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Information on environmental conditions shaping archaeal communities thriving at the seafloor of the central Pacific Ocean is
limited. The present study was conducted to investigate the diversity, composition, and function of both entire and potentially
active archaeal communities within Pacific deep-sea sediments. For this purpose, sediment samples were taken along the 180°

meridian of the central Pacific Ocean. Community composition and diversity were assessed by Illumina tag sequencing targeting
archaeal 16S rRNA genes and transcripts. Archaeal communities were dominated by Candidatus Nitrosopumilus
(Thaumarchaeota) and other members of the Nitrosopumilaceae (Thaumarchaeota), but higher relative abundances of the
Marine Group II (Euryarchaeota) were observed in the active compared to the entire archaeal community. The composition of
the entire and the active archaeal communities was strongly linked to primary production (chlorophyll content), explaining
more than 40% of the variance. Furthermore, we found a strong correlation of the entire archaeal community composition to
latitude and silicic acid content, while the active community was significantly correlated with primary production and ferric
oxide content. We predicted functional profiles from 16S rRNA data to assess archaeal community functions. Latitude was
significantly correlated with functional profiles of the entire community, whereas those of the active community were
significantly correlated with nitrate and chlorophyll content. The results of the present study provide first insights into benthic
archaeal communities in the Pacific Ocean and environmental conditions shaping their diversity, distribution, and function.
Additionally, they might serve as a template for further studies investigating archaea colonizing deep-sea sediments.

1. Introduction

Archaea play a key role in global biogeochemical cycles [1–4].
These microorganisms are widely distributed in various envi-
ronments such as permafrost [5], hot springs [6, 7], hypersa-
line lakes [8], marine seawaters [9], and freshwater as well as

marine (deep-sea) sediments [10–12]. Deep-sea sediments
constitute one of the largest ecosystems on earth, covering
approximately 65% of its surface. This ecosystem is charac-
terized by extreme conditions including high pressure, cold
temperatures, and lack of light. Nonetheless, deep-sea sedi-
ments harbor taxonomically and metabolically diverse
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archaeal communities [11–16]. These communities are gen-
erally dominated by archaeal taxa belonging to the phyla
Thaumarchaeota and Euryarchaeota [11, 13, 16–18].

Given the important ecological role of Archaea, it is fun-
damental to decipher key drivers of diversity, distribution,
and function of archaeal communities in marine deep-sea
sediments. Previous investigations revealed that these com-
munities are affected by a wide range of environmental con-
ditions. These include sediment depth, distance from land,
water depth, site, and latitude [12–15, 19]. Other important
factors driving archaeal communities in marine sediments
are the hydrography of overlying water masses and/or the
quantity and composition of organic matter [11, 13, 20].
For example, Sorensen and Teske [14] investigated the active
archaeal community in deep marine subsurface sediments
from the Peru Margin and observed changes in activity and
community composition over short distances in geochemi-
cally distinct zones. In another study on prokaryotic commu-
nities in deep-sea sediments collected at latitudes of 34°N to
79°N, archaeal abundances significantly increased from mid-
dle to high latitudes [13].

Despite the increasing number of studies, our knowledge
of archaeal communities in deep-sea sediments of the cen-
tral Pacific Ocean is still very limited. In this study, we
assessed entire and potentially active archaeal communities
at the seafloor of the Pacific Ocean. Sediments were sampled
in the central Pacific during RV Sonne expedition SO248
along the 180° meridian. Sediment samples (0-1 cm below
seafloor, cmbsf) were collected at nine sites from 27°S to
59°N exhibiting different depths of 3,258 to 5,909 meters
below sea level (mbsl).

Entire and potentially active archaeal communities were
assessed by Illumina tag sequencing of 16S rRNA amplicons
generated from 16S rRNA genes and transcripts amplified by
PCR and RT-PCR, respectively. In addition, functional pro-
files (artificial metagenomes) were predicted using Tax4Fun2
[21] to investigate functional changes of archaeal communi-
ties. The transpacific survey is of fundamental interest as it
offers the opportunity to assess archaeal diversity, commu-
nity composition, and its function in deep-sea sediments
exhibiting a wide range of environmental conditions.

2. Material and Methods

2.1. Origin and Sampling of Sediments. Sediment samples
were collected as described previously [22] in May 2016 dur-
ingRVSonne expedition SO248 along a transect ranging from
Auckland, New Zealand, to Dutch Harbor, Alaska, USA
(Figure 1, Supplementary Table S1). Briefly, sediment cores
were taken using a multicorer (Octopus, Germany) at nine
sites, exhibiting water depths between 3,258 and 5,909mbsl.
Sediment samples were collected using sterile, cutoff
syringes and rhizons for porewater collection (Rhizosphere,
Netherlands; [23]). Samples were immediately frozen and
stored at -80°C for subsequent molecular analysis.

2.2. Measurement of Chlorophyll Concentrations and
Geochemical Analyses of Bulk Sediments and Pore Waters.
Chlorophyll concentrations were measured using a

CTD-rosette equipped with a fluorometer (FluoroWetla-
bECO_AFL_FL, SN: FLNTURTD-4111). Data were recorded
and stored using the standard software Seasave V 7.23.2 and
processed using ManageCTD. The sum of chlorophyll con-
centrations measured in the top 500m of the water column
was used as a measure for the primary productivity in
the water column at the different sampling sites. Raw data
are available at PANGAEA: https://doi.pangaea.de/10.1594/
PANGAEA.864673 [24].

The geochemical analysis of pore water and bulk sedi-
ments for all sites was described previously [22]. In brief, sed-
iments were freeze-dried (Beta 1-8 LDplus, Christ, Germany)
and homogenized using a Mixer Mill MM 400 (3Hz, 50min;
Retsch, Germany). Total carbon (TC) and sulfur (S) content
were measured with an elemental analyzer (Eltra CS-800,
Germany) with a precision and accuracy of <3% (1σ). Inor-
ganic carbon (IC) was analyzed using an acidification module
(Eltra CS-580). The content of total organic carbon (TOC)
was calculated bydifference (TC – IC).Major and trace element
analysis in sedimentswere performed bywavelength-dispersive
X-ray fluorescence (XRF; Panalytical AXIOS plus). Nutrient
concentrations of ammonium (NH4), nitrate (NO3), phosphate
(PO4), and silicic acid in porewaters were determined photo-
metrically using the Multiskan GO Microplate Spectropho-
tometer (Thermo Fisher Scientific, USA). The method for
measuring ammoniumwas modified after Benesch andMan-
gelsdorf [25]. Nitrate was quantified with the method
described by Schnetger and Lehners [26]. Concentrations of
phosphate and silicic acid were determined following the
protocol of Grasshoff et al. [27]. All measured environmental
properties are provided in Supplementary Table S1.

2.3. Nucleic Acid Extraction and Sequencing. DNA extraction
from sediment samples was performed using the DNeasy
PowerSoil Kit (Qiagen, Germany) according to the manufac-
turer’s instructions. RNA was extracted using the AllPrep
DNA/RNA Mini Kit (Qiagen) following the manufacturer’s
protocol with some modifications as described previously
[22]. The concentration and purity of DNA and RNA
extracts were determined spectrophotometrically (Nano-
Drop 2000c; Thermo Fisher Scientific, USA).

Entire and potentially active archaeal communities were
assessed by Illumina tag sequencing of 16S rRNA amplicons
generated from 16S rRNA genes and transcripts amplified by
PCR and RT-PCR, respectively. For RNA analysis, residual
DNA was removed from extracted RNA by Turbo DNAse
treatment, and the absence of DNA was confirmed by PCR
using universal primers as described by Schneider et al.
[28]. Subsequently, cDNA was generated from DNA-free
RNA using the SuperScript III reverse transcriptase (Thermo
Fisher Scientific) according toWemheuer et al. [29] using the
reverse primer without MiSeq adapter (5′-CCC GCC AAT
TYC TTT AAG-3′; this study). Extracted DNA was treated
with RNAse A as described by Schneider et al. [28] and
purified using the GeneRead Size Selection kit (Qiagen)
according to the manufacturer’s instructions.

Archaeal 16S rRNA genes were amplified using the
forward primer Arch514Fa (5′-GGT GBC AGC CGC CGC
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GGT AA-3′; [30]) and the reverse primer (5′-CCC GCC
AAT TYC TTT AAG-3′; this study) with Illumina Nextera
adapters attached for sequencing. Forward and reverse
primers used for amplification were generated as follows:
the Shannon index of diversity was calculated in a sliding
window of 20 bp along all archaeal sequences in the SILVA
database (SILVA 128 SSU Ref NR 99; [31]) to identify
regions with low variability. The primer sequences were
deduced from highly conserved regions and tested in silico
using TestPrime (https://www.arb-silva.de/search/testprime/)
and the SILVA 132 SSU Ref NR 99 [31] as reference database.
The primer pair showed a 93.3% coverage of all archaea com-
bined with a 99.9% specificity with 1 mismatch. It should be
noted that the forward primer has been described previously
[32] and that the primer pair will additionally amplify bacte-
rial 16S rRNA gene sequences especially in the active fraction
despite its high specificity for archaea. The PCR reaction
(50μl) contained 10μl of fivefold Phusion GC buffer,
200μM of each of the four deoxynucleoside triphosphates,
1.5mM MgCl2, 0.4μM of each primer, 2.5μl DMSO, 1U of
Phusion high-fidelity hot start DNA polymerase (Thermo
Fisher Scientific), and approximately 25 ng of cDNA as tem-
plate. The following thermal cycling scheme was used for
amplification: initial denaturation at 98°C for 10 s and 10
cycles of annealing at 63°C for 30 s decremented by 1°C in
each cycle, followed by extension at 72°C for 45 s, 20 cycles
of denaturation at 98°C for 10 s, and annealing at 53°C for
30 s, followed by extension at 72°C for 15 s. The final exten-
sion was carried out at 72°C for 2min. Each sample was sub-
jected to three independent PCR reactions. Obtained PCR
products were quantified by gel electrophoresis with the

GeneRuler™ 1 kb DNA Ladder (Thermo Fisher Scientific)
as standard, pooled in equal amount, and purified using the
NucleoMag NGS Clean-up and Size Select kit (Macherey-
Nagel, Germany). Obtained PCR products were quantified
with a NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific) and barcoded using the Nextera XT-Index
kit (Illumina, USA) and the KAPA HiFi HotStart polymerase
(Kapa Biosystems, USA). Sequencing was performed at the
Göttingen Genomics Laboratory on an Illumina MiSeq sys-
tem using the MiSeq reagent kit v3 (2 × 300 bp; Illumina).

2.4. Processing and Analysis of Illumina Datasets. Generated
datasets were processed as follows: Trimmomatic version
0.36 [33] was initially used to truncate low-quality reads if
quality dropped below 13 in a sliding window of 4 bp.
Datasets were subsequently processed with USEARCH ver-
sion 10.240 [34]. In brief, paired-end reads were merged
and quality-filtered. Filtering included the removal of
low-quality reads (maximum number of expected errors > 1
and more than 1 ambiguous base) and those shorter than
350 bp or longer than 450 bp. Processed sequences of all sam-
ples were concatenated into one file, dereplicated, and
obtained unique sequences were denoised and clustered into
zero-radius operational taxonomic units (zOTUs) with the
unoise3 algorithm. A de novo chimera removal was included
in the unoise step. Additionally, the unoise3 algorithm
removed all unique sequences which appeared less than 8
times in the entire data set. Afterwards, remaining chimeric
sequences were removed using the uchime2 algorithm in
high confidence mode with the most recent Silva database
(SILVA SSU Ref 132 NR; [31]) as reference dataset.
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Figure 1: Map of the sampling sites in the Pacific Ocean. Samples were taken along the 180° meridian from 27°S to 59°N. For further
information on sampling site characteristics, please see Supplementary Table S1.
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Afterwards, zOTUs were taxonomically classified by align-
ment employing BLASTn against the SILVA database [31]
with an e value cutoff of 1E − 20. All nonarchaeal zOTUs
were removed based on their taxonomic classification in
the Silva database. Subsequently, processed sequences were
mapped onto zOTU sequences to calculate the distribution
and abundance of each zOTU in every sample using the
otutab command with maxrejects and maxaccepts options
disabled. Functional profiles were predicted using Tax4-
Fun2 [21] in reference mode (“Ref100NR”) with copy num-
ber correction enabled. To generate a phylogenetic tree,
zOTUs were aligned with muscle (version 3.8.31 [35]),
and the tree was calculated employing RaxML (version
8.2.10 [36]) using the GTRGAMMA model and a random
seed of 1234. Sequence numbers during the main steps of
processing are provided for each sample in Supplementary
Table S2. The curated OTU table and the predicted func-
tional profiles are provided as Tables S3 and S4, respectively.

2.5. Statistical Data Analysis. Statistical analyses were per-
formed in R version 3.5.1 [37]. Differences were considered
statistically significant with p ≤ 0 05. Entire and active
archaeal communities were analyzed separately because
different kits were used for nucleic acid extraction. Con-
centrations of ammonia and phosphate were below quanti-
fication limit at most sites of the transect and were not
considered in the statistical analysis. Correlations between
functional predictions and environmental conditions were
tested by Spearman rank correlation using the cor.test
function. Four samples in the RNA dataset (stations 2, 4,
10, and 12) were removed prior to statistical analysis due
to low sequence numbers.

Alpha diversity indices (richness, Shannon index of
diversity (SD), Faith’s phylogenetic diversity (PD), and
Michaelis-Menten Fit) were calculated using the R [37] pack-
ages vegan 2.4.-4 [38], picante version 1.7 [39], and drc ver-
sion 3.0-1 [40]. OTU tables were rarefied to 9,058 (DNA
dataset) or 4,941 (RNA dataset) sequences per sample prior
alpha diversity analysis using the rrarefy function in vegan
[38]. Shannon diversity was calculated using the diversity
function in vegan [38]. Richness and Faith’s PD were calcu-
lated using the pd function in picante [39]. Sample coverage
was estimated using the Michaelis-Menten Fit calculated in
R [37]. For this purpose, richness and rarefaction curves were
calculated using the rarecurve and specaccum functions of the
vegan package [38], respectively. The Michaelis-Menten Fit
was subsequently calculated from generated rarefaction
curves using the MM2 model within the drc package [40].
All alpha diversity indices were calculated 100 times. The
OTU table was rarefied in each iteration. The average of all
iterations was used for further statistical analysis. Archaeal
richness, diversity, and sample-wise coverage are provided
in Supplementary Table S1.

Potential differences in community composition and
function were investigated by permutational multivariate
analysis of variance (PERMANOVA) using the adonis
function within the vegan package [38]. Four different dis-
tance measures, i.e., unweighted and weighted Bray-Curtis
(binary option in the vegdist function set to false and true,

respectively) as well as unweighted and weighted UniFrac,
were used. UniFrac values were calculated in R using the
GUniFrac package [41]. In weighted approaches, low abun-
dant members are barely considered, while unweighted dis-
similarity measures provide insights into changes of the
rare community. Additionally, incorporating taxonomy
(UniFrac) provides insights into phylogenetic changes.

To limit the effect of the normalizing procedure, OTU
tables were rarefied 999 times and the overall p value was
calculated based on pseudo F statistics (https://github.
com/vegandevs/vegan/issues/120) with epsilon correction
(https://github.com/vegandevs/vegan/commit/8afee75a8634
73c49b5b7468c3cb9acf3c9e28c9). The R code is provided
as Supplementary Data S1. For functional differences,
Bray-Curtis distances were calculated between the samples
using the vegdist function of the vegan package [38].

3. Results and Discussion

3.1. Geochemical Characteristics of the Sediment Samples. The
characteristics of the sampling sites were described in detail
by Pohlner et al. [22]. Generally, most parameters showed
an increasing trend toward the north with highest concentra-
tions in the Pacific subarctic region and the Bering Sea. Chlo-
rophyll concentrations (summed over the upper 500m of the
water column) ranged from 41.9mg/m3 to 122.9mg/m3, with
higher concentrations at the northernmost sites. This indi-
cates a higher primary production in the water column at
these stations. The lowest ferric oxide andmanganese dioxide
concentrations were measured at stations 10 and 12, respec-
tively, whereas the highest concentrations were determined
at station 2. The TOC content as a general indicator for
nutrient availability fluctuated around 0.6% of the sediment
dry weight. The highest TOC content of 1.3% was found in
the Bering Sea at 59°N. The TOC values observed here are
comparable to those of previous studies on marine sedi-
ments [11, 42, 43].

Consistent with previous work [44–46], several environ-
mental properties were significantly correlated with each
other (Figure 2). For example, ferric oxide concentration sig-
nificantly increased with water depth. Moreover, ferric oxide
and manganese dioxide concentrations as well as TOC
content and manganese dioxide were significantly corre-
lated. In contrast to our observation, no significant correla-
tions between TOC and manganese or iron were detected
in a study on shallow marine sediments from Jinzhou Bay,
China [47]. In another study on anaerobic mangrove sedi-
ments, positive correlations among TOC and iron and neg-
ative correlations of manganese with TOC were observed
[48]. Montalvo et al. [46] found a high relationship between
iron and manganese in sediments of the deltaic lagoon-river
system of the Palizada River (Mexico), which is supported
by our results.

3.2.ArchaealAlphaDiversity IsAffectedbyFewEnvironmental
Factors. Entire and potentially active archaeal communities
in deep-sea sediment samples were assessed by Illumina
(MiSeq) sequencing targeting archaeal 16S rRNA genes and
transcripts, respectively. After removal of low-quality reads,
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PCR artefacts (chimeras), and contaminations, a total of
164,523 high-quality reads were obtained. Sequence numbers
per sample varied between 9,058 (station 2) and 16,061 (sta-
tion 19) for the entire community and 50 (station 2) and
18,069 (station 16) for the active community, respectively
(Supplementary Table S3). Four RNA samples (stations 2, 4,
10, and 12) were not included in the statistical analysis due
to low sequence numbers. Obtained sequences were grouped
into 1,469 zOTUs. Species accumulation curves indicated
that 89% and 72% of all zOTUs were recovered from the
entire and active archaeal community (Figures 3(a) and
3(b)). Rarefaction analysis and sample-wise coverage based
on Michaelis-Menten Fit confirmed that the majority of
the entire and active archaeal communities (88.1% and
81.8%, respectively) were recovered by the surveying effort
(Figures 3(c) and 3(d), Supplementary Table S1).

In order to study changes in archaeal richness and diver-
sity along the investigated transect, we calculated richness,
diversity, and phylogenetic diversity. At DNA level, archaeal
richness and diversity ranged from 497 to 939 and from 5.1
to 6.1, respectively (Supplementary Table S1). At RNA level,
archaeal richness and diversity varied between 432 and 684
and between 5.1 and 5.6, respectively. The phylogenetic
diversity ranged from 389.1 to 523.9 (DNA level) and from
401.9 to 525.2 (RNA level). Recently, Zhang et al. [18] inves-
tigated archaeal communities from two deep-sea sediments
of inactive hydrothermal vents in the Southwest India Ridge
and observed differences in archaeal diversity between these
samples. The authors concluded that environmental param-
eters have a significant impact on archaeal communities.

Consequently, we tested for significant correlations
between alpha diversity measures and environmental condi-
tions (Figure 4). The diversity and the phylogenetic diversity

of the entire archaeal community were negatively correlated
with latitude and silicic acid. These results are in line with
a recent study on ammonia-oxidizing archaea in sediments
of the eastern China marginal seas [49]. Here, the diversity
of these archaea significantly decreased with latitude and
silicic acid. In contrast to our study, water depth was the
main driver of the archaeal phylogenetic diversity in surface
sediments from the northern part of the South China Sea
[50]. In another study on archaeal diversity in deep-sea sed-
iments from 11 sites, archaeal richness was significantly
affected by temperature and latitude, but not by water depth
[51]. However, the authors of the first study and we ana-
lyzed the entire archaeal community, whereas Cao et al.
[50] investigated only ammonia-oxidizing archaea, which
might explain the contrasting results. In contrast to our
results observed for the entire community, we did not find
any significant correlations for alpha diversity measures of
the active archaeal community, which might be related to
the low sample number.

3.3. Archaeal Taxa Exhibit a Distinct Biogeographical
Distribution. Thaumarchaeota accounted for 99.63% of the
entire archaeal community (Figure 5). Other minor abun-
dant community members were related to Nanoarchaeaeota
(0.31%), Euryarchaeota (0.05%), and Asgardaeota (0.01%).
The potentially active archaeal community was dominated
by the Thaumarchaeota (86.48%), but higher abundances
of Euryarchaeota (13.23%) were detected compared to the
entire archaeal community. Other rare archaeal phyla in
the active community were Asgardaeota (0.20%) and
Nanoarchaeaeota (0.09%). The dominance of the two phyla
Thaumarchaeota and Euryarchaeota is consistent with pre-
vious studies on archaeal communities in marine deep-sea
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sediments, although divergences of the relative abundances
of these phyla were detected with respect to sampling sites
[11, 13, 18].

At order level, members of the Nitrosopumilales
accounted for 98.59% (DNA level) and 81.91% (RNA level)
of all sequences observed in this study. Within this order,
archaea belonging to the Nitrosopumilaceae (DNA level
43.98%; RNA level 21.63%) and Candidatus Nitrosopumilus
(DNA level 54.59%; RNA level 59.11%) were predominant.
High relative abundances of Nitrosopumilus were also
observed in a recent study on bacterial and archaeal commu-
nities in the Mediterranean Sea [52]. Here, between 62% and
76% of the archaeal sequences were affiliated to Nitrosopumi-
lus. In a recent study on ammonia-oxidizing archaea and
bacteria, the Nitrosopumilus lineage was predominant in
the archaeal community, but the abundance of this lineage
varied significantly between the sites investigated [49]. In
contrast, lower abundances of Nitrosopumilus were observed
in two studies on archaeal communities in pan-Arctic Ocean

sediments [17] and in deep-sea sediments of inactive hydro-
thermal vents in the Southwest India Ridge [18]. The high
abundance of ammonia-oxidizing archaea (i.e., Nitrosopumi-
lus) in our study might serve as an indicator for rather oligo-
trophic conditions of the investigated sediment samples.

Interestingly, archaea of the order Nitrososphaerales were
only observed in the active community (Figure 5, Supple-
mentary Table S3). In addition, members of the Marine
Group II were found in higher abundances in the active
(13.23%) compared to the entire community (0.05%).
Previous studies showed that archaea of the Marine Group
II were widely distributed in global oceans [53–55], but
their abundances can vary greatly over time [56]. Recently,
Liu et al. [55] observed the dominance of Marine Group II
in planktonic archaea throughout the water column of the
South China Sea. In contrast, Marine Group II members
were almost absent in a study on archaeal communities in
the German Bight [9]. Archaea of the Marine Group II have
unique patterns of organic carbon degradation (as reviewed
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Figure 3: Species accumulation and rarefaction curves calculated for the entire (a, c) and potentially active (b, d) archaeal community. Entire
and active archaeal communities are colored in blue and red, respectively.
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by Zhang et al. [57]). However, our understanding of
ecological and biogeochemical functions of these archaea is
still very limited, as there is no pure culture of Marine Group
II available [55–57].

The abundances of the archaeal groups differed between
the stations. For example, higher abundances of Candidatus
Nitrosopumilus in the entire archaeal community were
recorded at stations 6, 14, 16, and 19. The Marine Benthic
Group A had higher abundances at stations 2 and 8 but
was almost missing at station 19, whereas higher abundances

of the Nitrosopumilaceae were observed at stations 2, 4, 8,
and 10. These results might be related to observed differences
in environmental conditions and/or the overlying water
column, as these factors can influence the distribution and
community structure of archaeal communities in marine
sediments [11, 13, 20]. For example, Danovaro et al. [13]
showed that the abundances of the two dominant groups
MG-I Thaumarchaeota and MG-II Euryarchaeota increased
from middle to high latitudes. This was more pronounced
for the MG-I Thaumarchaeota. They further observed that
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the two groups displayed a different sensitivity toward
changes in the main environmental drivers. The authors con-
cluded that this might favour their coexistence by reducing
niche overlap and competition for available resources, which
might also play a role in our study.

3.4. Primary Production in the Water Column Is the Main
Driver of Sediment Archaeal Community Composition. The
composition of the active archaeal community was only
affected by ferric oxide and chlorophyll content and only
when using weighted and/or unweighted Bray-Curtis dissim-
ilarities (Figure 6). We detected no effect of manganese oxide
on both the active and the entire archaeal community
composition. These results are only partly in line with the
findings of Jorgensen et al. [11] who showed that the content
of iron and manganese within arctic sediments was strongly
related to microbial community structure. In contrast,
Algora et al. [58] observed that manganese but not ferric
oxide concentrations were significantly correlated with struc-
tural shifts of the archaeal community in marine sediments.
Recently, Wang et al. [59] investigated the diversity and
spatial distribution of prokaryotic communities in surface
sediments of the Arctic Ocean and showed that archaeal
community composition was mainly determined by metal-
lic ions. According to Durbin and Teske [42], organic-lean
marine sediments in deep marine basins and oligotrophic
open ocean locations are inhabited by distinct lineages of
archaea. The authors suggested that different combina-
tions of electron donor and acceptor concentrations along
the organic-rich/organic-lean spectrum result in distinct
archaeal communities.

In the present study, several measured environmental
properties such as latitude or chlorophyll content as proxy
for primary production affected the composition of the entire
archaeal community. This is partly in accordance with previ-
ous studies on sediment archaea [49, 50, 59, 60]. For example,
Wang et al. [59] showed that the archaeal community com-
position in surface sediments of the Arctic Ocean was influ-
enced by latitude, water depth, and TN. In a previous study
on archaeal communities in sediments of the North Chinese
Marginal Seas, these communities were significantly affected
by temperature, dissolved oxygen of bottom water, and chlo-
rophyll a in sediments [60]. A similar significant impact of
dissolved oxygen of bottom water on ammonia-oxidizing
archaeal community composition was observed by Liu et al.
[49]. In another study on ammonia-oxidizing archaeal com-
munities in surface sediments of the Western Pacific, these
communities were significantly affected by ammonium,
water depth, and nitrite [50]. We postulate that the contrast-
ing results in our and the abovementioned studies are related
to differences in sampling sites and sampling time, as these
factors can affect sediment archaeal communities [49, 50,
56]. Another possible explanation is that most previous stud-
ies have focused on ammonia-oxidizing archaea only [12, 49,
50], whereas we assessed the entire archaeal community.

We further recorded differences between the four dis-
similarity indices used for beta-diversity analysis. TOC
and nitrate affected the entire archaeal community compo-
sition, but only when applying unweighted Bray-Curtis or

unweighted UniFrac dissimilarities, respectively. A signifi-
cant influence of TOC on the ammonia-oxidizing archaeal
community composition was also observed in a study on
ammonia-oxidizing archaea and bacteria in sediments of
the Yellow River estuary [61]. Partly in line with our study,
water depth, ammonium, and nitrate concentration affected
the composition of ammonia-oxidizing archaeal communi-
ties in deep-sea sediments of the Eastern Indian Ocean
[12]. Overall, the results of the above mentioned research
and our study indicate that multiple environmental proper-
ties are important drivers of archaeal communities. However,
our observations highlight the importance of using different
dissimilarity indices to gain better insights into environmen-
tal drivers of archaeal communities in deep-sea sediments. As
more significant correlations were observed when weighted
UniFrac dissimilarities were used, we suggest that the taxo-
nomic relationship of the zOTUs is a important driver of
community structuring.

3.5. Archaeal Community Function Is Strongly Correlated to
Primary Production. To investigate potential changes in
community function along the investigated transect, func-
tional profiles for the archaeal community were predicted
from 16S rRNA data using Tax4Fun2 [21]. Approximately
38% of all zOTUs, representing 45% of all the sequences
obtained, were used in the prediction. This indicates that a
large proportion of the archaeal community in Pacific
deep-sea sediments is still completely unknown. We found
a significant correlation between latitude and the functional
profile predicted for the entire community (Figure 7). In
contrast, nitrate and chlorophyll contents were significantly
correlated to function of the potentially active community.
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Primary production is believed to play an important role in
controlling the metabolism and standing stocks of benthic
assemblages in the deep sea due to the magnitude of organic
carbon export from the surface waters to the deep-sea floor
through sinking particles [13]. We further hypothesize that
our observations can be explained by the high abundance
of Candidatus Nitrosopumilus in the archaeal community.
A previous study showed thatN. maritimus takes part in both
nitrogen and phosphorus metabolism [62]. Two other stud-
ies on N. maritimus revealed a wide range of cellular, geno-
mic, and physiological features that reflect an oligophilic
lifestyle [63, 64]. The results of these studies further suggest
that N. maritimus play an important role in the biogeochem-
ical cycles of nitrogen and carbon.

3.6. Study Limitations and Future Studies. Several technical
and biological limitations of the present study must be con-
sidered. First, the number of samples is relatively low com-
pared to other studies (e.g., [11, 13]; but see [12, 15, 50, 59,
60]). However, higher sample numbers are usually the result
of several independent sampling campaigns, whereas all sam-
ples investigated in the present study were taken during one
cruise within one month. Secondly, RNA is less stable than
DNA and, hence, its rapid degradation might have affected
the results of this study. The sampling procedure used in this
study maintains the structure of the sediment during collec-
tion and thus minimizes any perturbation. In addition, sedi-
ment samples were immediately flash-frozen after sampling
and kept frozen at -80°C or on dry ice until RNA extraction.

Another caveat is the low sequencing depth for the active
archaeal community. An enhanced sequence coverage would
permit more in-depth and solid analyses. Nonetheless, the

low depth observed for the active community is most likely
caused by a low contribution of Archaea to the active pro-
karyotic community as the four samples displaying low
sequence numbers contained less than 2% archaeal and more
than 98% bacterial sequences. In addition, this study high-
lights the importance of examining both entire and poten-
tially active archaeal communities, as the environmental
properties affected the composition of the entire and the
active archaeal community in a different manner. To date,
most previous studies have focused on assessing the archaeal
community at DNA level [51, 59, 60] and/or
ammonia-oxidizing archaea only [12, 49, 50]. Consequently,
future studies should investigate both entire and active
archaeal communities to obtain a more holistic picture of
archaeal communities in deep-sea sediments.

Finally, it must be noted that functional predictions can-
not replace metagenomic or metatranscriptomic sequencing.
The high number of OTUs unused in the Tax4Fun2 predic-
tion, likely caused by missing reference genomes, highlights
the importance of these approaches. However, the results
of our study can serve as template for further metagenomic
or metatranscriptomic studies on archaeal communities in
deep-sea sediments.

4. Conclusion

In the present study, we assessed both entire and active
archaeal communities along the 180° meridian of the central
Pacific Ocean. The archaeal taxa differed in their relative
abundances between the sites. We further observed that the
composition of the archaeal community was strongly corre-
lated to the primary production in the water column. Only
latitude was significantly correlated with functional profiles
predicted at the entire community level, whereas primary
production and nitrate content were significantly correlated
to function of the potentially active community. Community
composition and predicted functional profiles were driven by
different environmental conditions. This finding indicates
that changes in archaeal community composition are not
necessarily linked to changes in overall community function.
Our results further suggest that benthic archaea in the
Pacific Ocean are important contributors to the carbon
and nitrogen cycle. Nonetheless, further studies are needed
to address their ecological role and ecosystem function in
the investigated sediments.
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