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We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both
models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs).These
models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced
to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE
solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-
order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence,
a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous
parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze’s
nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in
Zajac’s linear model. Other than Zajac’s model, Hatze’s model can, however, reproduce measured shifts in optimal muscle length
with variedmuscle activity. Accordingly we extracted a specific parameter set for Hatze’s model that combines best with a particular
muscle force-length relation.

1. Introduction

Scientific knowledge is gained by an interplay between
quantitative real world measurements of physical, chemical,
or biological phenomena and the development of mathe-
matical models for understanding the dynamical processes
behind. In general, such phenomena are determined as spa-
tiotemporal patterns of physical measures (state variables).
Modelling consists of distinguishing the surrounding world
from the system that yields the phenomena and formulating
a mathematical description of the system, a model, that can
predict values of the state variables. The calculations depend
on model parameters and often on giving measured input
variables. By changing parameter values and analysing the
resulting changes in the values of the state variables, the
model may then be used as a predictive tool. This way, the

model’s validity can be verified. If the mathematical model
description is moreover derived from first principles, the
model has the potential to explain the phenomena in a causal
sense.

Calculating the sensitivities of amodel’s predicted output,
that is, the system’s state variables, with respect to model
parameters is a means of eliminating redundancy and inde-
terminacy frommodels and thus helps to identify valid mod-
els. Sensitivity analyses can be helpful both in model-based
experimental approaches and in purely theoretical work. A
modelling theoretician could be looking for parameters to
which all state variables are nonsensitive. Such parameters
might be superfluous. An experimenter may inspect the
model that represents his working hypothesis and analyse
which of the model’s state variables are specifically sensitive
to a selected parameter. Hence, the experimenter would have
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to measure exactly this state variable to identify the value of
the selected parameter.

In a biomechanical study Scovil and Ronsky [1] applied
sensitivity analysis to examine the dynamics of a mechanical
multibody system: a runner’s skeleton coupled to muscle
activation-contraction dynamics. They calculated specific
sensitivity coefficients in three slightly different ways. A
sensitivity coefficient is the difference quotient calculated
from dividing the change in a state variable by the change
in a model parameter value, evaluated in a selected system
state [2]. The corresponding partial derivative may be simply
called “sensitivity.” Therefore, a sensitivity function is the
time evolution of a sensitivity [2]. Accordingly, Lehman and
Stark [2] had proposed a more general and unified approach
than Scovil and Ronsky [1], which allows systematically cal-
culating the sensitivities of any dynamical system described
in terms of ordinary differential equations. As an example
for sensitivity functions, Lehman and Stark [2] had applied
their proposed method to a muscle-driven model of saccadic
eye movement. By calculating a percentage change in a state
variable value per percentage change in a parameter value, all
sensitivities can be made comprehensively comparable, even
across models.

A sensitivity as defined so far is of first order. Method-
ically, we aim at introducing a step beyond, namely, at
calculating second order sensitivities. These measures are
suited to quantify howmuch the sensitivity of a state variable
with respect to one model parameter depends on changing
another parameter. By analysing second order sensitivities,
the strength of their interdependent influence on model
dynamics can be determined. In addition to this so-called
local sensitivity analysis, we will take the whole parameter
variability into account by calculating global sensitivities
according to Chan et al. [3] and Saltelli and Chan [4]. This
approach allows translating the impact of one parameter on
a state variable into a parameter’s importance, by completely
comprising its interdependent influence in combination with
all other parameters’ sensitivities.

In this study, we will apply the sensitivity analysis to
models that predict how the activity of a muscle (its chemical
state) changeswhen themuscle is stimulated by neural signals
(electrical excitation). Such models are used for simulations
ofmuscles’ contractions coupled to their activation dynamics.
Models for coupled muscular dynamics are often part of
neuromusculoskeletal models of biological movement sys-
tems. In particular, we want to try and rate two specific
model variants of activation dynamics formulated by Zajac
[5] and by Hatze [6]. As a first result, we present an example
of a simplified version of the Zajac [5] model, in which
sensitivity functions can in fact be calculated in closed form.
Subsequently we calculate the sensitivities numerically with
respect to all model parameters in both models, aiming at
an increased understanding of the influence of changes in
model parameters on the solutions of the underlying ordinary
differential equations (ODEs). Additionally, we discuss which
of both models may be physiologically more accurate. The
arguments come from a mixture of three different aspects:
sensitivity analysis, others’ experimental findings, and an

additional attempt to best fit different combinations of acti-
vation dynamics and force-length relations of the contractile
element (CE) in a muscle to known data on shifts in optimal
CE length with muscle activity [7].

2. Two Models for
Muscle Activation Dynamics

Macroscopically, a muscle fibre or an assembly thereof, a
muscle belly, is often mapped mathematically by a one-
dimensional massless thread called “contractile component”
or “contractile element” (CE) [8–12]. Its absolute length is
ℓCE which may be normalised to the optimal fibre length
ℓCE,opt by ℓCErel = ℓCE/ℓCE,opt. In macroscopic muscle models,
the CE muscle force is usually modelled as a function of
a force-(CE-)length relation, a force-(CE-)velocity relation,
and (CE-)activity 𝑞. Commonly the muscle activity 𝑞 rep-
resents the number of attached cross-bridges within the
muscle, normalised to the maximum number available (𝑞

0

≤

𝑞 ≤ 1). It can also be considered as the concentration of
bound Ca2+-ions in the muscle sarcoplasma relative to its
physiological maximum. The parameter 𝑞

0

represents the
minimum activity that is assumed to occur without any
stimulation [6].

We analyse two different formulations of muscle activa-
tion dynamics, that is, the time (its symbol: 𝑡) evolution of
muscle activity 𝑞(𝑡). One formulation of muscle activation
dynamics was suggested by Zajac [5], which we modified
slightly to take 𝑞

0

into account:

̇𝑞
𝑍

=
1

𝜏 ⋅ (1 − 𝑞
0

)
⋅ [𝜎 ⋅ (1 − 𝑞

0

) − 𝜎 ⋅ (1 − 𝛽) ⋅ (𝑞
𝑍

− 𝑞
0

)

−𝛽 ⋅ (𝑞
𝑍

− 𝑞
0

)] ,

(1)

with the initial condition 𝑞
𝑍

(0) = 𝑞
𝑍,0

. In this context, 𝜎
is supposed to represent the (electrical) stimulation of the
muscle, being a parameter for controlling muscle dynamics.
It represents the output of the nervous system’s dynamics
applied to the muscle which in turn interacts with the skele-
ton, the body mass distribution, the external environment,
and therefore the nervous system in a feedback loop. Elec-
tromyographic (EMG) signals can be seen as a compound of
such neural stimulations collected in a finite volume (being
the input to a number of muscle fibres) over a frequency
range and coming from a number of (moto-)neurons. The
parameter 𝜏 denotes the activation time constant, and 𝛽 =
𝜏/𝜏deact is the ratio of activation to deactivation time constants
(deactivation boost).

An alternative formulation ofmuscle activation dynamics
was introduced by Hatze [6]:

̇𝛾 = 𝑚 ⋅ (𝜎 − 𝛾) . (2)

We divided the original equation from Hatze [6] by the
parameter 𝑐 = 1.37 ⋅ 10

−4mol/L which represents the
maximum concentration of free Ca2+-ions in the muscle sar-
coplasma. Thus, the values of the corresponding normalised
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concentration are 0 ≤ 𝛾 ≤ 1. The activity is finally calculated
by the function

𝑞
𝐻

(𝛾, ℓCErel) =
𝑞
0

+ [𝜌 (ℓCErel) ⋅ 𝛾]
]

1 + [𝜌 (ℓCErel) ⋅ 𝛾]
] , (3)

and the parameter 𝑐 is shifted to the accordingly renormalised
function

𝜌 (ℓCErel) = 𝜌𝑐 ⋅
ℓ
𝜌

− 1

ℓ
𝜌

/ℓCErel − 1
, (4)

with 𝜌
𝑐

= 𝑐⋅𝜌
0

and ℓ
𝜌

= 2.9. Two cases have been suggested by
Hatze [13]: 𝜌

0

= 6.62 ⋅ 10
4 L/mol (i.e., 𝜌

𝑐

= 9.10) for ] = 2 and
𝜌
0

= 5.27 ⋅ 10
4 L/mol (i.e., 𝜌

𝑐

= 7.24) for ] = 3, which have
been applied in the literature [7, 8, 14, 15]. By substituting (2)
and (3) into ̇𝑞

𝐻

= 𝑑𝑞
𝐻

(𝛾, ℓCErel)/𝑑𝛾 ⋅ ̇𝛾 and resubstituting the
inverse of (3) afterwards, Hatze’s formulation of an activation
dynamics can be transformed into a nonlinear differential
equation directly in terms of the activity:

̇𝑞
𝐻

=
] ⋅ 𝑚
1 − 𝑞
0

⋅ [𝜎 ⋅ 𝜌 (ℓCErel) ⋅ (1 − 𝑞𝐻)
1+1/]
⋅ (𝑞
𝐻

− 𝑞
0

)
1−1/]

− (1 − 𝑞
𝐻

) ⋅ (𝑞
𝐻

− 𝑞
0

)] ,

(5)

with the initial condition 𝑞
𝐻

(0) = 𝑞
𝐻,0

.
The solutions 𝑞

𝑍

(𝑡) and 𝑞
𝐻

(𝑡) of both formulations of
activation dynamics (1) and (5) can now be directly compared
by integrating them with the same initial condition 𝑞

𝑍,0

=

𝑞
𝐻,0

using the same stimulation 𝜎.

3. Local First and Second Order Sensitivity of
ODE Systems regarding Their Parameters

Let Ω ⊆ R × R𝑀 × R𝑁 and 𝑓 : Ω → R𝑀. We then consider
a system of ordinary, first order initial value problems (IVP):

𝑌̇ = 𝑓 (𝑡, 𝑌 (𝑡, Λ) , Λ) , 𝑌 (0) = 𝑌
0

, (6)

where 𝑌(𝑡) = (𝑦
1

(𝑡), 𝑦
2

(𝑡), . . . , 𝑦
𝑀

(𝑡)) denotes the vector
of state variables, 𝑓 = (𝑓

1

, 𝑓
2

, . . . , 𝑓
𝑀

) the vector of right
hand sides of the ODE, and Λ = {𝜆

1

, 𝜆
2

, . . . , 𝜆
𝑁

} the set of
parameters which the ODE depends on. The vector of initial
conditions is abbreviated by

𝑌 (0) = (𝑦
1

(0) , 𝑦
2

(0) , . . . , 𝑦
𝑀

(0))

= (𝑦
1,0

, 𝑦
2,0

, . . . , 𝑦
𝑀,0

) = 𝑌
0

.

(7)

The first order sensitivity of the solution 𝑌(𝑡, Λ) with
respect to the parameter set Λ is defined as the matrix

𝑆 (𝑡, Λ) = (𝑆
𝑖𝑘

(𝑡, Λ))
𝑖=1,...,𝑁,𝑘=1,...,𝑀

,

with 𝑆
𝑖𝑘

(𝑡, Λ) =
𝑑

𝑑𝜆
𝑖

𝑦
𝑘

(𝑡, Λ) .

(8)

Simplifying, we denote 𝑌 = 𝑌(𝑡, Λ), 𝑓 = 𝑓(𝑡, 𝑌, Λ), and
𝑆
𝑖𝑘

= 𝑆
𝑖𝑘

(𝑡, Λ) but keep the dependencies in mind. Because

the solution 𝑌(𝑡) might only be gained numerically rather
than in a closed-form expression, we have to apply the well-
known theory of sensitivity analysis as stated in Vukobratovic
[16], Dickinson and Gelinas [17], Lehman and Stark [2], and
ZivariPiran [18]. Differentiating (8) with respect to 𝑡 and
applying the chain rule yield

𝑑

𝑑𝑡
𝑆
𝑖𝑘

=
𝑑
2

𝑑𝑡𝑑𝜆
𝑖

𝑦
𝑘

=
𝑑
2

𝑑𝜆
𝑖

𝑑𝑡
𝑦
𝑘

=
𝑑

𝑑𝜆
𝑖

𝑓
𝑘

=
𝑑

𝑑𝜆
𝑖

𝑌 ⋅
𝜕

𝜕𝑌
𝑓
𝑘

+
𝜕

𝜕𝜆
𝑖

𝑓
𝑘

,

(9)

with 𝜕/𝜕𝑌 being the gradient of state variables. Hence
we obtain the following ODE for the first order solution
sensitivity:

̇𝑆
𝑖𝑘

=

𝑀

∑

𝑙=1

𝑆
𝑖𝑙

⋅
𝜕

𝜕𝑦
𝑙

𝑓
𝑘

+
𝜕

𝜕𝜆
𝑖

𝑓
𝑘

, 𝑆
𝑖𝑘

(0) =
𝜕

𝜕𝜆
𝑖

𝑦
𝑘,0

= 0,

(10)

or in short terms

̇𝑆 = 𝑆 ⋅ 𝐽 + 𝐵, 𝑆 (0) = 0
𝑁×𝑀

, (11)

where 𝑆 = 𝑆(𝑡) is the𝑁×𝑀 sensitivity matrix and 𝐽 = 𝐽(𝑡) is
the𝑀×𝑀 Jacobianmatrix with 𝐽

𝑘𝑙

= (𝜕/𝜕𝑦
𝑙

)𝑓
𝑘

; furthermore,
𝐵 = 𝐵(𝑡) denotes the 𝑁 × 𝑀-matrix containing the partial
derivatives 𝐵

𝑖𝑘

= (𝜕/𝜕𝜆
𝑖

)𝑓
𝑘

and 0
𝑁×𝑀

denotes the 𝑁 × 𝑀-
matrix consisting of zeros only.

By analogy, the second order sensitivity of 𝑌(𝑡) with
respect to Λ is defined as the following𝑁 ×𝑁 ×𝑀-tensor:

𝑅 (𝑡, Λ) = (𝑅
𝑖𝑗𝑘

(𝑡, Λ))
𝑖,𝑗=1,...,𝑁,𝑘=1,...,𝑀

, (12)

with

𝑅
𝑖𝑗𝑘

(𝑡, Λ) =
𝑑

𝑑𝜆
𝑖

𝑆
𝑗𝑘

=
𝑑

𝑑𝜆
𝑗

𝑆
𝑖𝑘

=
𝑑
2

𝑑𝜆
𝑖

𝑑𝜆
𝑗

𝑦
𝑘

= 𝑅
𝑗𝑖𝑘

(𝑡, Λ) ,

(13)

assuming 𝑅
𝑖𝑗𝑘

= 𝑅
𝑗𝑖𝑘

for all 𝑘 = 1, . . . ,𝑀, therefore assuming
that the prerequisites of Schwarz theorem (symmetry of the
second derivatives) are fulfilled throughout. Differentiating
with respect to 𝑡 and applying the chain rule lead to the ODE

𝑅̇
𝑖𝑗𝑘

=

𝑀

∑

𝑙=1

(𝑅
𝑖𝑗𝑙

𝜕

𝜕𝑦
𝑙

𝑓
𝑘

+ 𝑆
𝑖𝑙

𝜕

𝜕𝜆
𝑗

𝑓
𝑘

+ 𝑆
𝑗𝑙

𝜕

𝜕𝜆
𝑖

𝑓
𝑘

)

+

𝑀

∑

𝑙
1
=1

𝑀

∑

𝑙
2
=1

𝑆
𝑖𝑙
1

𝑆
𝑗𝑙
2

𝜕
2

𝜕𝑦
𝑙
1

𝜕𝑦
𝑙
2

𝑓
𝑘

+
𝜕
2

𝜕𝜆
𝑖

𝜕𝜆
𝑗

𝑓
𝑘

,

(14)

with 𝑅
𝑖𝑗𝑘

(0) = 0. For purposes beyond the aim of this paper,
a condensed notation introducing the concept of tensor (or
Kronecker) products as in ZivariPiran [18] may be helpful.
For a practical implementation in MATLAB see Bader and
Kolda [19].

Furthermore, if an initial condition 𝑦
𝑘,0

(see (7)) is
considered as another parameter, we can derive a separate
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sensitivity differential equation by rewriting (6) in its integral
form

𝑌 (𝑡) = 𝑌
0

+ ∫

𝑡

0

𝑓 (𝑠, 𝑌 (𝑠)) 𝑑𝑠. (15)

Differentiating this equation with respect to 𝑌
0

yields

𝑆
𝑌
0
(𝑡) =

𝜕

𝜕𝑌
0

𝑌 (𝑡) = 1 + ∫

𝑡

0

𝜕

𝜕𝑌
𝑓 ⋅
𝜕

𝜕𝑌
0

𝑌 (𝑠) 𝑑𝑠 (16)

and differentiating again with respect to 𝑡 results in a
homogeneous ODE for each component 𝑆

𝑦
𝑘,0

(𝑡); namely,

̇𝑆
𝑦
𝑘,0
(𝑡) =

𝑀

∑

𝑙=1

𝜕

𝜕𝑦
𝑙

𝑓
𝑘

⋅ 𝑆
𝑦
𝑙,0

, with 𝑆
𝑦
𝑘,0
(0) =

𝜕

𝜕𝑦
𝑘,0

𝑦
𝑘,0

= 1.

(17)

The parameters of our analysed models are supposed to
represent physiological processes and bear physical dimen-
sions therefore. For example,𝑚 and 1/𝜏 are frequencies mea-
sured in (Hz), whereas 𝑐 is measured in (mol/L). Accordingly,
𝑆
𝜏

= (𝑑/𝑑𝜏)𝑞
𝑍

would be measured in (Hz) and 𝑆
𝑚

in (s)
(note that our model only consists of 𝑜𝑛𝑒 ODE and therefore
we do not need a second index). Normalisation provides
a comprehensive comparison between all sensitivities, even
across models. For any parameter, the value 𝜆

𝑖

fixed for a
specific simulation is a natural choice. For any state variable,
we chose its current value 𝑦

𝑘

(𝑡) at each point in time of
the corresponding ODE solution. Hence, we normalise each
sensitivity 𝑆

𝑖𝑘

= 𝑑𝑦
𝑘

/𝑑𝜆
𝑖

by multiplying it with the ratio
𝜆
𝑖

/𝑦
𝑘

(𝑡) to get the relative sensitivity

𝑆
𝑖𝑘

= 𝑆
𝑖𝑘

⋅
𝜆
𝑖

𝑦
𝑘

. (18)

A relative sensitivity 𝑆
𝑖𝑘

thus quantifies the percentage change
in the 𝑘th state variable value per percentage change in the 𝑖th
parameter value.This applies accordingly to the second order
sensitivity

𝑅̃
𝑖𝑗𝑘

= 𝑅
𝑖𝑗𝑘

⋅

𝜆
𝑖

⋅ 𝜆
𝑗

𝑦
𝑘

. (19)

It can be shown that this method is valid and mathematically
equivalent to another common method in which the whole
model is nondimensionalised a priori [20]. A nonnormalised
model formulation has the additional advantage of usually
allowing a more immediate appreciation of and transparent
access for experimenters. In the remainder of this paper, we
are always going to present and discuss relative sensitivity
values normalised that way.

In our model the specific case𝑀 = 1 applies, so (10) and
(14) simplify to the case 𝑘 = 1 (no summation).

4. Variance-Based Global Sensitivity Analysis

The differential sensitivity analysis above is called a local
method because it does not take the physiological range

of parameter values into account. Additionally factoring
in such ranges characterises the so-called global methods.
The main idea behind most global methods is to include
a statistical component to scan the whole parameter space
C and combine the percentage change in a state variable
value per percentage change in a parameter value with the
variability of all of the parameters. The parameter space C
can be seen as a𝑁-dimensional cuboid C = [𝜆−

1

; 𝜆
+

1

] × ⋅ ⋅ ⋅ ×

[𝜆
−

𝑁

; 𝜆
+

𝑁

], where 𝜆−
𝑖

and 𝜆+
𝑖

are the minimal and maximal
parameter values and 𝑁 is the number of parameters. We
can now fix a certain point Λ̂ = (𝜆̂

1

, . . . , 𝜆̂
𝑁

) ∈ C and
calculate the local gradient of the solution with respect to Λ̂.
The volume of the star-shaped area, investigated by changing
only one parameter at once and lying within a ball around
Λ̂, vanishes in comparison to C for an increasing number of
parameters [21]. For an overview of the numerous methods
like ANOVA, FAST, Regression, or Sobol’s Indexing, the
reader is referred to Saltelli and Chan [4] and Frey et al. [22].

In this section we want to sketch just the main idea of
the variance-based sensitivity analysis approach as presented
in Chan et al. [3], which is based on Sobol’s Indexing.
We chose this method because of its transparency and low
computational cost. This method aims at calculating two
measurands of sensitivity of a state variable with respect to
parameter𝜆

𝑖

: the variance-based sensitivity function denoted
by VBS

𝑖

(𝑡) and the total sensitivity index function denoted
by TSI

𝑖

(𝑡). The VBS functions give a normalised first order
sensitivity quite similar to 𝑆 from the previous section but
include the parameter range. The TSI functions, however,
additionally include higher order sensitivities and give a
measurand for interdependencies of parameter influences.

A receipt for calculating VBS and TSI is as follows. First
of all, set boundaries for all model parameters, either by
model assumptions or by literature reference, thus fixing C.
Secondly, generate two sets of 𝑛 sample points Λ̂

1,𝑗

, Λ̂
2,𝑗

∈ C,
𝑗 = 1, . . . , 𝑛, suited to represent the underlying probability
distribution of each parameter, in our case the uniform
distribution. Thirdly, with 𝑖 indicating a parameter, generate
2𝑛𝑁 sets of new sample points Λ̂𝑖

1,𝑗

, Λ̂
∼𝑖

1,𝑗

, 𝑗 = 1, . . . , 𝑛, 𝑖 =
1, . . . , 𝑁, where Λ̂𝑖

1,𝑗

consists of all sample points in Λ̂
1,𝑗

except for its 𝑖th component (parameter value) replaced by
the 𝑖th component of Λ̂

2,𝑗

. Consequently, Λ̂∼𝑖
1,𝑗

consists of
the 𝑖th component of Λ̂

1,𝑗

and every other component taken
from Λ̂

2,𝑗

. Fourthly, evaluate the model from (6) at all of the
2𝑛(𝑁 + 1) sample points Λ̂

1,𝑗

, Λ̂
2,𝑗

, Λ̂
𝑖

1,𝑗

, Λ̂
∼𝑖

1,𝑗

resulting in a
family of solutions.

For this family perform the following calculations.
(1) Compute the variance of the family of all 2𝑛(𝑁 + 1)

solutions as a function of time, namely, 𝑉(𝑡). This
variance function indicates the general model output
variety throughout the whole parameter range.

(2) Compute the variances 𝑉
𝑖

of the family of 𝑛(𝑁 + 1)
solutions resulting from an evaluation of the model at
all Λ̂
1,𝑗

and Λ̂𝑖
1,𝑗

, that is, for every 𝑗 and 𝑖. Each 𝑉
𝑖

(𝑡)

is a function of time and indicates the model output
variety if solely the value 𝜆

𝑖

of parameter 𝑖 is changed.
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(3) Compute the variances 𝑉
∼𝑖

of the family of 𝑛(𝑁 + 1)
solutions resulting from an evaluation of the model
at all Λ̂

1,𝑗

and Λ̂∼𝑖
1,𝑗

, that is, for every 𝑗 and 𝑖. Each
𝑉
∼𝑖

(𝑡) is a function of time and indicates the model
output variety if the value of 𝜆

𝑖

is fixed, whereas all
other parameter values are changed.

Note that the computations in Chan et al. [3] are done using
Monte-Carlo integrals as an approximation.TheVBS and TSI
can be finally calculated as

VBS
𝑖

(𝑡) =
𝑉
𝑖

(𝑡)

𝑉 (𝑡)
, TSI

𝑖

(𝑡) = 1 −
𝑉
∼𝑖

(𝑡)

𝑉 (𝑡)
. (20)

The normalisation entails additional properties of VBS and
TSI (see [3, Figure 1]):

𝑁

∑

𝑖=1

VBS
𝑖

(𝑡) ≤ 1,

𝑁

∑

𝑖=1

TSI
𝑖

(𝑡) ≥ 1. (21)

In other words, VBS
𝑖

(𝑡) gives the normalised global first
order sensitivity function of the solution with respect to 𝜆

𝑖

in relation to the model output range. Accordingly, TSI
𝑖

(𝑡)

quantifies a relative impact of the variability in parameter 𝜆
𝑖

on the model output, factoring in the interdependent influ-
ence in combination with all other parameters’ sensitivities.
Chan et al. [3] suggested to denote the TSI

𝑖

(𝑡) value as the
“importance” of 𝜆

𝑖

.

5. An Analytical Example for
Local Sensitivity Analysis including a Link
between Zajac’s and Hatze’s Formulations

By further simplifying Zajac’s formulation of an activation
dynamics (1) through assuming a deactivation boost 𝛽 = 1
(activation and deactivation time constants are equal) and a
basic activity 𝑞

0

= 0, we obtain a linear ODE for this specific
case 𝑞sp

𝑍

, which is equivalent toHatze’s equation (2)modelling
the time evolution of the free Ca2+-ion concentration:

̇𝑞
sp
𝑍

=
1

𝜏
(𝜎 − 𝑞

sp
𝑍

) , 𝑞
sp
𝑍

(0) = 𝑞
𝑍,0

. (22)

By analysing this specific case, we aim at making the above
described sensitivity analysis method more transparent for
the reader. Solving (22) yields

𝑞
sp
𝑍

(𝑡) = 𝜎 ⋅ (1 − 𝑒
−𝑡/𝜏

) + 𝑞
𝑍,0

⋅ 𝑒
−𝑡/𝜏 (23)

depending on just two parameters 𝜎 (stimulation: control
parameter) and 𝜏 (time constant of activation: internal
parameter) in addition to the initial value 𝑦

0

= 𝑞
𝑍,0

. The
solution 𝑞

𝑍

(𝑡) equals the 𝜎 value after about 𝜏.
We apply the more generally applicable, implicit methods

(10) and (17) to determine the derivatives of the solution
with respect to the parameters (the sensitivities), although we
already know solution (23) in a closed form. Hence, for the
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Figure 1: Relative sensitivities 𝑆
𝑖

with respect to the three parame-
ters in the simplified formulation (22) of Zajac’s activation dynamics
(1). Parameters: stimulation 𝜎 (see (25): solid line), activation time
constant 𝜏 (see (26): dashed line), and initial activation 𝑞

𝑍,0

(see
(27): dash-dotted line). Note that 𝑆

𝜏

is negative, but for reasons of
comparability we have plotted its absolute value. Parameter values
are 𝜎 = 1, 𝜏 = 1/40 s = 0.025 s, and 𝑞

𝑍,0

= 0.05. Because ODE
(22) for 𝑞sp

𝑍

is equivalent to Hatze’s ODE (2) for the free Ca2+-ion
concentration, 𝛾, we can identify the sensitivity of 1/𝜏 with that of
𝑚.

transparency of our method, we calculate the gradient of the
right hand side 𝑓(𝑞sp

𝑍

, 𝜎, 𝜏) of ODE (22)

𝜕

𝜕𝑞
sp
𝑍

𝑓 = −
1

𝜏
,

𝜕

𝜕𝜎
𝑓 =
1

𝜏
,

𝜕

𝜕𝜏
𝑓 = −

𝜎 − 𝑞
sp
𝑍

𝜏2
=
𝑞
𝑍,0

− 𝜎

𝜏2
𝑒
−𝑡/𝜏

(24)

and insert these partial derivatives into (10) and (17). Solving
the respective three ODEs for the three parameters (𝜎, 𝜏, and
𝑞
𝑍,0

) and normalising them according to (18) give the relative
sensitivities of 𝑞sp

𝑍

with respect to 𝜎, 𝜏, and 𝑞
𝑍,0

as functions
of time (see Figure 1):

𝑆
𝜎

(𝑡) = (1 − 𝑒
−𝑡/𝜏

) ⋅
𝜎

𝑞
sp
𝑍

(𝑡)
=

𝜎 ⋅ (𝑒
𝑡/𝜏

− 1)

𝜎 ⋅ (𝑒𝑡/𝜏 − 1) + 𝑞
𝑍,0

, (25)

𝑆
𝜏

(𝑡) = (
(𝑞
𝑍,0

− 𝜎) ⋅ 𝑡

𝜏2
𝑒
−𝑡/𝜏

) ⋅
𝜏

𝑞
sp
𝑍

(𝑡)

=
𝑡 ⋅ (𝑞
𝑍,0

− 𝜎)

𝜏 ⋅ [𝜎 ⋅ (𝑒𝑡/𝜏 − 1) + 𝑞
𝑍,0

]
,

(26)

𝑆
𝑞
𝑍,0
(𝑡) = 𝑒

−𝑡/𝜏

⋅
𝑞
𝑍,0

𝑞
sp
𝑍

(𝑡)
=

𝑞
𝑍,0

𝜎 ⋅ (𝑒𝑡/𝜏 − 1) + 𝑞
𝑍,0

. (27)
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A straightforward result is that the time constant 𝜏 has its
maximum effect on the solution (Figure 1, see 𝑆

𝜏

(𝑡)) at time
𝑡 = 𝜏. In case of a step in stimulation, the sensitivity 𝑆

𝜏

(𝑡)

vanishes in the initial situation and exponentially approaches
zero again after a few further multiples of the typical period
𝜏. Note that 𝑆

𝜏

(𝑡) is negative, which means that an increase in
𝜏 decelerates activation.Thus, for a fixed initial value 𝑞

𝑍,0

, the
solution value 𝑞

𝑍

(𝑡) decreases at a given point in time if 𝜏 is
increased. After a step in stimulation 𝜎, the time in which the
solution 𝑞

𝑍

(𝑡) bears some memory of its initial value 𝑞
𝑍,0

is
equal to the period of being nonsensitive to any further step
in 𝜎 (compare 𝑆

𝑞
𝑍,0

(𝑡) to 𝑆
𝜎

(𝑡) and (25) to (27)). After about
𝜏/2, the sensitivity 𝑆

𝑞
𝑍,0

(𝑡) has already fallen to about 0.1 and
𝑆
𝜎

(𝑡) to about 0.9 accordingly.

6. The Numerical Approach and Results

Typically, biological dynamics are represented by nonlinear
ODEs. Therefore, the linear ODE used for describing activa-
tion dynamics in the Zajac [5] case (1) ismore of an exception.
For example, a closed-form solution can be given. Equation
(23) is an example as shown in the previous section for the
reduced case of nonboosted deactivation (22).

In general, however, nonlinear ODEs used in biome-
chanical modelling, as the Hatze [6] case (5) for describing
activation dynamics, can only be solved numerically. It is
understood that any explicit formulation of a model in terms
of ODEs allows providing the partial derivatives of their right
hand sides𝑓with respect to themodel parameters in a closed
form. Fortunately, this is exactly what is required as part of
the sensitivity analysis approach presented in Section 3, in
particular in (10).

As an application for applying this approach, we will
now present a comparison of both formulations of activation
dynamics.The example indicates that the approachmay be of
general value because it is common practice in biomechanical
modelling to (i) formulate the ODEs in closed form and (ii)
integrate the ODEs numerically. Adding further sensitivity
ODEs for model parameters then becomes an inexpensive
enhancement of the procedure used to solve the problem
anyway.

For the two different activation dynamics [5, 6], the
parameter sets Λ

𝑍

and Λ
𝐻

, respectively, consist of

Λ
𝑍

= {𝑞
𝑍,0

, 𝜎, 𝑞
0

, 𝜏, 𝛽} , (28)

Λ
𝐻

= {𝑞
𝐻,0

, 𝜎, 𝑞
0

, 𝑚, 𝜌
𝑐

, ], ℓ
𝜌

, ℓCErel} , (29)

including the initial conditions. The numerical solutions
for these ODEs were computed within the MATLAB envi-
ronment (The MathWorks, Natick, USA; version R2013b),
using the preimplemented numerical solver 𝑜𝑑𝑒45 which is
a Runge-Kutta algorithm of order 5 (for details see [23]).

6.1. Results for Zajac’s Activation Dynamics: Sensitivity Func-
tions. We simulated activation dynamics for the parameter
set Λ
𝑍

(28) leaving two of the values constant (𝑞
0

= 0.005,
𝜏 = 1/40 s) and varying the other three (initial condition 𝑞

𝑍,0

,

stimulation 𝜎, and deactivation boost 𝛽). The time courses of
the relative sensitivities 𝑆

𝑖

(𝑡) with respect to all parameters
𝜆
𝑖

∈ Λ
𝑍

are plotted in Figure 2. In the left column of Figure 2
we used 𝛽 = 1, in the right column 𝛽 = 1/3. Pairs of the
parameter values 𝑞

0

= 0.005 ≤ 𝑞
𝑍,0

≤ 0.5 and 0.01 ≤ 𝜎 ≤ 1
are specified in the legend of Figure 2, with increasing values
of both parameters from top to bottom.

6.1.1. Relative Sensitivity 𝑆
𝑞
0

. Solutions are nonsensitive to the
𝑞
0

choice except if both initial activity and stimulation (also
approximating the final activity if 𝛽 = 1 and 𝜎 ≫ 𝑞

0

) are very
low near 𝑞

0

itself.

6.1.2. Relative Sensitivity 𝑆
𝑞
𝑍,0

. The memory (influence on
solution) of the initial value is lost after about 2𝜏, almost
independently of all other parameters. This loss in memory
is obviously slower than in that case 𝑞

𝑍,0

= 0 (initial value)
and 𝜎 = 1 (for 𝛽 = 1 and 𝑞

0

= 0 exactly the final
value; see Section 5 and Figure 1). In that extreme case, the
influence (relative sensitivity) of the lowest possible initial
value (𝑞

𝑍,0

= 0) on the most rapidly increasing solution
(maximum possible final value: 𝜎 = 1) is lost earlier.

6.1.3. Relative Sensitivity 𝑆
𝜏

. The influence of the time con-
stant 𝜏 on the solution is reduced with decreasing difference
between initial and final activity values (compare maximum
𝑆
𝜏

values in Figures 1 and 2) and, no matter the 𝛽 value,
with jointly raised levels of initial activity 𝑞

𝑍,0

and 𝜎, the
latter determining the final activity value if 𝛽 = 1. When
deactivation is slower than activation (𝛽 < 1: right column
in Figure 2), 𝑆

𝜏

is higher than in the case 𝛽 = 1, both in its
maximum amplitude and for longer times after the step in
stimulation, especially at low activity levels (upper rows in
Figure 2).

6.1.4. Relative Sensitivity 𝑆
𝜎

. Across all parameters, the solu-
tion in general is most sensitive to 𝜎. However, the influence
of the deactivation boost parameter 𝛽 is usually comparable.
In some situations, this also applies to the activation time
constant 𝜏 (see below). For 𝛽 = 1 (Figure 2, left), the solution
becomes a little less sensitive to 𝜎 with decreasing activity
level (𝑆

𝜎

< 1), which reflects that the final solution value is
not determined by 𝜎 alone but by 𝑞

0

> 0 and 𝛽 ̸= 1 as much.
If deactivation is much slower than activation (𝛽 = 1/3 < 1:
Figure 2, right), we find the opposite to the 𝛽 = 1 case:
the more the activity level rises, the lesser 𝜎 determines the
solution.Additionally, stimulation𝜎 somehow competeswith
both deactivation boost 𝛽 and time constant 𝜏 (see further
below). Using the term “compete” illustrates the idea that
any single parameter should have an individual interest in
influencing the dynamics as much as possible in order not
to be considered superfluous.

6.1.5. Relative Sensitivity 𝑆
𝛽

. Sensitivity with respect to𝛽 gen-
erally decreases with increasing activity 𝑞

𝑍,0

and stimulation
𝜎 levels. It vanishes at maximum stimulation 𝜎 = 1.
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Figure 2: Continued.
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Figure 2: Relative sensitivities 𝑆
𝑖

with respect to all parameters 𝜆
𝑖

(set Λ
𝑍

(28)) in Zajac’s activation dynamics (1). Parameter values varied
from top (i) to bottom (iv) row: (i) 𝑞

𝑍,0

= 𝑞
0

= 0.005, 𝜎 = 0.01, (ii) 𝑞
𝑍,0

= 0.05, 𝜎 = 0.1, (iii) 𝑞
𝑍,0

= 0.2, 𝜎 = 0.4, and (iv) 𝑞
𝑍,0

= 0.5, 𝜎 = 1; left
column: 𝛽 = 1, right column: 𝛽 = 1/3.

6.1.6. Relative Sensitivities 𝑆
𝜎

, 𝑆
𝛽

, 𝑆
𝜏

. At submaximal stimu-
lation levels 𝜎 < 1, the final solution value is determined
to almost the same degree by stimulation 𝜎 and deactivation
boost 𝛽, yet with opposite tendencies (𝑆

𝜎

> 0, 𝑆
𝛽

< 0).
As explained, both parameters compete for their impact on
the final solution value. Only at maximum stimulation 𝜎 =
1 (lowest row in Figure 2), this parameter competition is
resolved in favour of 𝜎. In this specific case, 𝛽 does not
influence the solution at all. For 𝛽 = 1 the competition about
influencing the solution is intermittently but only slightly
biased by 𝜏: sensitivity 𝑆

𝜏

peaks at comparably lowmagnitude
around 𝑡 = 𝜏. This 𝜏 influence comes likewise intermittently
at the cost of 𝛽 influence: the absolute value of 𝑆

𝛽

rises a
little slower than 𝑆

𝜎

. In the case 𝛽 < 1, this competition
becomes more differentiated and spread out in time. Again
at submaximal stimulation and activity levels, the absolute
value of 𝑆

𝜏

is lower than that of 𝑆
𝜎

but higher than that
of 𝑆
𝛽

, making all three parameters 𝜎, 𝛽, and 𝜏 compete to
comparable degrees for an impact on the solution until about
𝑡 = 4𝜏. Also, 𝑆

𝜏

does not vanish before about 𝑡 = 10𝜏.

6.2. Results for Hatze’s Activation Dynamics: Sensitivity Func-
tions. We also simulated activation dynamics for the param-
eter set Λ

𝐻

(29), leaving now four of the values constant
(𝑞
0

= 0.005, 𝑚 = 10 1/s, ℓ
𝜌

= 2.9, ℓCErel = 1) and again
varying three others (initial condition 𝑞

𝑍,0

, stimulation𝜎, and
nonlinearity ]), keeping in mind that the eighth parameter
(𝜌
𝑐

) is assumed to depend on ]. Time courses of the relative
sensitivities 𝑆

𝑖

(𝑡) with respect to all parameters 𝜆
𝑖

∈ Λ
𝐻

are
plotted (see Figure 3). In the left column of Figure 3, ] = 2,

𝜌
𝑐

= 9.10 is used, in the right column ] = 3, 𝜌
𝑐

= 7.24. Here,
the same pairs of the parameter values (𝑞

0

= 0.005 ≤ 𝑞
𝑍,0

≤

0.5 and 0.01 ≤ 𝜎 ≤ 1, increasing from top to bottom; see
legend of Figure 3) are used as in Section 6.1 (Figure 2).

Hatze’s activation dynamics (5) are nonlinear unlike
Zajac’s activation dynamics (1). This nonlinearity manifests
particularly in a changeful influence of the parameter ].
Additionally, the parameter 𝑚 is just roughly comparable to
the inverse of the exponential time constant 𝜏 in Zajac’s linear
activation dynamics.

6.2.1. Relative Sensitivity 𝑆
𝑚

. In Zajac’s linear differential
equation (1), 𝜏 establishes a distinct time scale independent
of all other parameters.The parameter𝑚 in Hatze’s activation
dynamics (5) is just formally equivalent to the reciprocal of 𝜏:
the sensitivity 𝑆

𝑚

does not peak stringently at 𝑡 = 1/𝑚 = 0.1 s
but rather diffusely between about 0.05 s and 0.1 s in both
of the cases ] = 2 and ] = 3. At first this is not surprising
because the scaling factor in Hatze’s dynamics is ] ⋅ 𝑚 rather
than just𝑚. However, ] ⋅𝑚 does not fix an invariant time scale
for Hatze’s nonlinear differential equation. This fact becomes
particularly prominent at extremely low activity levels for ] =
2 (Figure 3, left, top row) and up to moderately submaximal
activity levels for ] = 3 (Figure 3, right, top two rows). Here,
𝑆
𝑚

is negative, which means that increasing the parameter𝑚
results in less steeply increasing activity. This observation is
counterintuitive to identifying 𝑚 with a reciprocal of a time
constant like 𝜏. Rather than being expected from the product
]⋅𝑚, the exponent ] does not linearly scale the time behaviour
because 𝑆

𝑚

peaks do not occur systematically earlier in the
] = 3 case as compared to ] = 2.
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Figure 3: Continued.
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Figure 3: Relative sensitivities 𝑆
𝑖

with respect to all parameters 𝜆
𝑖

(set Λ
𝐻

(29)) in Hatze’s activation dynamics (5). Parameter values varied
from top (i) to bottom (iv) row: (i) 𝑞

𝐻,0

= 𝑞
0

= 0.005, 𝜎 = 0.01, (ii) 𝑞
𝐻,0

= 0.05, 𝜎 = 0.1, (iii) 𝑞
𝐻,0

= 0.2, 𝜎 = 0.4, and (iv) 𝑞
𝐻,0

= 0.5, 𝜎 = 1;
left column: ] = 2, 𝜌

𝑐

= 9.10, right column: ] = 3, 𝜌
𝑐

= 7.24.

6.2.2. Relative Sensitivity 𝑆
𝑞
𝐻,0

. Losing the memory of the
initial condition confirms the analysis of time behaviour
based on 𝑆

𝑚

. At high activity levels (Figure 3, bottom row),
Hatze’s activation dynamics loses memory at identical time
horizons (nomatter the ] value) seemingly slower for higher ]
at intermediate levels (Figure 3, two middle rows) and clearly
faster at very low levels (Figure 3, top row). The parameter𝑚
still does roughly determine the time horizon in which the
memory of the initial condition 𝑞

𝐻,0

is lost and the influence
of all other parameters is continuously switched on from zero
influence at 𝑡 = 0.

6.2.3. Relative Sensitivity 𝑆
𝑞
0

. As in Zajac’s dynamics the
solution is generally only sensitive to 𝑞

0

at very low stimu-
lation levels 𝜎 ≈ 𝑞

0

(Figure 3, top row). At such levels, the
] = 3 case shows the peculiarity that the solution becomes
strikingly insensitive to any other parameter than 𝑞

0

itself
(and 𝑞

𝐻,0

). The time evolution of the solution is more or
less determined by just this minimum (𝑞

0

) and initial (𝑞
𝐻,0

)
activities, and𝑚 determining the approximate switching time
horizon between both. The ℓCE dependency, constituting a
crucial property of Hatze’s activation dynamics, is practically
suppressed for ] = 3 at very low activities and stimulations. In
contrast, 𝑆

ℓCErel
remains for ] = 2 on a low but still significant

level of about a fourth of the three dominating quantities 𝑆
𝑞
0

,
𝑆
𝑞
𝐻,0

, and 𝑆].

6.2.4. Relative Sensitivity 𝑆]. The sensitivity with respect to
] is extraordinarily high at low activities and stimulations
around 0.1, both for ] = 2 and for ] = 3 (Figure 3, second

row from top), additionally at extremely low levels for ] = 2
(Figure 3, left, top row). At moderately submaximal levels
(Figure 3, third row from top), the solution is influenced with
an already inverted tendency (𝑆] changes sign to positive)
after around a 1/𝑚 time horizon for ] = 2. However, at
these levels the solution is practically insensitive to ] for any
]. At high levels (Figure 3, bottom row) we find that there is
no change in the character of time evolution of the solution,
despite the specific value of ]. The degree of nonlinearity ]
is unimportant because the time evolution and the ranking
of all other sensitivities are hardly influenced by ]. In both
cases, the rise in activity is quickened by increasing ] (𝑆] > 0),
as opposed to low activity and stimulation levels where rises
in activity are slowed down (𝑆] < 0; see also above).

6.2.5. Relative Sensitivities 𝑆
𝜎

, 𝑆
𝜌
𝑐

, 𝑆
ℓCErel

, and 𝑆
ℓ
𝜌

. Of all the
remaining parameters, stimulation 𝜎, scaled maximum free
Ca2+-ion concentration 𝜌

𝑐

, relative CE length ℓCErel, and the
pole ℓ

𝜌

of the length dependency inHatze’s activation dynam-
ics, the latter has the lowest influence on the solution. The
influence characters of all four parameters are yet completely
identical. Their sensitivities are always positive and coupled
by fixed scaling ratios due to all of them occurring within just
one product on the right side of (5). 𝑆

𝜎

and 𝑆
𝜌
𝑐

are identical,
while the sensitivity with respect to ℓCErel is the highest, with
ratios 𝑆

ℓCErel
/𝑆
ℓ
𝜌

≈ 3 and 𝑆
ℓCErel
/𝑆
𝜎

≈ 1.2. Except at very low
activity (where 𝑞

0

plays a dominating role) and except for the
generally changeful ] influence, these are the four parameters
that dominate the solution after an initial phase in which the
initial activity 𝑞

𝐻,0

determines its evolution. The parameter



Computational and Mathematical Methods in Medicine 11

Table 1: Lower and upper bounds for the parameter choices in both Zajac’s and Hatze’s models of activation dynamics.

Parameter 𝛽 ℓCErel ℓ
𝑝

𝑚 ] 𝑞
0

𝑞
𝑍,0

, 𝑞
𝐻,0

𝜌
𝑐

𝜎 𝜏

Lower bound 0.1 0.4 2.2 3 1.5 0.001 0.01 4 0 0.01
Upper bound 1 1.6 3.6 11 4 0.05 1 11 1 0.05

𝑚 does not have a strong direct influence on the solution.
As stated above, it defines the approximate time horizon in
which the 𝑞

𝐻,0

influence gets lost and all other parameters’
influence is switched on from zero at 𝑡 = 0.

6.3. Variance-Based Sensitivity (VBS) and Total Sensitivity
Indices (TSI) for Zajac’s and Hatze’s Activation Dynamics.
Table 1 pools the lower and upper boundaries for every
parameter in Λ

𝑍

and Λ
𝐻

used in our calculations. We
refer to Hatze [24], Zajac [5], or Günther et al. [11] for
traceability of our choices. The left hand side of Figure 4
shows the VBS functions of every parameter in Λ

𝑍

of
Zajac’s model. The plotted functions can be compared to our
previously computed relative first order sensitivity functions
from Figure 2: at first sight, 𝑆

𝑞
𝑍,0

and VBS
𝑞
𝑍,0

look equal, but
the VBS function indicates a slightly increased duration of
influence of 𝑞

𝑍,0

. Regarding 𝜏, the VBS function peaks at the
same time as 𝑆

𝜏

, but with a smaller amplitude. Likewise, the
courses of VBS

𝜎

and VBS
𝛽

are comparable to 𝑆
𝜎

and 𝑆
𝛽

from
the second and third row of Figure 2. The calculated VBS
functions in the Zajac case show what would be expected
intuitively: a VBS represents a parameter’s mean influence
averaged over its range of values. Additionally, we plotted
the sum of all first order sensitivities. This sum indicates
which amount of the total variance is covered by first order
sensitivities.The closer the sum to 1 the smaller the impact of
the second and higher order sensitivities.

The right hand side of Figure 4 shows the TSI functions
of every parameter in Λ

𝑍

of Zajac’s model. Generally, there
are only minor deviations of the TSI

𝑖

functions from their
counterparts VBS

𝑖

. That is, the influence of none of the
parameters is significantly enhanced by an interdependent
effect in combination with other parameters. According to
both analyses, there are just four globally important param-
eters that govern the system’s state throughout the whole
examined solution space: the initial condition 𝑞

𝑍,0

within a
typical time horizon 𝜏 after a step in 𝜎, the new stimulation
level 𝜎 determining activity after about 𝜏, the deactivation
boost 𝛽 with smaller impact than 𝜎, and 𝜏 determining the
time horizon itself.

The left hand side of Figure 5 shows the VBS functions
of every parameter in Λ

𝐻

of Hatze’s model. Very similar to
the Zajac case, the calculated VBS seemingly represent to
a high degree a parameter’s mean influence averaged over
its range of values (compare Figure 3). As in the Zajac case,
there are four globally important parameters, according to
both VBS and TSI analyses. Compared to Zajac’s model, the
interdependent effect in combination with other parameters
(TSI: right hand side of Figure 5) is more pronounced for
two parameters: both the stimulation 𝜎 and the CE length
ℓCE importance are distinctly higher than their first order

effects as expressed by VBS functions. Furthermore, the time
horizon within the initial condition 𝑞

𝐻,0

has an aftereffect
in response to a step in 𝜎 globally a little higher in VBS as
compared to local sensitivity analysis (Figure 3). In addition,
the time horizon of 𝑞

𝐻,0

is clearly enhanced by interde-
pendencies with other parameters (TSI: right hand side of
Figure 5).

Altogether, VBS versus TSI analysis substantiate local
first and second order sensitivity analyses: for one thing,
Hatze’s model is more inert against steps in stimulation than
Zajac’s model. For another thing, the dynamics described
by Hatze’s model incorporates stronger nonlinear coupling
effects from combinations of parameters than Zajac’s model.
These latter effects are better seen in detail when looking at
local sensitivities, that is, analysing just small and selected
volumes of the parameter space C. In turn, VBS and TSI
provide a broad but coarse overview about first and higher
order sensitivities of all parameters.

7. Consequences, Discussion, and Conclusions

7.1. A Bottom Line for Comparing Zajac’s and Hatze’s Acti-
vation Dynamics: Second Order Sensitivities. At first sight,
Zajac’s activation dynamics [5] is more transparent because
it is descriptive in a sense that it captures the physiological
behaviour of activity rise and fall in an apparently simple
way. It thereto utilises a linear differential equation with well-
known properties, allowing for a closed-form solution. It
needs only four parameters to describe the Ca2+-ion influx
to the muscle as a response to electrical stimulation: the
stimulation𝜎 itself as a control parameter, the time constant 𝜏
for an exponential response to a step increase in stimulation,
a third parameter 𝛽 (deactivation boost) biasing both the rise
and fall times, and the saturation value 𝑞

𝑍

|
∞ of activity which

in turn depends on𝜎 and the basic activity 𝑞
0

being the fourth
parameter. The smaller the 𝛽 < 1 is (deactivation slower
than activation), the faster the very activity level 𝑞

𝑍

|
∞

𝛽=1

=

𝑞
0

+ 𝜎 ⋅ (1 − 𝑞
0

) is reached, at which saturation would occur
for 𝛽 = 1. Saturation for 𝛽 < 1 occurs at a level 𝑞

𝑍

|
∞

𝛽

=

𝑞
0

+(1−𝑞
0

)/(1−𝛽+𝛽/𝜎) that is higher than 𝑞
𝑍

|
∞

𝛽=1

. Altogether,
in Zajac’s as compared to Hatze’s activation dynamics, the
outcome of setting a control parameter value𝜎, with regard to
how fast and at which level the activity saturates, seems easier
to be handled by a controller.

A worse controllability of Hatze’s activation dynamics [6]
may be expected from its nonlinearity, a higher number of
parameters, and their interdependent influence on model
dynamics. Additionally, Hatze’s formulation depends on the
CE length ℓCE, whichmakes themutual coupling of activation
with contraction dynamicsmore interwoven. So, at first sight,
Hatze’s dynamics seems a less manageable construct for a
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Figure 4: Variance-based sensitivity (a) and total sensitivity index (b) of every parameter of Zajac’s activation dynamics equation.
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Figure 5: Variance-based sensitivity (a) and total sensitivity index (b) of every parameter of Hatze’s activation dynamics equation.

controller to deal with a muscle as the biological actuator.
Regarding the nonlinearity exponent ], solution sensitivity
further depends nonmonotonously on activity level, partly
even with the strongest influence, partly without any influ-
ence. We also found that the solution is more sensitive to
its parameters 𝜎, ℓCErel, and ℓ𝜌 than is Zajac’s activation
dynamics to any of its parameters.

This higher complexity ofHatze’s dynamics becomes even
more evident by analysing the second order sensitivities (see
(13) or (19) for their relative values). They express how a
first order sensitivity changes upon variation of any other
model parameter. In other words, they are a measure of
model entanglement and complexity. Here, we found that the
highest values amongst all relative second order sensitivities
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in Zajac’s activation dynamics are about −0.8 (𝑅̃
𝛽𝜎

) and 1.6
(𝑅̃
𝛽𝛽

). In Hatze’s activation dynamics, the highest relative
second order sensitivities are those with respect to ] or
ℓCErel (in particular for 𝜎, 𝜌

𝑐

, and ], ℓCErel themselves) with
maximum values between about −8.0 (𝑅̃

ℓCErel], 𝑅̃]𝜌𝑐) and 13.4
(𝑅̃
ℓCErelℓCErel

, 𝑅̃
ℓCErel𝜌𝑐

, 𝑅̃
ℓCErel𝜎

, 𝑅̃]] at submaximal activity). That
is, they are an order of magnitude higher than in Zajac’s
activation dynamics.

Yet, we have to acknowledge that Hatze’s activation
dynamics contains crucial physiological features that go
beyond Zajac’s description.

7.2. A Plus for Hatze’s Approach: Length Dependency. It has
been established that the length dependency of activation
dynamics is both physiological [7] and functionally vital
[15] because it largely contributes to low-frequency muscle
stiffness. It has also been verified that Hatze’s model approach
provides a good approximation for experimental data [7]. In
that study, ] = 3 was used without comparing to the ] = 2
case. There seem to be arguments in favour of ] = 2 from a
mathematical point of view. In particular, the less changeful
scaling of the activation dynamics’ characteristics down to
very low activity and stimulation levels, at which some CE
length sensitivity remains, seem to be an advantage when
compared to the ] = 3 case. Up to this point, we have argued
solelymathematically. It is, however, physiological reality that
is eventually aimed at. We therefore repeated the model fit
done by Kistemaker et al. [7] while now allowing a variation
in ] and in force-length relations.

7.3. AnOptimal Parameter Set for Hatze’s ActivationDynamics
Plus CEForce-Length Relation. Sensitivity analysis allows rat-
ing Hatze’s approach as an entangled construct. Additionally,
Kistemaker et al. [7] decided to choose ] = 3 without giving
a reason for discarding ] = 2. It further seemed that they
did not perform an algorithmic optimisation across various
submaximal stimulation levels to find a muscle parameter
set, which best fits known shifts ΔℓCE,opt,submax = ℓCE,opt −
ℓCE,opt,submax in optimal, submaximal CE length ℓCE,opt,submax
at which isometric force 𝐹isom = 𝐹isom(𝑞, ℓCE) peaks. Accord-
ingly, it seemed worth performing such an optimisation
because 𝐹isom generally depends on length ℓCE and activity 𝑞,
and the lattermay be additionally biased by an ℓCE-dependent
capability for building up cross-bridges at a given level 𝛾 of
free Ca2+-ions in the sarcoplasma, as formulated in Hatze’s
approach: 𝐹isom(𝑞, ℓCE) = 𝐹max ⋅ 𝑞(𝛾, ℓCE) ⋅ 𝐹ℓ(ℓCE). Thus, a
shift in optimal CE length ΔℓCE,opt,submax with changing 𝛾 can
occur depending on the specific choices of both the length
dependency of activation 𝑞(𝛾, ℓCE) (see (3) and (4)) and the
CE’s force-length relation 𝐹

ℓ

(ℓCE).
Consequently, we searched for optimal parameter sets

of Hatze’s activation dynamics in combination with two
different force-length relations 𝐹

ℓ

(ℓCE): either a parabola [7]
or bell-shaped curves [11, 25]. For a given optimal CE length
ℓCE,opt = 14.8mm [26] representing a rat gastrocnemius
muscle and three fixed exponent values ] = 2, 3, 4 in
Hatze’s activation dynamics (all other parameters as given in
Section 2), we thus determined Hatze’s constant 𝜌

0

and the

width parameters of the two different force-length relations
𝐹
ℓ

(ℓCE) (WIDTH in Kistemaker et al. [7] and van Soest and
Bobbert [9] and Δ𝑊asc = Δ𝑊des = Δ𝑊 in Mörl et al. [25],
resp.) by an optimisation approach.The objective function to
be minimised was the sum of squared differences between
the ΔℓCE,opt,submax values as predicted by the model and as
derived from experiments (see Table 2 in Kistemaker et al.
[7]) over five stimulation levels𝜎 = 0.55, 0.28, 0.22, 0.17, 0.08.
Note that 𝛾 = 𝜎 applies in the isometric situation (see (2)
and compare (3)). Further note that experimental data for
muscle contractions at very low stimulation levels aremissing
in the literature so far: the lowest analysed level available for
Kistemaker et al. [7] was 𝜎 = 0.08, that is, comparable to the
second rows from top in Figures 2 and 3.

The optimisation results are summarised in Table 2. The
higher the ] value, the smaller the optimisation error. The
predictedwidth valuesWIDTHorΔ𝑊, respectively, decrease
along with the error. We would yet tend to exclude the case
] = 4 because the predicted width values seem unrealistically
low when compared to published values from other sources
(e.g., WIDTH = 0.56 [9], Δ𝑊 = 0.35 [25]). Furthermore,
𝜌
0

decreases with ] using the parabola model for 𝐹
ℓ

(ℓCE)
whereas it saturates between ] = 3 and ] = 4 for the
bell-shaped model. The bell-shaped model shows the most
realistic Δ𝑊 in the case ] = 3 (Δ𝑊 = 0.32). Fitting the same
model to other contraction modes of the muscle [25], a value
of Δ𝑊 = 0.32 had been found. In contrast, when using the
parabola model, realistic WIDTH values between 0.5 and 0.6
are predicted by our optimisation for ] = 2.

When comparing the optimised parameter values across
all start values of the 𝐹

ℓ

(ℓCE) widths, across all ] values,
and across both 𝐹

ℓ

(ℓCE) model functions, we find that the
resulting optimal parameter sets are more consistent for bell-
shaped 𝐹

ℓ

(ℓCE) than for the parabola function. The bell-
shaped force-length relation gives generally a better fit. For
each single ] value, the corresponding optimisation error is
smaller when comparing realistic, published WIDTH and
Δ𝑊 values that may correspond to each other (WIDTH =
0.56 [9] and Δ𝑊 = 0.35 [25]). Additionally, the error
values from our optimisation are generally smaller than the
corresponding value calculated from Table 2 in Kistemaker
et al. [7] (0.23mm).

In a nutshell, we would say that the most realistic model
for the isometric force 𝐹isom at submaximal activity levels is
the combination of Hatze’s approach for activation dynamics
with ] = 3 and a bell-shaped curve for the force-length
relation 𝐹

ℓ

(ℓCE) with ]asc = 3. As a side effect, we predict
that the parameter value 𝜌

0

, being a weighting factor of the
first addend in the compact formulation of Hatze’s activation
dynamics (5), should be reduced by about 40% (𝜌

0

= 3.25 ⋅

10
4 L/mol) as compared to the value originally published in

Hatze [13] (𝜌
0

= 5.27 ⋅ 10
4 L/mol).

7.4. A Generalised Method for Calculating Parameter Sen-
sitivities. The findings in the last section were initiated by
thoroughly comparing twodifferent biomechanicalmodels of
muscular activation using a systematic sensitivity analysis as
introduced in Dickinson and Gelinas [17] and Lehman and
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Table 2: Parameters minimising the sum over five submaximal stimulation levels 𝛾 = 𝜎 = 0.55, 0.28, 0.22, 0.17, 0.08 of squared differences
between shifts in optimal CE length ΔℓCE,opt,submax(𝛾) (Δ𝑙MA,opt by Roszek et al. (1994) [27] in the third column of Table 2 in Kistemaker et al.
[7]) at these levels predicted by the model with the isometric force 𝐹isom(𝑞, ℓCE) = 𝐹max ⋅ 𝑞(𝛾 = 𝜎, ℓCE) ⋅ 𝐹ℓ(ℓCE) and by experiments; simulated
data represent a rat gastrocnemiusmuscle with an optimal CE length ℓCE,opt = 14.8mm[26]; start value of 𝜌

0

was 6.0⋅104 L/mol; the exponents
of the bell-shaped force-length relations 𝐹

ℓ

(ℓCE) were fixed according to Mörl et al. [25] (]asc = 3, ]des = 1.5); the corresponding width values
in the ascending and descending branch were assumed to be equal: Δ𝑊asc = Δ𝑊des = Δ𝑊; van Soest and Bobbert [9] and Kistemaker et al.
[7] used a parabola for 𝐹

ℓ

(ℓCE); for all other model parameters see Sections 7.3 and 2; optimisation was done by 𝑓minsearch (Nelder-Mead
algorithm) in MATLAB with error tolerances of 10−8; error is the square root of the above-mentioned sum divided by five; corresponding
error value given in Table 2 in Kistemaker et al. [7] was 0.23mm.

] Bell-shaped [11, 25] Parabola [7, 9]
Δ𝑊start = 0.25 WIDTHstart = 0.46

Δ𝑊[] 𝜌
0

[104 L/mol] error [mm] WIDTH [] 𝜌
0

[104 L/mol] error [mm]
2 0.46 3.80 0.08 0.63 8.78 0.10
3 0.32 3.25 0.05 0.41 5.45 0.07
4 0.26 3.20 0.02 0.34 4.60 0.05

Δ𝑊start = 0.35 WIDTHstart = 0.56
Δ𝑊[] 𝜌

0

[104 L/mol] error [mm] WIDTH [] 𝜌
0

[104 L/mol] error [mm]
2 0.45 3.80 0.07 0.53 6.92 0.11
3 0.32 3.30 0.05 0.41 5.67 0.07
4 0.26 3.20 0.02 0.34 4.55 0.05

Δ𝑊start = 0.45 WIDTHstart = 0.66
Δ𝑊[] 𝜌

0

[104 L/mol] error [mm] WIDTH [] 𝜌
0

[104 L/mol] error [mm]
2 0.45 3.78 0.07 0.55 7.35 0.11
3 0.32 3.25 0.05 0.41 5.35 0.07
4 0.26 3.20 0.02 0.34 4.56 0.05

Stark [2], respectively. Starting with the latter formulation,
Scovil and Ronsky [1] calculated specific parameter sensitivi-
ties for muscular contractions. They applied three variants of
this method.

Method 1 applies to state variables that are explicitly
known to the modeller as in, for example, an eye model [2],
a musculoskeletal model for running that includes a Hill-
type muscle model [1], or the activation models analysed in
our study. Scovil and Ronsky [1] calculated the change in
the value of a state variable averaged over time per a finite
change in a parameter value, both normalised to each of their
unperturbed values. They thus calculated just one (mean)
sensitivity value for a finite time interval (e.g., a running
cycle) rather than time-continuous sensitivity functions.

Method 2: whereas Dickinson and Gelinas [17] and
Lehman and Stark [2] had introduced the full approach
for calculating such sensitivity functions, Scovil and Ronsky
[1] distorted this approach by suggesting that the partial
derivative of the right hand side of an ODE, that is, of the
rate of change of a state variable, with respect to a model
parameter would be a “model sensitivity.” The distortion
becomes explicitly obvious from our formulation: this partial
derivative is just one of the two addends that contribute to
the rate of change of the sensitivity function (10), rather than
defining the sensitivity of the state variable itself (i.e., the
solution of the ODE) with respect to a model parameter (8).

Method 3: Scovil and Ronsky [1] had also asked for
calculating the influence of, for example, a parameter of the
activation dynamics (like the time constant) on an arbitrary
joint angle, that is, a variable that quantifies the overall output

of a coupled dynamical system. Of course, the time constant
does not explicitly appear in the mechanical differential
equation for the acceleration of this very joint angle, which
renders applicability of method 2 impossible. The conclusion
in Scovil and Ronsky [1] was to apply method 1. Here, the
potential of our formulation comes particularly to the fore.
It enables calculating the time-continuous sensitivity of all
components of the coupled solution, that is, any state variable
𝑦
𝑘

(𝑡). This is because all effects of a parameter change are in
principle reflected within any single state variable, and the
time evolution of a sensitivity according to (10) takes this into
account.

In this paper, we have further worked out the sensitivity
function approach by Lehman and Stark [2], presenting
the differential equations for sensitivity functions in more
detail to those modellers who want to apply the method.
Furthermore, we enhanced the approach by Lehman and
Stark [2] to also calculating the sensitivities of the state
variables with respect to their initial conditions (17). This
should be helpful not only in biomechanics but also, for
example, in meteorology when predicting the behaviour of
storms [28]. Since initial conditions are often just known
approximately but start with the relative sensitivity values
of 1, their influence should be traced to verify how their
uncertainty propagates during a simulation. In the case of
muscle activation dynamics, the sensitivities 𝑆

𝑞
𝑍,0

and 𝑆
𝑞
𝐻,0

,
respectively, decreased rapidly to zero: initial activity has no
effect on the solution very early before steady state is reached.

Furthermore, we included a second order sensitivity anal-
ysis which is not only helpful for an enhanced understanding
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of the parameter influence but also part of mathematical
optimisation techniques [29]. The values of 𝑅̃

𝑖𝑗𝑘

could be
interpreted either as the relative sensitivity of the sensitivity
𝑆
𝑖𝑘

with respect to another parameter 𝜆
𝑗

(and vice versa:
𝑆
𝑗𝑘

with respect to 𝜆
𝑖

) or as the curvature of the graph
of the solution 𝑦

𝑘

(𝑡) in the 𝑁 + 𝑀-dimensional solution-
parameter space. The latter may help to connect the results
to the field of mathematical optimisation in which the
second derivative (Hessian) of a function is often included in
objective functions to find optimal parameter sets.

7.5. Insights into Global Methods. Some additional conclu-
sions can be drawn from global sensitivity analysis, in
particular from comparing results in Section 6.3 to those
based on local sensitivity analysis (Sections 6.1, 6.2, and 7.1).

For Zajac’s activation dynamics, global analysis confirms
local analysis in stating that there are no significant second
or higher order sensitivities, with the slight exception of the
phase of rapid change in activity after a step in stimulation.
An experimenter who wants to measure the activation time
constant 𝜏 can exclude influence from potentially slower
deactivation processes (𝛽 < 1) by starting from high activity
levels (Figure 2, bottom). It should yet be kept in mind that
build-up of activity to the new level is not solely determined
by 𝜏 but might be biased by other parameters than 𝜏 because
TSI
𝜏

peaks during the build-up phase (Figure 4, right).
In Hatze’s activation dynamics, the higher order sensi-

tivities play a clearly more significant role, even in the near-
steady-state case (Figure 5: stronger deviation from 1 of both
VBS and TSI). When arguing in terms of controllability
of the models in Section 7.1, we speculated that Zajac’s
dynamics might be easier to control than Hatze’s dynamics.
Notwithstanding, Figure 5 shows that the stimulation is the
most important control factor with even a higher importance
than in Zajac’s formulation.

At first sight unapparent, another result is the importance
of𝜌
𝑐

. Froma strictly local point of viewwe concluded that this
parameter should have the same sensitivity as 𝜎 since they
both are formally equivalent multipliers in Hatze’s ODE (see
relative sensitivities in Figure 3). However, the importance
of 𝜌
𝑐

is significantly smaller than that of 𝜎, in fact almost
negligible. Their different global variabilities of values can
give an explanation. The parameter 𝜌

𝑐

in the product 𝜌
𝑐

⋅

𝜎 ∈ [4; 11] × [0; 1] has a clearly lower relative variability
than 𝜎, measured in maximum percentage deviation from
the respective mean value. The parameter 𝜌

𝑐

thus acts as an
amplifier for 𝜎. Similarly, the parameter ] has a relatively
small variability throughout the literature. So, although its
differential sensitivity is quite large, ] is found to have a low
importance for the model output. For the latter fact there is
yet another reason. In Section 6.2, we have emphasised that
] has a very changeful influence on solutions, depending on
activity level. Additionally, its influence is highly dependent
on other parameters like length ℓCE and 𝜌

𝑐

(see end of
Section 7.1). Its strong influence in some situations and
configurations is thus hidden by global averaging.

This demonstrates that the findings of global sensitivity
analysis must be treated with caution because the whole

dynamics of a system is condensed to a single average
function per whole parameter range. Without local analyses
of the solution space as exemplified in Sections 6.1 and 6.2
crucial features of its topology might be lost when solely
relying on global analysis.

Symbols

ℓCE: Contractile element (CE) length; value:
time-depending

̇ℓCE: Contraction velocity; value: first time
derivative of ℓCE

ℓCE,opt: Optimal CE length; value: muscle-specific
ℓCErel: Relative CE length; value:

ℓCErel = ℓCE/ℓCE,opt (dimensionless)
𝐹max: Maximum isometric force of the CE;

value: muscle-specific
𝜎: Neural muscle stimulation; value:

time-depending; here: a fixed parameter
𝑞: Muscle activity (bound

Ca2+-concentration); value:
time-depending

𝑞
0

: Basic activity according to Hatze [13];
value: 0.005

𝑞
𝐻

: Activity according to Hatze [6]; value:
time-length-depending

𝑞
𝐻,0

: Initial condition for Hatze’s activation
ODE; value: mutable

𝑞
𝑍

: Activity according to Zajac [5]; value:
time-depending

𝑞
𝑍,0

: Initial condition for Zajac’s activation
ODE; value: mutable

𝜏: Activation time constant in Zajac [5];
value: here: 1/40 s

𝜏deact: Deactivation time constant in Zajac [5];
value: here: 1/40 s or 3/40 s

𝛽: Corresponding deactivation boost [5];
value: 𝛽 = 𝜏/𝜏deact

]: Exponent in Hatze’s formulation; value: 2
or 3

𝑚: Activation frequency constant in Hatze
[6]; value: range: 3.67, . . . , 11.25 (1/s); here:
10 (1/s)

𝑐: Maximal Ca2+-concentration in Hatze
[24]; value: 1.37 ⋅ 10−4mol/L

𝛾: Representation of free Ca2+-concentration
[6, 13]; value: time-depending

𝜌: Length dependency of Hatze [24]
activation dynamics; value:
𝜌(ℓCErel) = 𝜌𝑐 ⋅ ((ℓ𝜌 − 1)/(ℓ𝜌/ℓCErel − 1))

ℓ
𝜌

: Pole in Hatze’s length dependency
function; value: 2.9

𝜌
0

: Factor in van Soest [8], Hatze [6]; value:
6.62 ⋅ 10

4 L/mol (] = 2) or 5.27 ⋅ 104 L/mol
(] = 3)

𝜌
𝑐

: Merging of 𝜌
0

and 𝑐; value: 𝜌
𝑐

= 𝜌
0

⋅ 𝑐;
here: 9.10 (] = 2) or 7.24 (] = 3)

Λ: Model parameter set; value:
Λ = {𝜆

1

, . . . , 𝜆
𝑛

}.
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