
REVIEW Open Access

Tocotrienol is a cardioprotective agent
against ageing-associated cardiovascular
disease and its associated morbidities
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Abstract: Ageing is a nonmodifiable risk factor that is linked to increased likelihood of cardiovascular morbidities.
Whilst many pharmacological interventions currently exist to treat many of these disorders such as statins for
hypercholesterolemia or beta-blockers for hypertension, the elderly appear to present a greater likelihood of
suffering non-related side effects such as increased risk of developing new onset type 2 diabetes (NODM). In some
cases, lower efficacy in the elderly have also been reported. Alternative forms of treatment have been sought to
address these issues, and there has been a growing interest in looking at herbal remedies or plant-based natural
compounds. Oxidative stress and inflammation are implicated in the manifestation of ageing-related cardiovascular
disease. Thus, it is natural that a compound that possesses both antioxidative and anti-inflammatory bioactivities
would be considered. This review article examines the potential of tocotrienols, a class of Vitamin E compounds
with proven superior antioxidative and anti-inflammatory activity compared to tocopherols (the other class of
Vitamin E compounds), in ameliorating ageing-related cardiovascular diseases and its associated morbidities. In
particular, the potential of tocotrienols in improving inflammaging, dyslipidemia and mitochondrial dysfunction in
ageing-related cardiovascular diseases are discussed.
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Background
Cardiovascular disease (CVD) is the number one cause
of mortality globally according to the World Health Or-
ganisation (WHO). By 2030, approximately 30 million
individuals are expected to die from CVD every year [1].
While recent changes in dietary habits and lifestyle are
often discussed as a major contributing factor for this
phenomenon, ageing presents another fertile ground for
lowering the threshold required for the manifestation of
the disease.
While the exact mechanics of ageing is still subject to

active research, a couple of theories currently prevail as
the leading theories that might explain, at least in part,
the pathophysiological aspects of ageing. These are the
free radical theory and the inflammaging theories of

ageing [2, 3]. The former purports that with ageing, even
in healthy ageing, there is a higher risk of oxidative
stress build-up within the mitochondria, which eventu-
ally leads to a vicious cycle that leads to further damaged
mitochondria and increased free radicals [2]. This in-
creased oxidative stress is a risk factor for the develop-
ment of chronic diseases such as cancer and diabetes.
Inflammaging, on the other hand, refers to the chronic
low grade inflammation that persists and leads to
chronic disease [4]. These are also discussed in more de-
tail throughout the review.
From a cardiovascular health point of view, ageing can

thus be viewed as a combination of deteriorating cardio-
vascular protection mechanisms and a concomitant in-
crease in disease processes that greatly increases the
development of heart failure. Half of all heart failure
diagnoses and 9 out of 10 of all heart failure deaths
occur in the segment of the population over age 70 [5].
Hence, it would not be an overstatement to say that
heart failure is a major risk for the elderly.
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Many pharmaceutical interventions exist such as sta-
tins and beta blockers, but, as will be described later,
many of these can have adverse events, especially in the
elderly, whose physiologies are much more susceptible
to certain types of pharmaceutical intervention [6–8].
There has recently been a growing interest in exploring
treatment using naturally occurring compounds. While
there has been scepticism about the efficacy of these
compounds [9–11], in often cases, the irregular efficacies
reported are due to the complex and inconsistent prep-
aration of these herbal remedies [12]. With an increased
scrutiny on manufacturing and regulatory practices in
the nutraceutical industry worldwide, there has been a
growing acceptance of nutrition in both consumer
healthcare space and clinical settings as a bona fide
interventional strategy in combating all types of human
disease [12–14].
In particular, nutritional strategies have been reported

to effectively lower the risk of the toxicity caused by re-
active oxygen species (ROS) and hence improve in vivo
antioxidant status which is important in preventing not
just cardiovascular disease but many other human dis-
eases such as cancer, neurodegeneration and diabetes as
well [15, 16].

Tocotrienol
The Vitamin E family consists of tocopherols and toco-
trienols, with each of the two groups consisting of 4 dif-
ferent homologues each (α, β, γ and δ). Structurally,
tocopherols and tocotrienols share the identical chroma-
nol head and only differ by the degree of saturation of
hydrophobic tridecyl chain. Tocopherols have saturated
phytyl tails whereas tocotrienols have unsaturated iso-
prenoid side chain with three double bonds. The isomers
differ from each other by the attachment of different R-
groups on the chromanol head (Fig. 1) [17].
Vitamin E has traditionally been associated with to-

copherols only. Tocopherols were discovered nearly a
century ago, in 1922 by Evans and Bishop [18] and

enjoyed a dominant and lengthy period in the limelight.
Tocopherols are found in most vegetable oils, nuts,
seeds and whole grains [19].
Tocotrienols on the other hand is a more recent dis-

covery. Qureshi and colleagues first differentiated toco-
trienols and its properties from tocopherols in 1986 [20].
In the years that followed, several groups identified palm
(Elaeis guineensis) oil as a rich source of tocotrienols
Approximately 75% of the Vitamin E from palm oil con-
sists of tocotrienols [21]. Another source of tocotrienols
is found in the bright red seeds of Bixa orellana, from
the achiote tree, a plant native to South America. Its
seeds contain a unique composition of 90% δ-
tocotrienol and 10% γ-tocotrienol, without any tocoph-
erols in them [17, 22, 23].
The discovery of more Vitamin E compounds may

seem as merely an academic pursuit, especially given the
highly similar structural makeup of tocotrienols and to-
copherols (Fig. 1). However, the discovery that tocotrie-
nols may possess as much 40–60 times more
antioxidative activity than tocopherols captured the at-
tention of many [24, 25]. Further studies also suggested
that tocotrienols also exhibit potent anti-inflammatory
properties, a property that is only very weakly, if at all,
observed in tocopherols [26–28]. In particular, tocotrie-
nols have been shown to inhibit pathways that involve
nuclear factor κB (NF-κB) [29], Signal transducers and
activators 3 (STAT3) [30] and cyclo-oxygenase 2 (COX-
2) [31], which are critical pathways that trigger patho-
logical inflammatory responses.
As it became clearer that tocotrienols could be a much

more bioactive form of Vitamin E compared to tocoph-
erols, much interest in the therapeutic applications of
tocotrienols arose. Chandan Sen and colleagues, for ex-
ample, published many seminal papers on the potency of
tocotrienols in being neuroprotective against stroke [32–
35]. We and others have shown the potency of the
gamma/delta tocotrienol isomers in ameliorating cardio-
vascular and metabolic disease [36–38].

Fig. 1 Structural configuration of tocotrienols and tocopherols. Adapted from http://lipidlibrary.aocs.org/Analysis/content.cfm?ItemNumber=40389
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Palm tocotrienol-rich fraction (TRF) has been granted
the GRAS (Generally Regarded as Safe) status by the US
FDA in 2010, indicating that these compounds are safe
for human consumption [39]. Clinical trials done in
humans at approximately 50–400 mg/day (equivalent to
up to 6.7 mg/kg for a 60 kg human) for periods of
2 weeks to 18 months have not been reported to cause
adverse effects [17], even in the elderly [40]. Tocotrie-
nols has been shown to be cardioprotective in numerous
cell culture, animal model and human studies [17, 38,
41, 42] (Table 1). With the increase in life expectancy of
the world population in general, driven by improve-
ments in medical science and healthcare technologies,
leading causes of disability-adjusted life years (DALYs)
predicted by one study was aging related heart disease
[43]. It is thus critical to find ways to remedy cardiovas-
cular ageing with safe and effective interventional strat-
egies. In this review article, we discuss the potential of
tocotrienols in combating ageing related cardiovascular
diseases.

Cardiovascular changes that occur with ageing
Most of the major cardiovascular changes that take place
during cardiovascular ageing could be categorised into
one or more of the following:

A. Structural changes
B. Functional changes
C. Indirect changes

D. Decreased capacity to handle oxidative stress

A) Structural changes
The most evident structural cardiac change during age-
ing is the increase in myocardial thickness. An increase
in cardiomyocyte size accounts for left ventricular hyper-
trophy (LVH) during ageing [5]. It is also worth noting
that while ventricular walls thicken as a result of in-
creased cardiomyocyte size, there is actually a decrease
in cardiomyocyte cell number, probably due to apoptosis
[44]. Since the heart comprises cells that have little re-
generation capacity, regardless of the scale of cardiomyo-
cyte loss, the contractile efficiency would be affected
[45].
An additional trigger for ageing LVH is the dilation of

the aortic roots as it increases the inertial load in which
the heart must pump [44, 46]. Structural change in com-
bination with myocardial thickening, dilation of aortic
roots also results in a change in overall heart structure.
The aorta dilates rightward, extending into the cavity of
the left ventricle, causing a shift from elliptical to a
rounded geometry and thus subjecting it to a higher wall
stress [44, 47]. Overall contractile efficiency will be af-
fected by these structural changes and the widely-used
treatment thus far is with anti-hypertensive drugs such
as angiotensin receptor blockers (ARBs), β-adrenoceptor
antagonists, α-adrenoceptor antagonists, calcium antago-
nists, angiotensin converting enzyme (ACE) inhibitors
and diuretics [48, 49].

Table 1 Summary table listing the clinical studies with tocotrienols in cardiovascular diseases during the period of 1991–2011

S/
N

Journal title References

1 Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols
(palmvitee)

Qureshi A.A. et al. (1991). American Journal of Clinical
Nutrition. [79]

2 Effect of a palm-oil–vitamin E concentrate on the serum and lipoprotein lipids
in humans1,3

Tan D.T.S. et al. (1991). American Journal of Clinical Nutrition.
[17]

3 Differential serum responses of tocopherols and tocotrienols during vitamin
supplementation in hypercholesterolaemic individuals without change in
coronary risk factors

Wahlqvist M.L. et al. (1992). Nutr Res. [84]

4 Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid
stenosis

Tomeo A.C. et al. (1995). Lipids.

5 Novel tocotrienols of rice bran modulate cardiovascular disease risk parameters
of hypercholesterolemic humans.

Qureshi A.A. et al. (1997). The Journal of Nutritional
Biochemistry.

6 Synergistic effect of tocotrienol-rich fraction (TRF25) of rice bran and lovastatin
on lipid parameters in hypercholesterolemic humans

Qureshi A.A. et al. (2001). Journal of Nutritional Biochemistry
[79]

7 Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction
(TRF25) of rice bran in hypercholesterolemic humans

Qureshi A.A. et al. (2002). Atherosclerosis.

8 Dose Dependent Elevation of Plasma Tocotrienol Levels and Its Effect on Aterial
Compliance, Plasma Total Antioxidant Status, and Lipid Profile in Healthy Humans
Supplemented with Tocotrienols Rich Vitamin E

Rasool A.H.G. et al. (2006) Journal of Nutritional Science and
Vitaminology.

9 Gamma Delta Tocotrienols Reduce Hepatic Triglyceride Synthesis and VLDL
Secretion

Zaiden N. et al. (2010). Journal of Atherosclerosis and
Thrombosis.

10 Effect of Mixed-Tocotrienols in Hypercholesterolemic Subjects Yuen K.H. et al. (2011). Functional Foods in Health and Disease.
[96]
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Antioxidant therapy has been proposed as a promising
intervention that may prevent heart failure [50]. Vitamin
C and E have both been studied, either individually or in
combination, in improving arterial compliance and arter-
ial stiffness [51], which are intricately linked to ventricu-
lar hypertrophy [52]. Rasool et al., found that
administration of 100 and 200 mg/day of tocotrienols
improved arterial compliance (as assessed by carotid
femoral pulse wave velocity (PWV) and augmentation
index (AI)) in healthy men [53]. Rasool et al. also used
tocopherols in treating arterial stiffness in postmeno-
pausal women but found that tocopherols did not show
a significant improvement [54]. More studies will be
needed with tocotrienols in arterial stiffness and compli-
ance, particularly studies that compare the effects of
tocotrienols and tocopherols directly, but these early
data indicate that tocotrienols may be a better candidate
than tocopherols in improving arterial compliance and
stiffness.
As arterial compliance and stiffness are major compli-

cations reported in elderly cardiovascular patients, toco-
trienols may present a suitable intervention strategy to
achieve better clinical outcomes.

B) Functional changes- inflammaging and
immunocardiology
The phenomenon, where low grade inflammation in the
absence of other significant medical conditions, as a
chronic process that eventually presents a risk factor in
the elderly over time has been coined as ‘inflammaging’
by Claudio Franceschi [4]. There are several postulated
mechanisms of inflammaging that could lead to in-
creased susceptibility to CVD. First, an increase in sen-
escent cells due to ageing could alter the secretion
profile leading to more proinflammatory cytokines. This
phenomenon is not just restricted to the cardiovascular
system, but is a global process that affects the whole
body.
The PolSenior study conducted in 4979 Eastern Euro-

peans aged ≥65 years, revealed that Interleukin-6 (IL-6)
and C-reactive protein (CRP) levels were increased in an
age-dependent manner in general. However, patients
who did not have a history of CVD, type 2 diabetes, can-
cer or stroke exhibited a small but significantly lower
level of these two markers (IL-6 and CRP) [55]. CRP
levels in particular, appear to be critically linked to the
development of cardiovascular diseases [56]. CRP in turn
is known to be regulated by IL-6 and tumour necrosis
alpha (TNF-α) [57]. A six-year study by a team at Johns
Hopkins University revealed that large and sustained ele-
vation of CRP levels are associated with a very high risk
of CVD and mortality [58].
Tocotrienols have been well established as molecules

that can effectively lower blood serum levels of CRP. In

fact the CRP lowering activity of tocotrienols have been
noted to be higher than that of tocopherol, by at least
20–50% more [59]. This positions tocotrienols as a com-
pound that can combat ageing related CVD via the low-
ering of CRP levels.
More recently, the myocardium has been scrutinised

further from an immunological point of view [60–63].
These new findings have cast a spotlight on the new and
emerging field of immunocardiology. New and emerging
data indicate that the myocardial and immunological
ageing process are intimately linked and intertwined. A
study published at the time of writing, by Ramos et al.,
presented interesting findings in this field. The team uti-
lised targeted cell ablations and cell-transfer methods to
demonstrate that CD4+ T cells from the heart-draining
lymph node of aged mice mediates low levels of cardiac
inflammation and mild functional impairment even in
wild type mice, in the absence of clear tissue damage or
infection [64]. It is unclear from this study, however,
what pathways are specifically triggered and which fac-
tors are responsible for the detrimental effects seen. This
continual presence of T cells within the myocardium
presents a further consideration as a disease-modifying
factor where cardiovascular disease is concerned, cer-
tainly in the elderly.
Tocotrienols can play a role in immunomodulation of

T-cell activity by regulating gene expression. Wilankar et
al., reported that genes such as concanavalin A and NF-
κB were increased on short term exposure (4 h) but sup-
pressed in murine lymphocytes upon long term treat-
ment with γ-tocotrienol [65]. These two genes are
associated with lymphocyte proliferation and immune
activation respectively. This immunomodulation impact
may potentially confer benefits in the myocardium by
suppressing potentially pathogenic inflammatory activity
from these immunologic cells.

C) Indirect changes
The previous two sections dealt largely with the heart it-
self. However, this section and the following one will
deal more broadly with the cardiovascular system.

i) Dyslipidemia
Tocotrienols can alleviate hyperlipidemia and hyperchol-
esterolemia, huge risk factors in cardiovascular disease
(CVD) risks, through triglyceride (TG) and low density
lipoprotein-cholesterol (LDL-C) reduction by up to 25%
[66]. Work from our group previously showed the car-
diovascular and metabolic health benefits of tocotrienol
supplementation in tissue culture systems, rodent
models as well as human studies [36, 38]. In these stud-
ies, tocotrienols reduced the production and transport of
TGs in cells, rodents and human thereby reducing TG
levels by 28%. Tocotrienols not only lower LDL-C and
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TG, but they are also anti-inflammatory and provide
multiple points of health benefits to lower CVD risk.
There has been speculation that TG synthesis is lowered
by modulating lipogenic gene expression based on cellu-
lar studies [67]. However more in vivo and human stud-
ies are needed to confirm this observation.
The mechanism for cholesterol reduction, however,

has been elucidated to a large degree. Tocotrienols can
suppress the production of 3-hydroxy-3-methyl-glutaryl-
coenzymeA (HMG-CoA reductase), the rate-limiting en-
zyme essential for cholesterol production [68]. Currently,
statins remain the gold standard for the treatment of
hypercholesterolemia. The mechanistic details of statin’s
cholesterol lowering have been worked out in great de-
tails over the years [69].
Statins mimic the structure of HMG-CoA and poses

as a competitive inhibitor, for the HMG-CoA reductase
[70]. While statins are considered the gold standard for
treating hypercholesterolemia, it isn’t without side ef-
fects. The incidence of these side effects is low however,
but can nevertheless be devastating. The most common
complaint is of muscle pain and soreness. In more rare
and extreme cases, patients suffer rhabdomyolysis, a life-
threatening damage to the muscles [71].
While, efficacious and effective, statins, at higher doses

come with unfavourable side effects such as abnormal
liver function tests, nerve dysfunction and muscle dis-
ease. Statins have been increasingly shown to pose
greater risk to the elderly. A longitudinal study done in
elderly women in Australia revealed that these women
were at greater risk of diabetes when given high doses of
statin [72]. Similarly, in South Korea, a population-cased
cohort study done there also revealed that a small but
significant risk exists of developing new onset diabetes
mellitus (NODM) with extended use of statins in the
elderly [73]. Thus, while one ailment is treated, the risk
for another disease goes higher.
Tocotrienols however poses no risk in developing dia-

betes mellitus, in fact quite the opposite effect is seen.
Due to its strong antioxidant activity, studies done by
Ling et al., revealed that tocotrienols can alleviate oxida-
tive stress in the beta-cells of the pancreas [74], thus im-
proving insulin secretion. Excessive oxidative stress is
one mechanism that impairs pancreatic beta-cell health,
which in turn impairs glucose-stimulated insulin secre-
tion (GSIS). Additionally, tocotrienols have also been
shown to activate the expression of peroxisome prolif-
erator activated receptor γ (PPARγ), a key gene crucial
for improving insulin sensitivity [75]. Hence, tocotrienols
can also ameliorate diabetes, a metabolic condition,
whilst improving cardiovascular associated morbidities.
Statins inhibit cholesterol biosynthesis by acting as a

competitive inhibitor of HMG-coA, the native substrate
of the enzyme HMG-CoA reductase. Tocotrienols on

the other hand inhibits cholesterol biosynthesis by two
different and distinct mechanisms (Fig. 2):

1) Tocotrienols catalyse the dephosphorylation of
farnesyl diphosphate to form farnesol due to its
farnesyl tail (in comparison tocopherols have a
phytyl tail that cannot perform this step) [76]. The
resultant farnesol accelerates the degradation of
HMG-CoA reductase [76], thus depriving the chol-
esterol biosynthesis pathway of the key rate-limiting
enzyme.

2) Tocotrienols inhibits HMG-CoA reductase directly,
posttranscriptionally, by blocking the translation of
the mRNA [76, 77].

A number of human trials have been conducted to in-
vestigate tocotrienols potential in lowering dyslipdemia,
including hypercholesterolemia [66, 78–82], and all these
studies have demonstrated significant improvement
ameliorating the clinical parameters of dyslipidemia
tested. There have been also studies that did not observe
significant differences in improving dyslipidemia [83–
85], including LDL-C and cholesterol parameters. We
however note that in these studies, the subjects were not
given a standardised diet or this information was not
clear from the study, which could have led to confound-
ing analysis of the resultant data. The inclusion criteria
for some of these studies were also too broad, perhaps
being another confounding factor. For example, Wahlq-
vist et al., employed a wide age range (25–75) [84],
whereas it is well established that the basal metabolic
rate of different age groups can affect the study outcome
[86, 87].
There has been some interest in understanding the

combinatorial effect of statin and tocotrienol. A study
reported by Qureshi et al. demonstrated that co-
treatment with lovastatin and tocotrienols led to a syner-
gistic effect in improving the lipid profile of hypercholes-
terolemic subjects [88]. In other studies, combined
treatment with tocotrienols and lovastatin have led to a
decrease in cell proliferation in human cancer cell lines
[89, 90]. Nevertheless, with the concerns posed by the
intake of statins in the elderly, as discussed, there has
been some caution with this approach.
Intriguingly, tocopherols, the more widely available

form of Vitamin E, is known to antagonise the ability
of tocotrienols to suppress HMG-CoA reductase.
When tocopherol is added together with tocotrienols,
cholesterol reduction is attenuated in cell culture
[91], and animals [92, 93]. This antagonistic effect has
not yet been unequivocally demonstrated in humans,
possibly due to the complexities of interpreting data
from the effects of more than one compound.
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However, most human studies employing α-tocopherol
show no effect in reducing cholesterol or improving
clinical dyslipidemia [94–96].

Ii) lipid peroxidation and adhesion
Atherosclerosis is now well recognised as a chronic in-
flammatory disease. This disease is characterised by the
accumulation of various species of lipids and inflamma-
tory cells (which eventually form foam cells) in the arter-
ial walls [97]. Endothelial injury and dysfunction are
fundamental stimuli responsible for the formation of
atherosclerotic plaque, and vascular wall inflammation is
the key factor in the aetiology of atherosclerosis [98].
Oxidised LDL (ox-LDL) is a critical factor in the

pathophysiology of atheromatous plaque, and this occurs
due to lipid peroxidation by reactive oxygen species
(ROS) (discussed more in Section D). Ox-LDL is prefer-
entially taken up by macrophages via the scavenger re-
ceptors on these cells. This is done via non-LDL
receptor pathway and as such it is unregulated and has
no saturation point, allowing as much of these

radicalised particles to enter the macrophages. Ultim-
ately the macrophages convert to foam cells, which is a
key turning point in the pathogenesis of atherosclerosis
[25, 97–99]. Atherosclerosis-related clinical complica-
tions include coronary artery disease (CAD), stroke and
other peripheral vascular diseases. CAD is one of the
biggest killers in most developed and developing nations
today [100].
Dietary tocotrienols have been shown to have a pre-

ventive role in the development of atherosclerosis in
both animal models and humans [17]. α-tocotrienol,
for an instance, has been shown to be 40 times more
effective than α-tocopherol in providing protection to
rat liver microsomal membranes from oxidative stress
and damage [101]. α-tocotrienol was also found to
show higher peroxyl radical scavenging potential than
α-tocopherol in liposomal membranes [24]. More re-
cently, however, δ-tocotrienol is becoming regarded as
the homologue with strongest activity amongst toco-
trienols where lipid peroxidation inhibition is con-
cerned [102].

Fig. 2 Tocotrienols lower cholesterol via 2 distinct mechanisms that ultimately operate on reducing the function of HMG-CoA reductase in
catalysing the rate limiting step in cholesterol biosynthesis, as opposed to statins that have one mechanism of action, competitive inhibition by
mimicking the native substrate HMG Co-A and binding the active site of HMG-CoA reductase. Mechanism 1 involves increasing the conversion of
farnesyl diphosphate to farnesol, and this intermediate in turn accelerates the degradation of HMG Co-A reductase. Mechanism 2 involves a
posttranscriptional means of regulation, by inhibiting the translation of HMG Co-A reductase mRNA. Both these mechanisms converge on HMG
co-A reductase, the key rate-limiting enzymatic step in cholesterol biosynthesis
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In humans, tocotrienols are reported to lower the
stimulated endothelial cell expression of adhesion mole-
cules (sVCAM-1, sICAM-1 AND e-selectin) by prevent-
ing the activation of NF-κB. By so doing, monocyte-
endothelial cell adhesion is also decreased, and this cor-
relation was seen to operate in a dose-dependent man-
ner [103]. These findings have been also reproduced and
expanded upon by other researchers [104, 105]. Similar
to what was seen in the rodent studies earlier, δ-
tocotrienol shown to be the most robust inhibitory effect
on inhibiting the expression of sVCAM-1 in both these
studies.
In recent times, and as alluded to when discussing

dyslipidemia earlier, tocotrienols have been shown to be
important in activating PPAR family of nuclear recep-
tors, namely PPARα, PPARγ and PPARδ [75]. A diet rich
in palm-derived TRF was found to reduce atheroscler-
osis development in ApoE−/− mice through peroxisome
proliferator activated receptor (PPAR) target gene liver
X receptor alpha (LXRα) as well as other downstream
target genes such as apolipoproteins and cholesterol
transporters [106]. This suggests that another important
aspect of tocotrienol activity in preventing atheroscler-
osis is by modulating PPAR activity. The mechanistic de-
tails as to how this is achieved is still a subject of intense
research as at the time of writing.
In summary, tocotrienols may confer anti-

atherosclerotic in a multi-pronged fashion, by not just
being antioxidative and anti-inflammatory, but also in
modulating the expression of important proteins are
vital in the development of atherosclerosis, particularly
in the elderly.

Iii) hypertension
Arterial hypertension, or more commonly referred to as
high ‘blood pressure’ (BP), is defined as systolic BP of
greater than 140 mmHG or diastolic BP greater than 90
mmHG [107]. Ageing is linked to functional, structural
and mechanical changes in arteries that closely resemble
the vascular changes observed in the pathogenesis of
hypertension [108]. There is now almost irrefutable evi-
dence from a huge number of clinical trials that lowering
hypertension can reduce the incidence of myocardial in-
farction [109].
A number of treatments exist in lowering systolic or

diastolic BP. Most well-known of these are perhaps the
‘beta-blockers’, so-called because they block the beta-
adrenergic receptors, thus leading to endothelium relax-
ation and lowering of BP [110]. Over the years, beta-
blockers have proven to be efficacious in several other
indications as well, most notably anxiety [111]. However,
there have been a number of adverse events reported
with the use of beta-blockers. Studies done with the eld-
erly, in particular, report increased number of adverse

events [112], and also more limited efficacy in address-
ing hypertension and cardiovascular-associated morbid-
ities [113].
In addressing the above concerns, alternative and

more recent medications have been used for the elderly.
These include angiotensin receptor blockers (ARB),
angiotensin converting enzyme (ACE) inhibitors and cal-
cium channel blockers (CCB’s) [112, 114, 115]. Com-
parative studies done with ARB’s, ACE inhibitors and
CCBs versus beta-blockers indeed show greater efficacy
and reduced adverse events. [116–118] . For example,
Kuti et al., reported reduced odds of developing new on-
set type 2 diabetes with CCBs compared to beta-
blockers [119]. However, side effects such as dizziness
and edema are also reported with some of these new
medications [120].
Several studies in recent times have also reported the

benefits of dietary antioxidants in reducing BP. Notable
of these, is the ‘Dietary Approaches to Stop Hyperten-
sion (DASH) study [121], which is a multicentre, ran-
domized, controlled-feeding trial where various
combination of food items in lowering BP were studied.
Diets rich in antioxidant Vitamin C (266 mg/day com-
pared to 133 mg/day in the control group) was found to
lower BP by 5.5/3.0 mmHG (systole/diastolic) in a sub-
population with moderately high BP and 11.5/3.0
mmHG in a subpopulation with clinical hypertension.
The DASH study however doesn’t investigate the effect
of a single nutrient, thus not allowing us to narrow
down to the exact causative factor(s) of the observed im-
provement in hypertension. Since the DASH study how-
ever, more studies focussing on individual antioxidant
nutrients have been conducted which includes tocotrie-
nols [107].
Studies involving the role of tocotrienols in hyperten-

sion are currently limited to animal models, but the
resulting data appear promising. Muharis et al., reported
that palm-derived TRF may potentially improve vascular
endothelial function in hypertension by improving endo-
thelium relaxation in rat aortae [122]. Another study by
Ali and Woodman, also done using palm-derived TRF,
reported that TRF is better than pure tocotrienols at im-
proving endothelium-dependent relaxation in rat aortae,
suggesting that the combined effect of tocotrienols and
α-tocopherol are both important in bringing about the
improvement seen in the endothelium [23]. A follow-up
study by the same team, using a similar setup as previ-
ously, but this time incorporating a high-fat diet, re-
ported a similar improvement in endothelium-
dependent relaxation, when given TRF [123]. Thus,
palm-derived TRF, could provide a unique therapeutic
opportunity for the elderly, by preventing the potential
adverse effects seen with stronger pharmacological
agents as described earlier. Ultimately, human studies
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will need to be conducted to confirm these beneficial ef-
fects in improving hypertension. However, these preclin-
ical data do provide a strong basis to conduct further
investigation in humans.

D) Decreased capacity to handle oxidative stress –
Mitochondrial dysfunction
Reactive oxygen species (ROS) and reactive nitrogen
species (RNS) have been firmly established as both po-
tentially harmful, but also potentially beneficial as signal-
ling molecules in certain instances [124–127]. Both ROS
and RNS are normally generated by tightly regulated en-
zymes such as nitric oxide synthase (NOS) and nicotina-
mide adenine dinucleotide phosphate (NADPH) oxidase.
The mitochondrial electron transport chain is another
source for the generation of ROS/RNS. The chronic
overproduction of ROS/RNS, a phenomenon often
linked with ageing [128], can be damaging to various
parts of cell and tissue components, especially since it
directly damages the important biomolecules key to sus-
taining life, such as lipid (lipid peroxidation), proteins
and even DNA [126, 128, 129].
Harman proposed the free radical theory of ageing in

the 1950s and this was later expanded in the 1970s to
reflect the role of the mitochondria in the generation of
ROS/RNS [128]. In a nutshell, this theory states that the
ageing process is known to accelerate the overproduc-
tion of these species, leading to an increased oxidative
burden that needs to be cleared by the body. The longer
these ROS/RNS species occupy the system without being
cleared, the higher the likelihood of them causing harm
to the body. In the heart, the decline in function in the
mitochondrial respiratory chain complexes, particularly
complexes I and IV have been identified as one of the
major reason for this [130].
This deterioration in mitochondrial energetics and

function, leading to mitochondrial dysfunction, is gain-
ing recognition as a major determinant in ageing-related
cardiovascular disease [131]. A similar type of mitochon-
drial dysfunction is seen in radiation-induced heart dis-
ease (RIHD). In RIHD, exposure to radiation (such as in
radiotherapy) leads to an increase in membrane perme-
ability and subsequently impaired functionality of the re-
spiratory chain complexes. One study by Sridharan et
al., demonstrated the efficacy of TRF in ameliorating
mitochondrial dysfunction by sustaining succinate-
driven mitochondrial respiration. It is likely that these
benefits could be conferred to the elderly afflicted with
cardiac disease, particularly if the pathological state can
be linked to mitochondrial dysfunction.

i) Myocardial ischemia & heart failure
Ischemic heart disease (IHD) is a common form of car-
diovascular disease that ultimately results in myocardial

infarction. Myocardial ischemia results from a disruption
in the coronary blood supply, and the majority of this is
attributed to atherosclerosis. But, apart from atheroscler-
osis, oxidative stress in itself plays an important role in
the pathogenesis of IHD [130, 132].
In post-ischemic myocardium, increased levels of ROS

are also generated in the cardiomyocytes, endothelial
cells, and infiltrating neutrophils. These in turn carve
the path towards cellular dysfunction and necrosis. Sub-
stantial evidence exists to support the role of oxidative
stress as one of the major aetiologies for myocardial in-
jury [97, 127, 128, 131]. Besides, oxidative stress it
thought to cause the occurrence of cardiac events after
reperfusion therapy in acute coronary syndrome (ACS)
[133]. Feng et al. demonstrated the correlation between
increased oxidative stress marker plasma advanced oxi-
dation protein products (AOPP) concentration and in-
creased incidence of major cardiac events in patients
treated with percutaneous coronary intervention for ST-
segment elevation myocardial infarction during a six-
month follow up [134]. In addition, Hokamaki et al. also
showed that patients with high thioredoxin levels suf-
fered from a more frequent recurrent angina attack as
compared to patients with low thioredoxin levels after
treatment of unstable angina [135]. Apart from that,
studies have also revealed that there is a correlation
among oxidative stress, ventricular remodelling and
progressive dilatation leading to end-stage heart failure.
Indeed, increased levels of oxidative stress biomarker
such as malondialdehyde, lipid peroxidases, glutathione
peroxidase, thioredoxin or superoxide dismutase have
been shown to be associated with heart failure both
acute and chronic conditions [136–138]. Additionally,
these conditions are made worse by nitrate therapy,
used widely in the treatment of both coronary artery
disease and congestive heart failure. Apart from rapid
development of nitrate tolerance, Munzel et al., re-
ported that in vivo nitrate use can lead to the gener-
ation of superoxide anions from the endothelium [139].
Fan et al., conducted a clinical trial to investigate the ef-
fects of nitrate therapy and confirmed the significant
increase of ROS/RNS in the elderly compared to youn-
ger patients [128].
The superior free radical scavenging activity demon-

strated by tocotrienols, should lead to a considerable at-
tenuation in oxidative stress-induced IHD as well as
post-ischemic myocardial therapy. Studies conducted by
a couple of groups have postulated that the cardiopro-
tective value from tocotrienols may stem from their abil-
ity to stabilise proteasomes [140, 141]. Proteasomes
become destabilised after ischemia [141, 142]. The ability
to stabilise proteasomes after an ischemic episode allows
a better balance between survival and apoptotic signals,
improving myocardial health.
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Ii) atrial fibrillation
Atrial fibrillation (AF) is the most frequent postoperative
complication after cardiac surgery afflicting the elderly.
The prevalence rate of AF can range from 25% for cor-
onary artery bypass surgery to 65% for in-valve replace-
ment procedures. Postoperative AF after cardiac surgery
not only doubles the morbidity rate but can increase
mortality as well. Oxidative stress has been implicated in
the pathogenesis of AF [143], and naturally antioxidant
therapy has been suggested as an intervention strategy.
Interestingly, both Vitamin C and Vitamin E (tocoph-

erols), have been investigated and proposed as a suitable
prophylactic agent for addressing AF in numerous stud-
ies [143–146]. In particular, a meta-analysis conducted
by Hemila and Suonsyrja found that of the 15 trials that
used Vitamin C as a prophylactic treatment, AF risk was
reduced by 27% on average, although the study also did
report a huge heterogeneity in the way these 15 studies
were conducted [145].
A recent study investigated if serum Vitamin E (toc-

opherol) level was related to AF recurrence in patients
undergoing electrical cardioversion (EC) [147]. One
hundred and forty-four consecutive patients who under-
went successful EC were prospectively enrolled and
followed for 3 months. It was indicated that low serum
Vitamin E level was an independent predictor for AF
recurrence.
Another study by Rodrigo and colleagues even postu-

lated, based on their data, that Vitamin C therapy, in
combination with omega-3 polyunsaturated fatty acid
(PUFA), could become more efficacious with ageing
when treating AF [144]. Given what is known about the
potent antioxidant activity, compared to Vitamin C and
tocopherols, tocotrienols could potentially further re-
duce the risk in AF, and presents a unique and novel
method for addressing postoperative AF.

To our knowledge, no study examining the effect of
tocotrienols have been conducted to date. Given these
interesting findings with regards to antioxidant therapy,
it is likely that tocotrienols could emerge as a potential
candidate for treating AF based on its antioxidative
profile.

Conclusion
Whilst numerous reviews extolling the benefits of toco-
trienols in cardiovascular diseases have been written, we
chose to focus our review on a more specific subset of
cardiovascular disease, namely ageing-related cardiovas-
cular diseases (Fig. 3). With the advent of modern medi-
cine and the technologies that accompany it, we have
managed to prolong our lifespans and age gracefully.
Whilst prolonging our mortality has been a great

achievement for mankind in medical science, we still
grapple with some of the consequences of ageing, and
cardiovascular-associated morbidities are one of them
[148]. The ageing process is also one that is mired with
increased oxidative stresses and inflammation. Pharma-
cological agents in the form of synthetic entities, exist to
treat these ailments or its symptoms, but there can often
be harsh side effects, which are often made worse in the
elderly. As a result, there is an increasing interest in
turning to compounds that exist naturally in nature and
to harness their potential for clinical interventional
strategies.
Apart from tocotrienols, two other compounds that

are gaining interest in this field is curcumin and resvera-
trol. These two examples fall under the family of poly-
phenols. Significant research has demonstrated the
antioxidant and anti-inflammatory effects of curcumin
[149] and resveratrol [150], in the treatment of cardio-
vascular diseases The polyphenol, curcumin, is the active
component of turmeric, a common Indian spice, derived

Fig. 3 Summary of the potential cardiovascular benefits conferred by tocotrienol consumption in the elderly. Images are adapted from Servier
Medical Art (http://smart.servier.com/)
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from the rhizome of the Curcuma longa plant. Curcu-
min is the most abundant constituent of turmeric;
comprising approximately 2%–5% of the compound
[151]. Curcumin has been particularly noted in its
ability to suppress inflammation by regulating mul-
tiple cytokines such as beta-site APP-cleaving enzyme
(BACE-1), C-reactive protein (CRP) and MMPs, TNFα
and NF-κB [151]. It has additionally been suggested
that curcumin may modulate hypertrophy in the
aging heart by inhibiting the Adenoviral transcription
co-activator, p30 [149]. Interestingly, α-tocopherol
levels were found to be greater with curcumin supple-
mentation indicating the enhancement of endogenous
antioxidant mechanisms. Despite the strong evidence,
curcumin suffers from a poor bioavailability as evi-
denced in clinical trials [152]. Resveratrol has been
extensively researched for its ability to modulate de-
terminants that are linked with increased cardiovascu-
lar risk, in particular by stimulating the activity of
sirtuins, particularly SIRT1, a histone deacetylase.
Resveratrol is also a COX1 inhibitor which translates
to reduced endothelial inflammation [153]. Elevated
levels of resveratrol mimic caloric restriction in older
adults, and the cardiovascular benefits of these are
well documented. However, there is also evidence to
show that in certain circumstances polyphenols such
as resveratrol can bind and form complexes with pro-
teins and minerals, thus impairing its efficacy. Thus,
it is worth considering other potential alternatives
such as tocotrienols.
Tocotrienols have been receiving a great deal of atten-

tion over the last 3 decades, especially with the discovery
of its potential to ameliorate a wide range of disease
conditions, due its superior antioxidant and anti-
inflammatory activity.
It might perhaps be surprising as to how such a po-

tent compound with enormous potential has not been
hugely exploited yet. As mentioned earlier, apart from
being a recent discovery, tocotrienols present a chal-
lenge in its pharmacokinetic and pharmacodynamic
profile. From Fig. 1, one could see why this is the
case. Tocotrienols present 3 C-C double bonds in
their phytyl tail, as opposed to tocopherols, that have
completely saturated C-C bonds. This makes tocotrie-
nols much more hydrophobic or lipophilic, than its
counterpart tocopherol, and subsequently a challenge
to deliver orally. Nevertheless, there has been note-
worthy progress in these areas. Self-emulsifying drug
delivery systems (SEDDS), which employ a clever
composition of isotropic mixtures of oils, surfactants,
solvents and co-solvents/surfactants is one major
strategy employed in devising formulations in order
to improve the oral absorption of highly lipophilic
natural compounds [154–156].

There have also been concerns about the potential side
effect that tocotrienols could present in humans. It has
been shown that tocotrienols exhibit lower IC50 concen-
tration than tocopherols for the same concentration.
However, up to date, there have been no serious adverse
events reported in humans in all the human trials re-
ported so far in the literature or on Clinicaltrials.gov.
One study by Springett et al., performed dose-escalation
studies of up to 3200 mg of pure delta-tocotrienol [157],
which is one of the highest used in the literature to our
knowledge. At this level, 2 patients reported diarrhoea.
However, 3.2 g per day is not a feasible amount to con-
sume daily from a practical point of view.
There have also been some concerns raised in re-

cent times, if a highly potent anti-inflammatory com-
pound might be so potent as to suppress even the
normal immune functions of the body. After all, in-
flammation is a natural response of the human body
to combat infection and other potentially injurious
agents to our system. The possible side effects of
anti-inflammatory agents to the host defence in a re-
cent review in Cell [158]. Most of what was discussed
however involved pharmaceutical drug compounds.
Most, if not all, of these drug compounds are synthe-
sised in the laboratory whereas nutraceutical com-
pounds such as tocotrienols come from nature and
have co-evolved with humans and other organisms
over the course of time [159, 160]. Humans have in
fact been consuming tocopherols and tocotrienols (al-
beit as a mixture with other nutrients and at much
lower levels) from food products such as barley and
rice for thousands of years. Thus, the human body
have had a long time to adapt to tocotrienols and it
is unlikely any major compromise would occur in the
host defence. While no major side effects have been
described with the use of tocotrienols, as mentioned
above, future trials may be warranted to consider the
immune function of individuals consuming tocotrie-
nols as an enriched fraction however. Thus, based on
the evidence available to date, tocotrienols are a safe
and potential candidate in improving cardiovascular
health, especially for the elderly, who can be more
susceptible more aggressive pharmaceutical interven-
tions. In addition to this, there are also other health
benefits related to reducing oxidative stress and
pathological inflammation which plays a role in pro-
viding holistic health benefits for the elderly.
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