce-
dures, John Wiley & Sons, New York, NY, USA, 1987.

[16] S. Siegel, “Nonparametric statistics,” The American Statisti-
cian, vol. 11, pp. 13–19, 1957.

[17] A. P. Holmes, R. C. Blair, J. D. G. Watson, and I. Ford,
“Nonparametric analysis of statistic images from functional
mapping experiments,” Journal of Cerebral Blood Flow &
Metabolism, vol. 16, no. 1, pp. 7–22, 1996.

[18] E. Bullmore, M. Brammer, S. C. R. Williams et al., “Statistical
methods of estimation and inference for functional MR image

analysis,” Magnetic Resonance in Medicine, vol. 35, no. 2, pp.
261–277, 1996.

[19] J. J. Locascio, P. J. Jennings, C. I. Moore, and S. Corkin, “Time
series analysis in the time domain and resampling methods
for studies of functional magnetic resonance brain imaging,”
Human Brain Mapping, vol. 5, no. 3, pp. 168–193, 1997.

[20] M. J. Brammer, E. T. Bullmore, A. Simmons et al., “Generic
brain activation mapping in functional magnetic resonance
imaging: a nonparametric approach,” Magnetic Resonance
Imaging, vol. 15, no. 7, pp. 763–770, 1997.

[21] M. Belmonte and D. Yurgelun-Todd, “Permutation testing
made practical for functional magnetic resonance image
analysis,” IEEE Transactions on Medical Imaging, vol. 20, no.
3, pp. 243–248, 2001.

[22] E. Bullmore, C. Long, J. Suckling et al., “Colored noise
and computational inference in neurophysiological (fMRI)
time series analysis: resampling methods in time and wavelet
domains,” Human Brain Mapping, vol. 12, no. 2, pp. 61–78,
2001.

[23] T. E. Nichols and A. P. Holmes, “Nonparametric permutation
tests for functional neuroimaging: a primer with examples,”
Human Brain Mapping, vol. 15, no. 1, pp. 1–25, 2002.

[24] T. Nichols and S. Hayasaka, “Controlling the familywise
error rate in functional neuroimaging: a comparative review,”
Statistical Methods in Medical Research, vol. 12, no. 5, pp. 419–
446, 2003.

[25] S. Hayasaka and T. E. Nichols, “Combining voxel intensity and
cluster extent with permutation test framework,” NeuroImage,
vol. 23, no. 1, pp. 54–63, 2004.

[26] M. Breakspear, M. J. Brammer, E. T. Bullmore, P. Das,
and L. M. Williams, “Spatiotemporal wavelet resampling for
functional neuroimaging data,” Human Brain Mapping, vol.
23, no. 1, pp. 1–25, 2004.

[27] O. Friman and C. F. Westin, “Resampling fMRI time series,”
NeuroImage, vol. 25, no. 3, pp. 859–867, 2005.

[28] L. Tillikainen, E. Salli, A. Korvenoja, and H. J. Aronen, “A
cluster mass permutation test with contextual enhancement
for fMRI activation detection,” NeuroImage, vol. 32, no. 2, pp.
654–664, 2006.

[29] R. Nandy and D. Cordes, “A semi-parametric approach to
estimate the family-wise error rate in fMRI using resting-state
data,” NeuroImage, vol. 34, no. 4, pp. 1562–1576, 2007.

[30] A. Eklund, M. Andersson, and H. Knutsson, “fMRI analysis on
the GPU-possibilities and challenges,” Computer Methods and
Programs in Biomedicine. In press.

[31] D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer,
“Correlation analysis on GPU systems using NVIDIA’s
CUDA,” Journal of Real-Time Image Processing, pp. 1–6, 2010.

[32] A. Eklund, O. Friman, M. Andersson, and H. Knutsson, “A
GPU accelerated interactive interface for exploratory func-
tional connectivity analysis of fMRI data,” in Proceedings of the
IEEE International Conference on Image Processing (ICIP), pp.
1621–1624, 2011.

[33] A. R. Ferreira da Silva, “A bayesian multilevel model for
fMRI data analysis,” Computer Methods and Programs in
Biomedicine, vol. 102, pp. 238–252, 2011.

[34] I. Shterev, S.-H. Jung, S. George, and K. Owzar, “permGPU:
using graphics processing units in RNA microarray association
studies,” BMC Bioinformatics, vol. 11, p. 329, 2010.

[35] J. L. V. Hemert and J. A. Dickerson, “Monte Carlo random-
ization tests for large-scale abundance datasets on the GPU,”
Computer Methods and Programs in Biomedicine, vol. 101, no.
1, pp. 80–86, 2011.

International Journal of Biomedical Imaging 15

[36] K. J. Friston, P. Jezzard, and R. Turner, “Analysis of functional
MRI time-series,” Human Brain Mapping, vol. 1, no. 2, pp.
153–171, 1993.

[37] K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D.
Frith, and R. S. J. Frackowiak, “Statistical parametric maps in
functional imaging: a general linear approach,” Human Brain
Mapping, vol. 2, no. 4, pp. 189–210, 1994.

[38] S. J. Kiebel, J. B. Poline, K. J. Friston, A. P. Holmes, and K.
J. Worsley, “Robust smoothness estimation in statistical para-
metric maps using standardized residuals from the general
linear model,” NeuroImage, vol. 10, no. 6, pp. 756–766, 1999.

[39] R. S. Frackowiak, K. Friston, and C. Frith, Human Brain
Function, Academic Press, New York, NY, USA, 2004.

[40] M. Dwass, “Modified randomization tests for nonparametric
hypotheses,” The Annals of Mathematical Statistics, vol. 28, pp.
181–187, 1957.

[41] A. M. Smith, B. K. Lewis, U. E. Ruttimann et al., “Investigation
of low frequency drift in fMRI signal,” NeuroImage, vol. 9, no.
5, pp. 526–533, 1999.

[42] O. Friman, M. Borga, P. Lundberg, and H. Knutsson, “Detec-
tion and detrending in fMRI data analysis,” NeuroImage, vol.
22, no. 2, pp. 645–655, 2004.

[43] A. R. Laird, B. P. Rogers, and M. E. Meyerand, “Comparison of
Fourier and wavelet resampling methods,” Magnetic Resonance
in Medicine, vol. 51, no. 2, pp. 418–422, 2004.

[44] T. Gautama and M. M. Van Hulle, “Optimal spatial reg-
ularisation of autocorrelation estimates in fMRI analysis,”
NeuroImage, vol. 23, no. 3, pp. 1203–1216, 2004.

[45] B. Lenoski, L. C. Baxter, L. J. Karam, J. Maisog, and J.
Debbins, “On the performance of autocorrelation estimation
algorithms for fMRI analysis,” IEEE Journal on Selected Topics
in Signal Processing, vol. 2, no. 6, pp. 828–838, 2008.

[46] H. Knutsson and C.-F. Westin, “Normalized and differen-
tial convolution: methods for interpolation and filtering of
incomplete and uncertain data,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 515–523, June 1993.

[47] G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in
time series models,” Biometrika, vol. 65, no. 2, pp. 297–303,
1978.

[48] H. Hotelling, “Relation between two sets of variates,” Bio-
metrika, vol. 28, pp. 322–377, 1936.

[49] T. K. Nguyen, A. Eklund, H. Ohlsson et al., “Concurrent
volume visualization of real-time fMRI,” in Proceedings of the
8th IEEE/EG International Symposium on Volume Graphics, pp.
53–60, Norrköping, Sweden, May 2010.

[50] A. Constantine, “Some non-central distribution problems in
multivariate analysis,” Annals of Mathematical Statistics, vol.
34, pp. 1270–1285, 1963.

[51] S. Das and P. K. Sen, “Restricted canonical correlations,”
Linear Algebra and Its Applications, vol. 210, no. C, pp. 29–47,
1994.

[52] O. Friman, “Subspace models for functional MRI data analy-
sis,” in Proceedings of the 2nd IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pp. 1–4, April 2004.

[53] D. S. Moore, G. P. McCabe, and B. A. Craig, Introduction to the
Practice of Statistics, W. H. Freeman & Company, 2007.

[54] Nvidia, CUDA Programming Guide, Version 4.0, 2010.

[55] D. Kirk and W. Hwu, Programming Massively Parallel Proces-
sors, A Hands on Approach, Morgan Kaufmann, 2010.

[56] M. Ragnehed, M. Engström, H. Knutsson, B. Söderfeldt, and P.
Lundberg, “Restricted canonical correlation analysis in func-
tional MRI-validation and a novel thresholding technique,”
Journal of Magnetic Resonance Imaging, vol. 29, no. 1, pp. 146–
154, 2009.

[57] R. Viviani, P. Beschoner, K. Ehrhard, B. Schmitz, and J. Thöne,
“Non-normality and transformations of random fields, with
an application to voxel-based morphometry,” NeuroImage,
vol. 35, no. 1, pp. 121–130, 2007.

[58] E. T. Bullmore, J. Suckling, S. Overmeyer, S. Rabe-Hesketh, E.
Taylor, and M. J. Brammer, “Global, voxel, and cluster tests, by
theory and permutation, for a difference between two groups
of structural MR images of the brain,” IEEE Transactions on
Medical Imaging, vol. 18, no. 1, pp. 32–42, 1999.

	Introduction
	Methods
	Basics of Random Permutation Tests
	The Problem of Multiple Testing
	Preprocessing of fMRI Time Series
	Statistical Analysis, GLM and t-Test
	Statistical Analysis, CCA
	Spatial Smoothing
	The Complete Algorithm
	The Number of Permutations

	GPU Implementation
	Whitening and the Random Permutations
	Multi-GPU

	Results
	Data
	Motor Activity
	Language Activity
	Null

	Processing Times
	Verifying the Whitening Procedure
	Verifying the Random Permutation Test
	GLM versus CCA
	Comparison of Methods for Calculating Corrected Thresholds
	Distributions of Corrected t-Thresholds

	Discussion
	Processing Times
	GLM versus CCA
	Comparison of Methods for Calculating Corrected Thresholds
	Future Work

	Conclusions
	Acknowledgments
	References

