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gdT cells are an unconventional population of T lymphocytes that play an indispensable
role in host defense, immune surveillance, and homeostasis of the immune system. They
display unique developmental, distributional, and functional patterns and rapidly respond
to various insults and contribute to diverse diseases. Although gdT cells make up only a
small portion of the total T cell pool, emerging evidence suggest that aberrantly activated
gdT cells may play a role in the pathogenesis of psoriasis. Dermal gdT cells are the major IL-
17-producing cells in the skin that respond to IL-23 stimulation. Furthermore, gdT cells
exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic
inflammation. This review discusses the differentiation, development, distribution, and
biological function of gdT cells and the mechanisms by which they contribute to psoriasis.
Potential therapeutic approaches targeting these cells in psoriasis have also
been detailed.
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INTRODUCTION

Gamma delta T cells (gd T cells) are T cells that have a distinctive T-cell receptor (TCR) on their
surface. Most T cells are ab (alpha beta) T cells with TCR composed of two glycoprotein chains
called a (alpha) and b (beta) TCR chains. In contrast, gamma delta (gd) T cells have a TCR that is
made up of one g (gamma) chain and one d (delta) chain (1). This group of T cells is usually less
common than ab T cells, but significantly enriched in mucosal and epithelial sites, such as the skin
and respiratory, digestive, and reproductive tracts. gdT cells are major histocompatibility complex
(MHC)-unrestricted innate-like lymphocytes with more unique antigen receptors compared to abT
cells (2). They produce cytokines such as IL-17/IFN-g/IL-22 (3–5). Although they constitute a small
portion of the total T cell pool, gdT cells bridge the innate and adaptive immune system and
contribute to various physiological and pathological processes (2). Relative to abT cells, gdT cells
have been less studied and characterized. It is becoming clear that gdT cells are heterogeneous
populations of cells with multifunctional capacities in repairing host tissue (6), pathogen clearance
(7), tumor surveillance (8, 9), and proinflammatory effects (10).

Psoriasis is a chronic inflammatory skin disease with an autoimmune component and a strong
genetic basis. Plaque psoriasis is characterized by well-defined, raised, chronic erythematous plaques with
silver patches observed commonly in the elbows, knees, scalp, umbilicus, and lumbar area (11–13). The
worldwide reported prevalence of psoriasis ranges from 0.09% to 11.43% and results in a severe
economic burden to patients and a significant challenge to public health (14, 15). Multiple comorbidities
org February 2021 | Volume 12 | Article 6271391
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and other autoimmune disorders have been correlated with
psoriasis, which includes arthritis, cardiovascular disease, obesity,
diabetes mellitus, and inflammatory bowel disease, indicate
common cellular mediators that drive the pathogenesis of these
diseases (16). Increasing evidence has demonstrated that aberrantly
activated gdT cells may direct the pathogenesis of autoimmune
disorders, such as psoriasis (17–19). To understand what they do in
psoriasis, it is important to understand their the differentiation,
development, distribution, and biological function.

In this review, we expound on the properties of gdT cells and
review the effects of gdT cells in psoriasis. We hope that this
review provides insights into its pathogenesis, especially in
disease recurrence, and sheds light on potentially novel
therapies targeting gd T cell function.
DIFFERENTIATION AND DEVELOPMENT
OF gdT CELLS IN THE THYMUS

gdT cells were first discovered and reported 30 years ago during
the manufacture of antibodies using the TCRg gene sequence
(20). abT and gdT cell lineages originate from common T
precursor cells that lack CD4 and CD8 coreceptors (CD4-
CD8-), also known as double-negative (DN) thymocytes. Based
on their differential CD44 and CD25 expression, DN cells
can be further subdivided into DN1 (CD44+CD25-), DN2
(CD44+CD25+), DN3 (CD44-CD25+), and DN4 (CD44-
CD25-) stages, as indicated in Figure 1. Clonal assays for
determining DNT cell progenitors permit the identification
of the branch-point of abT and gdT cell lineages at the late DN2
to DN3 developmental stages (21, 22). DN3 is the critical
selection stage that determines the fate of gd or ab cell lineages
(22). Rearrangements at the Tcrd, Tcrg, and Tcrb loci are initiated
at the DN2 stage, and ab and gd lineage divergence occur at the
DN3 stage (23, 24). Successful rearrangement of the TCRb chain
is achieved with the assembly of the constant pTa and CD3
subunits to form the pre-TCR complex. Commitment to the abT
cell lineage and differentiation of DN3 cells into DN4 (CD44-
CD25-) cells transpires in a ligand-independent manner. This
process is termed b-selection and is a checkpoint for the
generation of a functional TCRb chain (25, 26). TCRg and d
chains rearrange during the DN stages and express gdTCR/CD3
on the plasma membrane. ‘gd selection’ is associated with
increased extracellular signal-related kinase 1/2(ERK1/2)
phosphorylation and early growth response gene (Egr) protein
expression. Ectopic expression of Egr proteins promotes the
selection of the gd T cells. Inhibitor of DNA binding 3 (Id3) is
an essential target by which Egr proteins regulate ab/gd lineages
(26–29).

What determines cell fate specification and differentiation
from precursors to abT or gdT lineage? Two models have been
proposed, an instructive model and a stochastic model. In the
instructive model, pre-TCR or gd TCR signaling intensities
decide the fate of abT/gdT cell lineage (30). The instructive
model is based on several lines of evidence showing that the
strong TCR signals are inclined to gdT cells, while the relatively
Frontiers in Immunology | www.frontiersin.org 2
weak TCR signals are inclined to generate abundant abT lineage
cells (27, 31, 32). The stronger signals that promote adoption
of the gd-fate involve activation of the ERK-Egr-Id3 pathway
(29, 33). Sang-Yun et al. demonstrated that ERK signaling
promotes gdT cell maturation. ERK signaling that promotes
gdT cell fate depends not only on conventional substrate
targeting through the D-domain but also through an alternate
mode of ERK action mediated by its DBP. This induces
molecular effectors responsible for the execution of ERK-
mediated developmental outcomes post-transcriptionally (34).
E proteins are helix-loop-helix transcription factors that bind
DNA at E-box motifs (CANNTG). It acts as a downstream
focal point for TCR and plays an essential role in thymocyte
development (35). Strong TCR signals could selectively restrain
abT cell development by phenocopying E protein insufficiency
and increasing ERK activation. This induces early growth
response (EGR1, EGR3) transcription factors and targets
DNA-binding inhibitors (ID3). ID3 has been shown to interact
with and suppress E protein targets (33, 36, 37).

Under stochastic conditions, other signals dominate this
differentiation before TCR expression, hence pre-committing
cell fate and allowing them to mature further. Increasing
evidence has presented that progenitor T cells are
heterogeneous in their developmental potential prior to TCR
gene rearrangement. Their development potential has been
associated with IL-7R expression (pre-T cells) and was
independent of TCR-mediated signals (30). High mobility
group box transcription factor 13 (Sox13) that modulate Wnt/
TCF1 signaling has also been reported to regulate the T cell-fate
decision process, while Sox13 expression has been shown to
promote gdT cell development and restrain abT cell
development (38, 39). Nevertheless, gdT cell development has
been observed in Sox13-deficient mice, suggesting that it is
dispensable for gdT cell development. This is contrary to what
has been suggested in the stochastic model (38).
DISTRIBUTION OF gdT

Human gdT Cells
Humans gdT cells can be distinguished based on d chain
expression, which includes the Vd1, Vd2, and Vd3 subtypes
(40) (Table 1). Vd1 cells are mainly found in the gut epithelium,
skin, spleen, and liver, and are involved in maintaining epithelial
tissue integrity. They constitute approximately 30% of the gdT
cells in the peripheral blood (PB). Typically, the Vd1 chain is
associated with different VgI family members (Vg2/3/4/5/8/9)
(41–43). Vd1 cells exert their effector function through TCR
recognition of stress molecules on epithelial cells. Furthermore,
Vd1 cells express natural killer receptors (NKG2C, NKG2D,
NKp30), Toll-like receptors, CD8, and the b-glucan receptor,
dectin-1 (44–48). Activated Vd1T cells release IL-10, IL-2, IL-4,
IL-17, IFN-g, TNF-a, and chemokines (CCL3, CCL4, and
CCL5). Vd1T cells play an essential role in maintaining barrier
tissue integrity and establishing antiviral immunity (49–51).
Studies have demonstrated that Vd1 cells are involved in
February 2021 | Volume 12 | Article 627139
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several diseases, such as malaria (52, 53), human immune
deficiency virus (HIV) (54, 55), cytomegalovirus (CMV) (56),
inflammatory bowel disease, and Crohn’s disease by exerting
their cytotoxic effects and secreting cytokines (57). Notably,
activated Vd1T cells recognize B7-H6 via NKp30. B7-H6 is a
B7 family member exclusively expressed on tumor cells and is
involved in the antitumor effect (58).

Vd2T cells are primarily distributed in the blood and the
lymphoid system and are the main subset found in healthy
humans. It accounts for 50%–90% of the gdT cell population in
Frontiers in Immunology | www.frontiersin.org 3
peripheral blood (59). Vd2T cells are divided into the innate-like
(Vg9+) and adaptive (Vg9-) subsets, with the majority of Vd2T cells
being Vd2Vg9+T cells (60). Vd2Vg9+T cells are responsive to
cytokines, such as CCR1, CCR2, CCR5, and CXCR6 ligands and
IL-12, and produce proinflammatory factors, such as IFN-g, TNF-a,
IL-17, IL-21, and IL-24 (61, 62). Vd2Vg9+T cells can be divided into
naive gdT (CD45RA+CD27+Vd2Vg9+), central memory gdT
(TCM, CD45RA-CD27+Vd2Vg9), effector memory gdT (TEM,
CD45RA-CD27-Vd2 Vg9+), and CD45RA+ effector memory gdT
(TEMRA, CD45RA+CD27-Vd2Vg9+) based on their surface
TABLE 1 | Characteristics of human and murine gdT cell subsets.

Classify Common pairs Tissue resident Production of cytokines

Human Vd1 Vg2+/3+/4+/5+/8+/9+ gut, skin, liver
PB (peripheral blood)

IL-10,IL-2,IL-4,IL-17,IFN-g,
TNF-a

Vd2 Vg9-/9+ PB, skin IFN-g,TNF-a,IL-17,IL-21,IL-24
Vd3 Vg2+/3+/4+ PB, liver IL-10,IL-4,IL-17,IFN-g,TNF-a

Murine Vg1 Vg6.3/6.4 skin, lung, colon, liver, PB IL-4,IFN-g
Vg2 Vd4 skin, lung, colon, liver, PB IL-17
Vg3 Vd1 skin ?
Vg4 Vd4 skin, lung, colon, liver,

PB, joint
IL-17,IFN-g

Vg5 Vd1 skin, liver IL-17,IFN-g
Vg6 Vd1 genital tract, togue, lung, colon, skin,

adipose tissue
IL-17,IFN-g,IL-22

Vg7 Vd4/5/6 IEL (Intraepithelial lymphocytes) IFN-g
February 2021
Heilig and Tonegawa nomenclature used for classification.
FIGURE 1 | Schematic depicting the development of gd and ab T cells in the thymus. gd and ab cells develop from the same ancestral DN (CD4-CD8-) cells.
Lineage changes in gd and ab cells mainly occur at the DN3 stage. Cell surface markers and transcription factors of the cells have been labeled alongside.
| Volume 12 | Article 627139
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expression of CD45RA and CD27. Naive gdT cells comprise of the
Vd2Vg9+T cell subset in the lymph nodes and express CCR7 and
CD62L. However, CCR2, CCR5, CCR6, and CXCR3 are only
expressed and activated in the presence of high concentrations of
isopentenyl pyrophosphate (IPP) but do not produce IFN-g. CM
cells express CCR7 and CD62L and are activated at low IPP
concentrations and produce some IFN-g. TEM cells are present in
the blood and inflammatory sites and are CCR7-CD62L-. However,
they are positive for the chemokine receptors CCR2, CCR5, CCR6,
and CXCR3. TEM cells secrete abundant IFN-g and tumor necrosis
factor-alpha (TNF-a) when activated with IPP+IL-2. TEMRA cells
are CCR7-CD62L- but express CCR5 and CXCR3, and have a
cytotoxic effect. TEMRA cells also secrete abundant perforin,
granulysin, and N-a-benzyloxycarbonyl-L-lysine thiobenzyl ester
(BLT)-esterase, but do not produce IFN-g. In addition, they are
terminally differentiated and are no longer able to respond to TCR
stimulation, and have poor proliferative ability (63–66). Vd2
specifically recognizes (E)-4-hydroxy-3-methyl-but-2-enyl
pyrophosphate (HMB-PP) and isopentenyl pyrophosphate (IPP)
and rapidly respond to exogenous infections or endogenous
transformed cells (67, 68). Furthermore, activated Vd2Vg9+T cells
acquire antigen-presenting cell (APC) characteristics and display a
strong ability to secrete cytokines, such as Th1/Th2/Th17-type
cytokines. These induce the maturation of dendritic cells (DCs)
into APCs (69–71).

Vd3T cells are the smallest subsets of the peripheral blood
lymphocytes, accounting for 0.2% of circulating cells. They
express CD56, NKG2D, CD28, HLA-DR, CD161, and T cell
activation marker CD69, but not CD25, NKG2A, or NKG2C
(72). Vd3T cells are abundant in the liver and gut and are
involved in chronic viral infections and leukemia (73, 74).
Expanded Vd3T cells only recognize CD1d and release Th1,
Th2, and Th17 cytokines to induce the maturation of dendritic
cells into APCs. They do not recognize CD1a, CD1b, or CD1c
(72). Vd3 T cells and B cells reciprocally regulate the expression
of maturation markers, CD40, CD86, and HLA-DR, and
promote IgM release by B cells (75).

Interestingly, Vd4, Vd6, Vd7, and Vd8 T cells have been
observed in the PB of lymphoma patients, however, their roles
are yet to be deciphered (76).

Murine gd T Cells
Murine gdT cells can be distinguished based on their g chain
expression. Two nomenclature methods have been commonly
reported in the literature, i.e., the Heilig and Tonegawa, and the
Garman classification (77, 78). This review uses the Heilig and
Tonegawa nomenclature and is used for the Vg1–Vg7 subtypes
(79) (Table 1).

The development of the gdT subsets begins during the fetal
period. First are the Vg5+cells that are produced between
embryonic day13 (E13) to approximately E17, followed by Vg6+
cells from E14 to around birth, and the last are the Vg1+, Vg2+,
and Vg4+ cells from E16 onward (25, 80, 81). Vg5+ cells, also
known as dendritic epidermal T cells (DETCs), are involved in
innate body barrier defense. The increased expression of
sphingosine-1-phosphate receptor 1 (S1P1), E and P selectin
ligands, and chemokines CCR10 and CCR4 in mature Vg5+
Frontiers in Immunology | www.frontiersin.org 4
cells, and the decreased expression of CCR6, CCR9, CCR7, and
CD62L allow the egression of Vg5+ cells from the thymus to the
epidermis (82, 83). In normal healthy skin, DETC secretes IL-15
and IGF-1 to maintain skin homeostasis and promote wound
healing (84, 85). After skin trauma, DETCs undergo
morphological changes accompanied by the upregulation of the
activation marker, CD69. It then releases soluble factors that
regulate various aspects of tissue repair (85). DETCs produce
CCL3 and CCL4 chemokines that are important for macrophage
homing. Furthermore, DETCs promotes macrophage recruitment
by regulating hyaluronan production through DETC-derived
keratinocyte growth factor (KGF) (86, 87). Vg5+Vd1+cells
produce IFN-g by activating the Egr3-mediated pathway while
suppressing the gdT cell lineage factor, Sox13, and the RORgt
transcription factor associated with IL-17 production (39).
However, some studies have shown that DETCs produce IL-17,
promote keratinocyte proliferation, and participate in skin
inflammation (88).

The second gdT subsets produced are the Vg6 cells. They pair
with the Vd1 subsets of gd TCR (Vg6Jg1 and Vd1Dd2Jd2) and
migrate to the genital tract, tongue, lungs, peritoneal cavity
(PEC), dermis, colon, and adipose tissues (89). Vg6+Vd1+ gdT
cells that produce IL-17 and other effector molecules drive
inflammation and tumor cell proliferation (90).

Typically, Vg1+, Vg2+, and Vg4+ cells migrate to the dermis,
lungs, colon, liver, and peripheral lymphoid organs (91). Both
Vg1+ and Vg4+ cells can secrete IFN-g, TNF-a, TGF-b, and IL-
10 upon activation. However, Vg1+gdT cells are predisposed to
produced IL-4 and IL-5, while Vg4+gdT cells preferentially
produce IL-17 (92). Vg1+gdT cells occur mainly in the form of
Vg1Vd6.3/6.4 TCR cells and secrete IL-4 and IFN-g (93). Upon
acute infection with Coxsackievirus B3 (CVB3), Vg1+gdT cells
are the early and primary producers of IL-4 and play a
protective role in CVB3 myocarditis (94). Vg4+ gdT cells
express high levels of Rorc, Sox13, Scart, Bclaf1, and Atf2
and secrete abundant levels of IL-17A and IL-17F (92) (95).
IL-17A-producing Vg4+gdT cells also express high levels of
CCR6 on their surface and are chemoattracted by CCL20 that
are secreted by keratinocytes to inflammatory sites, which in
turn facilitates keratinocytes to secrete IL-1b and IL-23 (96). In
addition, IL-17 secreted by Vg4+gdT cells inhibits the
production of IGF-1, thereby delaying skin wound healing
(84, 97). Studies have shown that Vg2+ T cells recruit
neutrophils and aggravate liver fibrosis by secreting IL-17A
(98, 99). It has also been demonstrated that Vg7+T cells are the
main components of the murine intestinal intraepithelial T cell
compartment. Consequently, the selective maturation and
expansion of Vg7+T cells are driven by both Btnl1 and
Btnl6 (100).
BIOLOGICAL EFFECTS OF gdT CELLS

gdT cells have strong plasticity and secrete different cytokines
and chemokines. They exhibit diverse functions similar to Th1,
Th2, Tregs, and Th17 cells in different microenvironments (2).
February 2021 | Volume 12 | Article 627139
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Some gd T cells generate growth factors such as VEGF, FGF-2,
and IGF-1, suggesting that these cells have the capacity to
maintain epithelial integrity and wound repair (101).
Nonetheless, some gd T cells have been reported to induce the
production of antimicrobial peptides, including b-defensin 2,
S100A7, and S100A8 in keratinocytes to exert a protective
function in local epithelial defense (101). gdT cells secrete
interleukin-10 (IL-10), control CD8+ T cell expansion, and
regulate and reduce TNF-a secretion by activated CD8+ T cells
(102). The role of IL-17-producing gdT cells has been
investigated in various models of infection and autoimmunity
(103, 104). IL-17-producing gdT cells robustly direct the
recruitment of neutrophils and monocytes to increase the
inflammatory response.

gd T cells are involved in the regulation of macrophage
homeostasis and recruitment. In patients suffering from
listeriosis (a serious infection caused by the germ Listeria
monocytogenes), gdT cells play a critical role in neutrophil
replacement by producing chemokines such as macrophage
chemoattractant protein1 (MCP-1) (105). Additional evidence
has shown that gdT cells facilitate differentiation of the
monocyte/macrophage lineage. Remarkably, monocytes
differentiate into inflammatory macrophages during bacterial
infections but fail to undergo maturation in mice lacking gdT
cells (106). In contrast, the role of Vg4 has been demonstrated to
enhance macrophage activity and the production of specific pro-
inflammatory and immunoregulatory cytokines by
macrophages. Different subsets of gdT cells have opposing
roles in macrophage homeostasis, indicating the complexity
and plasticity of gdT cells (107). gdT cells present antigens to
abT cells, while Vd2+ T cells display characteristics similar to
professional APCs. Once activated, these cells efficiently process
and present antigens and prime co-stimulatory signals for potent
induction of abT cell proliferation and differentiation (108).
Receptors associated with DC, such as antigen presentation
molecules (MHC class II), co-stimulatory receptors (CD40,
CD80, and CD86), maturation markers (CD83), and adhesion
receptors (CD11a, CD11b, CD11c, CD18, CD50, and CD54)
have been found to be expressed on the surface of activated gdT
cells (109, 110).

Activated gdT cells exhibit a broad range of cytotoxic activity,
especially against a wide variety of tumor cells that utilize death
receptor/ligand (Fas/Fas-ligand)-dependent and perforin/granzyme
or granulysin-dependent pathways. Exogenous IL-18 promotes the
expansion of gdT cells in human peripheral blood mononuclear
cells (PBMCs) stimulated by Zoledronate (Zol) and IL-2 (109). The
expansion of gdT cells is inhibited by neutralizing anti-IL-18
receptor antibodies, indicating that IL-18 efficiently promotes the
expansion of gdT cells with potent antitumor activity (110).
Furthermore, studies have shown that gdT cells directly kill
activated hepatic stellate cells (HSCs) and increase NK cell-
mediated cytotoxicity against activated HSCs in liver fibrosis (10).

gdT cells are highly efficient in promoting B cell maturation
and producing IgM, IgG, and IgA antibodies. Vd2Vg9 T cells
express IL-21R on their surface, which is enhanced upon HMB-
PP induced irritation (111, 112). Activated Vd2Vg9T cells
Frontiers in Immunology | www.frontiersin.org 5
express CXCL13, CXCR5, and ICOS and upregulate the
expression of B cell surface markers CD25, CD69, CD40, and
CD86. This suggests that CXCR5+ Vd2Vg9 T cells are a distinct
memory T cell subset with B cell helper function (111, 113).
gdT IN PSORIASIS

Dysregulation of the immune system and T cell activation has
been well demonstrated to play an essential role in psoriasis
development. Several studies have attributed T cell function in
the skin to abT cells, while gdT cells have been often overlooked.
IFN-g-producing T helper (Th) 1 cells were initially thought to
be primary drivers of psoriasis. However, substantial clinical and
basic research findings in the past decade have proved that the
interleukin (IL)-23/Th17 axis plays an important role in the
pathogenesis of psoriasis (114, 115). Psoriatic inflammation was
found to be impaired in IL-23- and IL-17-deficient mice, thereby
confirming the involvement of the IL-23/IL-17 axis (116, 117).
Th17 cells and their downstream effector molecules, including
IL-17A, IL-17F, IL-22, and tumor necrosis factor (TNF-a), were
found to be increased in the sera and psoriatic skin lesion (118).
Recently, Th17 cells were found not to be the primary source of
these pathogenic cytokines in psoriasis. Instead, IL-17A, IL-17F,
and IL-22 were found to be produced by gdT cells (115). Injecting
IL-23 into the skin of mice or applying a topical dose of
imiquimod cream (5%) induced a typical psoriasis-like
phenotype, i .e. , epidermal thickness, erythema, and
inflammation. These two models were demonstrated to mimic
psoriasis-like inflammation and have been used to evaluate the
efficacy of different treatment methods (119). Epidermal
hyperplasia and inflammation response induced by IL-23/IMQ
was observed to be significantly reduced in T cell receptor d
deficient (Tcrd−/−) mice, however, no significant changes were
observed in T cell receptor b deficient Tcrb−/− mice (120). In
addition, Cai et al. demonstrated that upon IL-23 stimulation,
IL-17 produced in Tcrd−/− mice was significantly lower
compared to WT or Tcra−/− mice (121). These data further
suggested that dermal gdT cells were the major IL-17-producing
cells in the skin in response to IL-23 stimulation.

The production of IL-17 by dermal gd T cells requires
endogenous IL-1b (121). Mechanistically, IL-1b activates the
mammalian target of rapamycin (mTOR) signaling pathway via
IL-1R-MyD88, whereas IL-23 activates the STAT3 pathway.
Transcription factor IRF-4 links the IL-1R and IL-23R pathways
to induce enhanced IL-17 production in dermal gd T cells (122).
Both Vg4 and Vg6 dermal T cells produce IL-17, however, dermal
Vg4 T cells expand and produce significantly more IL-17 compared
to Vg6 (123). Dermal Vg4 and Vg6T cells have different effector
signaling requirements. Dermal Vg4 T cell proliferation and IL-17
production are dependent on STAT3, whereas dermal Vg6 T cells
may be activated through the STAT3-independent RelA/NF-kB
pathway (122). Thus, dermal Vg4 T cells appear to have a critical
role in IMQ-induced psoriasis-like dermatitis (123).

Dermal gdT cells constitutively express IL-23R, IL-17R, RORgt,
and the chemokine receptors CCR1, CCR2, CCR4, CCR5, CCR6,
February 2021 | Volume 12 | Article 627139
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CXCR3, and CXCR4 (120, 121). CCL20, which is a unique CCR6
ligand, mediates skin infiltration of IL-17-producing gdT-cells and
DCs. Numerous studies have shown that CCL20/CCR6 regulates T
migration from the dermis to the epidermis, promotes neutrophil
aggregation, and exacerbates inflammation (124). In IL-23-injected
WTmice, CCL20 was highly upregulated with numerous CCR6+gdT
cells observed in the epidermis (125). Anti-CCL20-neutralizing
antibodies or engineered CCL20 variants with minimal chemotactic
activity prevented the infiltration of IL-17-producing gdT-cell into the
skin of IL-23-injected mice. This lead to IL-17 and IL-22
downregulation, blocked gdT cell recruitment to the epidermis, and
reduced psoriasiform dermatitis (126, 127). In CCR6-knockout (KO)
mice, gdT cells failed tomigrate and accumulate in the epidermis after
IL-23 treatment. Keratinocytes secrete CCL20, bind and activate
CCR6, and regulate the migration of gdT cell subsets into the skin.
This suggests the potential relevance of CCR6/CCL20 as a therapeutic
target for psoriasis (126, 128, 129).

Psoriasis recurs frequently and relapse occurs in the same area
after treatment discontinuation. Hence, recurrent psoriasis is a
major problem that needs to be solved. TNF-a, IL-12/23, and IL-
17 inhibitors have been shown to exhibit potent and rapid
therapeutic efficacy (130, 131). However, these biological agents
have been associated with several adverse events, the most common
being susceptibility to infections (130). In addition to infections,
biological inhibitors have been associated with demyelinating
diseases, nasopharyngitis, upper respiratory infection, headaches,
lupus, or lupus-like syndromes, mucocutaneous candidiasis, mild
neutropenia, and new-onset or worsening of heart failure. The long-
term safety concerns and high cost hamper the extensive use of
these agents (130, 132, 133).

Psoriasis relapses around the original lesion area suggest these
manifestations have an “immune memory.” Adaptive immune
responses by memory T cells are not limited to foreign antigens,
and relapses in autoimmune diseases are typically driven by auto-
aggressive memory lymphocytes. There have been published reports
regarding the adaptive-type memory responses in gdT cells. The
response of humanVg9Vd2+ T cells to phospho-antigens is increased
after initial Mycobacterium bovis BCG vaccinations (134). In
macaques, a memory-type response and rapid expansion of
Vg9Vd2 T cells have been observed after a secondary challenge
with Bacillus Calmette-Guerin (135). Mouse “memory-like” Vg6+
gdT cells were found to be retained for more than five months in the
mesenteric lymph nodes after Listeria monocytogenes infection (136).

Memory-like gdT has been seen in psoriasiform mouse model,
IL-17A-producing Vg2Vd4+ T cells initially derive from the
neonatal thymus where they are instructed with tissue tropism.
These Vg2Vd4+ T cells were phenotypically memory-like with a
CD44hi CD62Llo CD27- expression pattern (137). After exposure
to IMQ, Vg4+gdT17 cells in the skin have been shown to rapidly
expand in the draining lymph nodes (LNs) and then release from
the LNs. They then migrate via the action of the chemokine, CCR2,
to accumulate at sites of both inflamed and uninflamed skin in a
S1P1-dependent manner. This in turn exacerbates the
inflammatory response and recruitment of neutrophils. They have
also been shown to migrate via the blood and persist in normal skin
Frontiers in Immunology | www.frontiersin.org 6
and peripheral LNs for a minimum of three months. Importantly,
when subjected to the same second challenge at a distant skin site,
memory-like Vg4+gdT17 cells expand at a faster rate and produce
more IL-17 compared to that after exposure to the first challenge,
leading to a rapid and severe skin inflammatory response (19)
(Figure 2). Sensitized mice showed elevated skin inflammation,
significant cell proliferation, and IL-17 production by Vg4+gdT cells
upon IMQ challenge. Adoptive transfer experiments have
confirmed that memory-like Vg4+gdT17 cells respond rapidly,
and their memory drives their involvement in the psoriasis
recurrence (19, 138, 139).

gdT cells are rarely found in healthy human skin (140), however,
they are easily generated from the skin of psoriatic patients. gdT cells
have different adhesion properties compared to abT cell subsets
(141). A higher frequency of sequence sharing of the g-chain has
been found in psoriatic lesions from different individuals compared
to those without psoriasis, suggesting that although the T cell
response in psoriasis is highly polyclonal, particular gdT cell
subsets could be associated with this disease (142). Following
study demonstrated that an increased level of Vg9Vd2 T cells was
present in psoriatic skin compared to healthy controls, while a
significant reduction in Vg9Vd2 cells was observed in the blood of
psoriasis patients. The number of circulating Vg9Vd2 T cells
returned to normal levels after successful psoriasis-targeted
treatment. These findings demonstrated the redistribution of
Vg9Vd2 T cells from the blood to the skin of psoriasis patients
(101). The recruitment of specific monoclonal population of gdT
cells to psoriatic skin suggests local expression or modification of a
cognate TCR ligand that is recognized by this population of
memory-like gdT cells (143). Consistently, Zheng group found the
higher expression of Vg9 in psoriasis lesion than that in healthy
individuals, indicating that Vg9 gdT cells may be the main
pathogenic cell (144). Additionally, Vg9Vd2 T cells have been
shown to produce psoriasis-relevant cytokines, such as IFN-g,
TNF-a, and IL-17A and chemokines such as IL-8, CCL3, CCL4,
CCL5, and CCR6. These cytokines and chemokines are responsible
for recruiting crucial immune effector cells to the skin to activate
keratinocytes (63, 145).
TARGETING gdT CELLS FOR
PSORIASIS THERAPY

The important role of dermal immobilized gdT cells in the
pathogenesis of psoriasis has been elucidated in the past years.
Hence, dermal gdT cells and their associated molecules have
become attractive targets for drug development. Adiponectin, a
metabolic mediator of insulin sensitivity, plays a crucial role in
metabolic regulation and inflammatory/anti-inflammatory
processes. Studies have demonstrated that in psoriasiform skin,
inflammation, and infiltration of dermal gdT cells producing IL-
17 were significantly enhanced in the absence of adiponectin.
The negative regulation of adiponectin on IL-17 production from
dermal gdT cells is mainly mediated through AdipoR1. This
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suggests that increasing adiponectin levels may be effective for
improving psoriasis as well as metabolic disorders (146, 147).
BTLA belongs to the immunoglobulin superfamily and has been
reported to play a role in the homeostasis of gdT cells/ILCs in
lymphoid tissues and controls the production of IL-17 in mature
lymph node gdT cells. BTLA-deficient animal models have been
shown to have a dysregulated proportion of inflammatory gdT
cells and were susceptible to psoriasis and severe skin
inflammation. BTLA agonism was found to limit the
progression of these phenotypes. Activation of BTLA may
restore the balance of gdT cell subsets to control autoimmune
pathogenesis (148, 149). The agonistic anti-BTLA antibody
(clone 6A6) was demonstrated to suppress gdT cell expansion
and IL-17 production within the lymph nodes and skin induced
by IMQ (149, 150). Thus, BTLA may be a potential target for the
treatment of psoriasis. Dermal gdT cells constitutively express
CCR6. CCR6KO or anti-CCL20 monoclonal antibodies
administered to mice resulted in a decline in psoriatic
dermatitis in IL-23-induced skin inflammation mouse models.
This demonstrates that CCL20, together with its receptor, CCR6,
are potential targets for the treatment of psoriasis (129, 151).
CCL20 S64C is a CCL20 variant that binds to CCR6 and inhibits
Frontiers in Immunology | www.frontiersin.org 7
CCR6-mediated T cell migration. Previous studies have shown
that CCL20 S64C alleviates the inflammatory response in
psoriasis-like models induced by IL-23, and have been
associated with reduced accumulation of CCR6+ IL-17-
producing gdT cells in the epidermis (127). FTY720 is an
FDA-approved immunomodulatory drug for the treatment of
multiple sclerosis. It reduces lymphocyte egress from lymphoid
tissues by inhibiting the sphingosine-1 phosphate receptor
(S1PR). FTY720 inhibits the migration of Vg4+VgT4+ T17
cells from the lymph nodes to the skin, suggesting its potential
as a treatment for psoriasis (152). Indirubin (IR) is a bisindole
compound extracted from the leaves of the Chinese herb Indigo
naturalis. It has been demonstrated to alleviate IMQ-induced
psoriasis-like dermatitis by primarily reducing the inflammatory
responses mediated by IL-17 A-producing gdT cells through
Jak3/Stat3 activation (153). Dashlkhumbe et al. reported a newly
formulated methotrexate (MTX, a chemical conjugate of MTX
with a cell-permeable peptide) for the treatment of psoriasis.
Topically applied skin-penetrating (SP)-MTX reduced the
psoriasiform skin phenomenon and epidermal thickness by
reducing CD11c+, CD4+, and IL-17-producing gdT cell-
containing infiltrate of immune cells in the skin (154).
FIGURE 2 | Role of gdT cells in the immune pathogenesis of psoriasis. Keratinocytes in the epidermis undergo apoptosis, necrosis, or death when exposed to
certain external stimulation. With the release of cell contents, such as DNA and RNA, keratinocytes release antimicrobial peptides, such as LL-37. LL-37 binds with
DNA and RNA to form a complex, promote immature DC activation, and secrete IFN-g/IL-23 through the TLR7/8/9 pathway. IL-23 activates RORgt+gdT cells to
secrete IL-17. gdT cell-derived IL-17 directly inhibits IGF-1 production in DETCs by increasing epidermal IL-23/IL-1b expression. During excessive keratinocyte
proliferation, the secretion of TNF-a and chemokine ligand 20 (CCL20) increases, which consequently recruits CCR6+gdT cells to the inflammatory site of the
epidermis. IL-17 cytokines produced by gdT cells potently upregulate the chemokine, CCL20, in keratinocytes, which chemoattracts IL-17A-producing CCR6+
immune cells to the inflamed site, thus forming a positive feedback loop. Il-23/IL-17 also promotes the recruitment of neutrophils to inflammatory sites, leading to
excessive proliferation of the stratum corneum to form psoriatic inflammatory lesions. gdT cells have memory properties and can migrate rapidly to inflammatory sites
through the blood and skin when subjected to a secondary stimulation. This consequently gives rise to severe inflammatory manifestations.
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CONCLUSIONS AND
FUTURE DIRECTIONS

Psoriasis has a complex and varied pathogenesis. During disease
development, gdT cells secrete proinflammatory cytokines, such
as IL-17 and IFN-g, which induce and aggravate psoriasis.
Notably, gdT cells have memory cell properties that rapidly
respond to secondary stimulation. This contributes to the
recurrence of psoriasis.

Future studies should investigate whether gdT cells that reside
in skin lesions have resident memory cell properties, how long
they persist, how often they turn over, and what environmental
niches within peripheral tissues support their long-term survival.
Studies have shown that metabolism and immune function are
tightly linked (155, 156). Nutrient availability and cellular
metabolism tightly control the differentiation, survival, and
function of immune cells (157). However, whether cellular
metabolism regulates gdT fate decisions remains to be
deciphered. Additional studies are necessary to identify the
Frontiers in Immunology | www.frontiersin.org 8
mechanisms that reduce gdT cells to prevent the recurrence
of psoriasis.
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