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ABSTRACT

Unravelling the regulatory programs from single-
cell multi-omics data has long been one of the ma-
jor challenges in genomics, especially in the cur-
rent emerging single-cell field. Currently there is
a huge gap between fast-growing single-cell multi-
omics data and effective methods for the integra-
tive analysis of these inherent sparse and heteroge-
neous data. In this study, we have developed a novel
method, Single-cell Multi-omics Gene co-Regulatory
algorithm (SMGR), to detect coherent functional reg-
ulatory signals and target genes from the joint single-
cell RNA-sequencing (scRNA-seq) and single-cell as-
say for transposase-accessible chromatin using se-
quencing (scATAC-seq) data obtained from differ-
ent samples. Given that scRNA-seq and scATAC-
seq data can be captured by zero-inflated Negative
Binomial distribution, we utilize a generalized lin-
ear regression model to identify the latent represen-
tation of consistently expressed genes and peaks,
thus enables the identification of co-regulatory pro-
grams and the elucidation of regulating mecha-
nisms. Results from both simulation and experimen-
tal data demonstrate that SMGR outperforms the ex-
isting methods with considerably improved accu-
racy. To illustrate the biological insights of SMGR,
we apply SMGR to mixed-phenotype acute leukemia
(MPAL) and identify the MPAL-specific regulatory
program with significant peak-gene links, which
greatly enhance our understanding of the regulatory

mechanisms and potential targets of this complex
tumor.

INTRODUCTION

Single-cell multi-omics technologies are emerging for mea-
suring multiple molecule types at individual cell such as
scNMT-seq (1) and sci-ATAC-seq (2). These technologi-
cal developments allow profiling multiple molecular lay-
ers at single-cell resolution and assaying cells from mul-
tiple samples under different conditions. Single-cell multi-
omics technologies are increasingly used to provide deep
insights into the complex cellular ecosystem and biologi-
cal processes. Integrative analysis of single-cell multi-omics
data have offered many exciting biological opportunities
and revealed the molecular determinants of human dis-
eases (3–5). For example, Stuart et al. (6) revealed the pu-
tative mechanisms of cell-type-specific epigenomic regula-
tion within their defined mouse cortical cell types. Nativio
et al. (7) identified molecular pathways and epigenetic al-
terations underlying late-onset Alzheimer’s disease, by in-
tegrating transcriptomic and epigenomic profiling of hu-
man brains. Bian et al. (8) reconstructed genetic lineages
and traced the epigenomic and transcriptomic dynamics
through single-cell multi-omics. Granja et al. (9) identi-
fied both patient-shared malignant signatures and patient-
specific regulatory features such as RUNX1-linked regu-
latory elements, via the integrative analysis of single-cell
transcriptomic and chromatin-accessibility profiles in acute
leukemia. These studies highlight the significance of single-
cell multi-omics integration in accelerating the investiga-
tions of cell-type definition, gene regulation and illuminat-
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ing the causes and underlying mechanisms of human dis-
eases especially cancers.

The fast advance of single-cell technologies leads to
the rapid growth of single-cell multi-omics data. Although
there are approaches such as LIGER (10), Seurat v3 (11,12),
Conos (13), MNN (14), etc. that analyze single-cell multi-
omics data at the cell-level, including batch effects removal
and cell integration, none of those can be directly applied
to reveal the feature-level characteristics (e.g. genes and
peaks). Therefore, there is a clear need to develop a tai-
lored and effective method for analyzing single-cell multi-
omics data from the feature-based angle. A reliable and ac-
curate feature-based method needs to overcome the follow-
ing challenges: (i) the unique technical issues of single-cell
data (e.g. dropouts and dispersion) (15–17). For example,
single-cell RNA-seq (scRNA-seq) is well acknowledged for
sparsity with abundant zeros, meanwhile, single-cell ATAC-
seq (scATAC-seq) is also affected by dropout events due
to the loss of DNA material during library preparation,
i.e. open chromatin regions with no reads due to loss of
DNA material during the scATAC-seq protocol. (ii) Batch
effects arisen from different operators, experimental proto-
cols (18), and technical variation (19–21), especially that
current scRNA-seq data and scATAC-seq data are often
generated by different labs.

To address the above challenges, we propose our novel
Single-cell Multi-omics Gene co-Regulatory (SMGR)
method, for integrative analysis of scRNA-seq and
scATAC-seq data. SMGR explicitly disentangles and
detects coherent scRNA-seq genes and scATAC-seq peaks,
i.e. co-regulatory programs, to gain insights into the
transcriptional regulators and targeted genes and further
reveal cell-type specific gene regulatory networks. SMGR
is validated on both simulation data and experimental data
for its capability and accuracy in detecting co-regulatory
programs. With the accurate and reliable integrative anal-
ysis of single-cell multi-omics data, our SMGR method
provides comprehensive insights into cell type-specific gene
regulation, thus uncovers the intrinsic molecular under-
pinnings and enhances the understanding of underlying
mechanisms.

MATERIALS AND METHODS

In this work, the co-regulatory program is defined as a set
of genes sharing both similar expression profiles and sim-
ilar chromatin accessibility profiles. That is, for the genes
within one co-regulatory program, not only is the chromatin
accessibility of those gene regions similar across the cells,
but also is the expression pattern similar across the cells.
Therefore, genes within a co-regulatory program are more
likely to be co- regulated, which are coincide with regulatory
hubs controlling their expression. Moreover, in the identi-
fied co-regulatory program, the variability of chromatin ac-
cessibility will exhibit good concordance with the variation
in gene expression levels. This coherence of joint profiles in-
dicates a higher probability that these genes are simultane-
ously regulated/co-regulated than grouping on accessibility
or gene expression alone, showing the advantage of integra-
tive analysis across single-cell multi-omics data.

To reveal the co-regulatory programs, we propose a multi-
joint statistical method to explicitly identify consistent pat-
terns across scRNA-seq and scATAC-seq, while removing
the effects of different sources of variability. In order to use
enough values of scATAC-seq data, we quantify scATAC-
seq peak counts by summing all counts within the gene body
(22). Thus, the scATAC-seq data is converted to gene-based
activity matrix, with the mapped gene and peaks being eas-
ily retrieved. As multiple studies (15–17) show that scRNA-
seq data gene expression and scATAC-seq peaks can be suf-
ficiently captured by Negative Binomial (NB) distribution
or Zero-Inflated NB (ZINB) distribution, we choose either
NB or ZINB model to formulate scRNA-seq and scATAC-
seq data in our multi-joint statistical SMGR method. An
empirical test can help users decide and choose the appro-
priate model for their respective data.

The SMGR model

Specifically, let xi jk denotes the gene i ’s expression (xi j1 ) in
cell j1, or gene i ’s activities (xi j2 ) quantified from peaks
in cell j2, from the single-cell multi-omics data (k = 1
refers to scRNA-seq, k = 2 refers to scATAC-seq; i ∈
{1, . . . , m}; jk ∈ {1, . . . , nk}). When considering the nega-
tive binomial distribution, without loss of generality, we as-
sume that the measured counts xi jk for cell jk in each of the
single-cell multi-omics dataset k follows the NB distribution
NB(u, ϕ), which has the probability function as:
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As u and ϕ are different regarding different genes
(i ∈ {1, . . . , m}) across single-cell data, we have:
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Here, uik represents the estimation for the intrinsic sig-
nals across cells, ϕik is the dispersion parameter, and σ 2

ik =
uik + uik

2

ϕik
represents the square deviation of the observed

values across cells.
When considering the Zero-Inflated NB distribution

ZI NB(ρ, u, ϕ) distribution, which is a mixture distribution
assigning ρik to extra zeros and (1 − ρik) to a negative bino-
mial distribution, where 0 ≤ ρik ≤ 1. As ρik, uik and ϕik are
different regarding different genes (i ∈ {1, . . . , m}) across
single-cell multi-omics data, we have:

f
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Let yi = (yi1, . . . , yiz)′ be a vector consisting of z un-
observed latent representation that are shared by the



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3 3

scRNA-seq and scATAC-seq datasets. As Generalized Lin-
ear Model (GLM) has been frequently used (23–27) in sin-
gle cell data to alleviate extreme value effects, we then use
GLM model formulated as:

log u (xi jk |yi ) = β jk + γ jk yi ,

to distinguish the intrinsic biological signals yi from the ex-
trinsic variability (β jk and γ jk) including the technical vari-
ances at the cell-level ( jk) and batch effects across differ-
ent omics layers (k). In this way, u(xi jk |yi ) is the conditional
mean of xi jk given yi , which is composed of the intrinsic bi-
ological signals of genes and peaks captured by latent rep-
resentation yi without confounding variabilities across cells
and molecular layers. Technical variances and batch effects
are captured by offsets β jk and scale factors γ jk .

In this way, the original single-cell multi-omics data is
projected as a z-dimensional latent representation Y by this
generalized linear model, with technical biases and batch
effects removed during the projection. In this latent rep-
resentation, the biological levels of scRNA-seq genes and
scATAC-seq peaks are represented as yi , the coherent pat-
terns of genes and peaks can be identified by clustering sim-
ilar yi in the latent representation.

Optimization of SMGR

To estimate the parameters of NB or ZINB, we use the max-
imum likelihood approach. As is assumed above that xi jk
follows the NB distribution or ZINB distribution, the con-
ditional log-likelihood function of xi jk of NB distribution
can be written as

log f (xi jk |yi , β jk , γ jk , ϕik) = log
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For zero-inflated negative binomial distribution
ZI NB(rik, uik, ϕik), in which uik = exp(β jk + γ jk yi ),
we have:
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For the latent representation yi , f (yi ) represents the den-
sity function of the standard multivariate normal distribu-
tion N (0,I). We assume that, given yi , xi jk are conditionally
independent. Therefore, the joint log-likelihood of (xi jk , yi )
can be written as

l
(
xi jk, yi ; β jk, γ jk

)

=
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i=1
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nk∑
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{
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}⎫⎬⎭ ,

with log-likelihood as log f (xi jk |yi , β jk, γ jk) shown as
above and the log f (yi ) is the log-likelihood of normal

distribution. Now we have the joint log-likelihood as
l(xi jk, yi ; β jk, γ jk). Through maximizing this joint log-
likelihood, that is,

max
β jk ,γ jk
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Since the latent representation yi and the model param-
eters (β jk and γ jk) are conditionally dependent, we use a
two-step iterative approach to solve the above optimization
problem.

• Step 1: parameter estimation. The parameters β jk and
γ jk in the omics-type specific ZINB models are estimated
conditional on yi . Specifically, the maximization problem

of max
β jk , γ jk

m∑
i = 1

nk∑
jk= 1

log f (xi jk |yi , β jk, γ jk) is solved for each

omics type k using the iteratively reweighted least squares
(IWLS) algorithm (28).

• Step 2: latent representation update. Conditional on
the estimated parameters β jk and γ jk from Step 1, the
latent representation yi is updated to maximize the
log-likelihood function. Since yi is not observable, the
Markov Chain Monte Carlo (MCMC) simulation with
Metropolis-Hastings sampler (29) is used during opti-
mization. Briefly, an L-step random walk is performed,
with the (l + 1)’th step as:{

y∗ , if l
(
xi jk , y∗; β jk , γ jk

) − l
(

xi jk , y(l)
i ; β jk , γ jk

)
> ln u

y(l)
i , if other wise

, where l = 1, · · · , L, the vector y∗ is drawn from the
joint posterior distribution

f
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i

∝ f (yi ) |y(l)
i

nk∏
jk= 1
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× f (xi jk |y(l)
i , β jk, γ jk),

and u ∈ [0, 1] is a uniform random number. Then the mean
of all random walk steps,

∑
l

y(l)
i /L, is used to update the

latent representation. In this step, we set L = 200 draws,
with another 200 burn-ins. The optimization algorithm is
summarized in Supplement file 1.

With the estimated latent representation yi , we clus-
ter them in the latent space by k-means to identify the
co-regulatory programs that present coherent patterns of
gene expression and chromatin activities. The dimension
of the latent space and the number of clusters can be de-
termined with the lowest Bayesian information criterion
(BIC). This BIC statistic is calculated as log(n̂) ∗ k̂ − 2 ∗
l(xi jk, yi ; β jk, γ jk), where n̂ is the data size and k̂ is the
number of parameters. With the number of clusters in
the latent space, we obtain the concordant patterns, i.e.
the co-regulatory programs, between scRNA-seq data and
scATAC-seq data.

In this work, SMGR identifies such co-regulatory pro-
grams across scATAC-seq and scRNA-seq data simulta-
neously, based on the co-variation between chromatin ac-
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cessibility and gene expression, while addressing the bio-
logical difference between the chromatin accessibility and
the transcriptomics profiles, to provide information about
gene co-regulation. Such identified co-regulatory program
can be applied to predict gene co-regulatory networks and
enriched transcription factors. The co-regulatory programs
identified through combining gene expression with chro-
matin accessibility is useful for identifying functional reg-
ulators and recovering the regulatory mechanisms in dis-
eases.

Benchmark methods and evaluation indices

To compare the SMGR’s performance, we used the bench-
marking methods including SOMatic (30) and SCENIC
(31). The SOMatic method first identifies gene clusters and
peak clusters in scRNA-seq and scATAC-seq data sepa-
rately by self-organizing map (SOM), and then associate
the two types of clusters by a linking function to identify
the gene clusters where their regions have similar peak ac-
tivities. Different with SOMatic, SMGR joint models the
gene expression and peak activities from integrated scRNA-
seq and scATAC-seq data profiling. Each of the comparing
method is evaluated by the following evaluation indices: the
adjusted Rand index (ARI) (32), the Davies-Bouldin (DB)
index (33), the Dunn’s index (34), the Calinski-Harabasz
(CH) index (35) and the Silhouette index (36). These evalu-
ation metrics provide evaluations of the similarity of genes
within a co-regulatory program, as well as their differences
between different co-regulatory programs. Thus, we use
these metrics to evaluate the performance of SMGR. Larger
values of the ARI, Dunn’s index, CH indices, Silhouette,
and smaller values of the DB index, indicate better results.

Identification of transcriptional factor. We use the GE-
NIE3 (37) method to identify the upstream regulatory tran-
scriptional factors (TFs) and regulatory networks based on
the co-regulatory programs. Specifically, GENIE3 uses a
tree-based regression model to predict regulators of genes
and reveal the TF-target interactions, which has been shown
with superior performance in different gene expression data
(38,39). In this work, the input of GENIE3 are genes within
the identified co-regulatory programs by SMGR, and the
output is the upstream regulator and regulatory network re-
spectively.

RESULTS

Schematic overview of SMGR

We propose the Single-cell Multi-omics Gene co-
Regulatory (SMGR) method, to detect coherent functional
patterns of genes and peaks, i.e. co-regulatory programs,
from scRNA-seq and scATAC-seq data, which links
regulatory elements with target genes that have signif-
icant biological context and enables the best exploit of
single-cell multi-omics data. We hypothesize the existence
of latent representation that captures the intrinsic signals
of scRNA-seq gene expression and scATAC-seq peaks,
which are not affected by extrinsic variances from different
molecular layers. With the assumption that scRNA-seq
and scATAC-seq data shows the characteristics of negative

binomial distributions or zero-inflated negative binomial
distributions, we utilized a generalized linear model with
latent representation to formulate the single-cell multi-
omics data. In this way, the co-regulatory programs can
be identified through clustering of latent representation,
thus enables the identification of regulatory mechanisms.
Importantly, SMGR preserves biological variations with-
out being influenced by technical variances from different
omics layers. For biological discovery, we apply SMGR
to the scRNA-seq and scATAC-seq data from peripheral
blood mononuclear cell (PBMC) and mixed-phenotype
acute leukemia (MPAL). Detailed explanations of SMGR
are included in the Materials and Methods. Figure 1 pro-
vides an illustrative overview of the SMGR method and its
featured analysis. The software for implementing SMGR is
available at https://github.com/QSong-github/SMGR.

Evaluation of SMGR using simulation data

We first compared SMGR with SOMatic to identify the
co-regulatory programs based on the simulation data of
scRNA-seq and scATAC-seq. Details of simulation data
generation were provided in the Data availability. As
shown in Figure 2A, the box plots present the evalua-
tion scores of the co-regulatory programs identified by
SMGR and SOMatic respectively on 10 simulation datasets.
Each dataset consists of both simulated scRNA-seq and
scATAC-seq. The evaluation score is calculated by av-
eraging the corresponding evaluation index in simulated
scRNA-seq and scATAC-seq. The results show that SMGR
accurately identifies each co-regulatory program in 10 sim-
ulation datasets and demonstrates higher CH index in
log10 value (mean ± SE: 2.85 ± 0.06) than SOMatic
(mean ± SE: 2.76 ± 0.07), which suggests that the pro-
grams identified by SMGR are denser and better sep-
arated in both scRNA-seq and scATAC-seq data than
those identified by SOMatic. Moreover, SMGR also shows
higher Silhouette (mean ± SE: 0.27 ± 0.03), Dunn scores
(mean ± SE: 0.62 ± 0.1), and lower DB Index (mean ± SE:
3.56 ± 2.3), suggesting better inter-program separation and
intra-program compactness in both simulated scRNA-seq
and scATAC-seq data. Notably, given the ground truth for
these simulation data, SMGR shows significantly better
ARI scores (mean ± SE: 0.84 ± 0.01) than SOMatic (ARI,
mean ± SE: 0.77 ± 0.02).

Performance evaluation on experimental data

To further demonstrate the performance of SMGR, we
compared it with SCENIC on experimental data. Since
SCENIC aims to identify gene regulatory network from
scRNA-seq data, here we systematically compared the per-
formance of SCENIC and SMGR using 14 benchmarking
scRNA-seq data (40). Specifically, the co-regulatory pro-
grams identified by SMGR are compared with the regu-
latory networks identified by SCENIC. As shown in Fig-
ure 2B, the box plots present the evaluation scores of the
co-regulatory programs identified by SMGR and the gene
regulatory networks identified by SCENIC, respectively.
Based on the 14 benchmarking datasets, the co-regulatory
programs identified by SMGR show higher CH index in

https://github.com/QSong-github/SMGR
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Figure 1. Schematic overview of SMGR. SMGR identifies the latent representation and the co-regulatory programs from scRNA-seq and scATAC-seq
data. SMGR enables featured downstream analysis including the visualization of co-regulatory programs, construction of regulatory networks, identifi-
cation of enriched TFs, motifs, and the cis-regulatory elements.

log10-value (mean ± SE: 3.15 ± 0.61) than the regulatory
networks by SCENIC (mean ± SE: 1.06 ± 1.61). More-
over, SMGR also shows higher Silhouette (mean ± SE:
0.047 ± 0.05), Dunn scores (mean ± SE: 0.055 ± 0.02), and
lower DB Index (mean ± SE: 5.56 ± 3.19) than SCENIC.
These results suggest better inter-program separation and
intra-program compactness in the SMGR-identified co-
regulatory programs than the SCENIC’s regulatory net-
works.

Moreover, we also evaluate the performance of SMGR
and SOMatic on the real experimental data of MPAL
dataset. As shown in Figure 3A and B, based on healthy-
like and the lymphoid-like cells from MPAL dataset, the
co-regulatory programs identified by SMGR show higher
CH index than SOMatic, in both healthy-like cells (2.39 ver-
sus 2.25) and lymphoid-like cells (5.60 versus 3.98). More-
over, these co-regulatory programs by SMGR show higher
Silhouette and Dunn index than SOMatic, and lower DB
index, in both healthy-like cells (Silhouette: 0.16 versus
0.14; Dunn: 0.13 versus 0.10; DB: 9.45 versus 11.92) and
lymphoid-like cells (Silhouette: 0.35 versus 0.28; Dunn:
1.54 versus 1.09; DB: 12.36 versus 19.60). Collectively,
SMGR showed superior performance on real experimental
datasets and proved to achieve the best identification of co-

regulatory programs from joint scRNA-seq and scATAC-
seq data.

Functionality evaluation on experimental data

As a co-regulatory program is likely to be enriched with
biological functions (41,42), we compare the extent to
which different methods affect the functional discovery. As
shown in Figure 3C, the corresponding bar plots present
the enriched functions of co-regulatory programs for the
lymphoid-like cells (L-) and healthy-like (H-) cells. No-
tably, SMGR shows more enriched pathways than SOMatic
for lymphoid-like (SMGR: 44 versus SOMatic: 32) and
healthy-like cells (SMGR: 47 versus SOMatic: 35). In terms
of GO enrichment, SMGR also shows more enriched terms
than SOMatic for lymphoid-like (SMGR: 37 versus SO-
Matic: 24) and healthy-like cells (SMGR: 44 versus SO-
Matic: 32). Further details can be found in Supplementary
File S1.

Moreover, we use GENIE3 (37) to identify the upstream
TFs based on the co-regulatory programs from SOMatic
and SMGR respectively, since genes in a regulatory pro-
gram are often regulated by the same upstream TFs. Based
on the top co-regulatory program identified by SMGR and
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Figure 2. Benchmark SMGR with SOMatic and SCENIC. (A) Comparisons of SMGR and SOMatic on 10 simulation data. (B) Comparisons of SMGR
and SCENIC on 14 benchmarking scRNA-seq data. P-values of the comparisons are provided using t-test. Horizontal lines in the middle of boxes indicate
median values.
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Figure 3. Evaluation of SMGR using experimental data of scRNA-seq and scATAC-seq. (A) Comparisons of SMGR and SOMatic on healthy-like cells
from MPAL. (B) Comparisons of SMGR and SOMatic on lymphoid-like cells from MPAL. (C) Comparisons of SMGR and SOMatic on functional
enrichment. L-Reactome and L-GO represents the average number of the enriched Reactome pathways and GO terms (adjusted P value < 0.05) in the
lymphoid-like cells. H-Reactome and H-GO represent the average enriched Reactome pathways and GO terms in the healthy-like cells. (D) Comparisons
between SMGR and SOMatic in revealing upstream transcriptional factors.
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SOMatic, respectively, the Venn diagrams (Figure 3D) show
the number of predicted TFs. For the healthy-like cells,
SMGR shows 18 common TFs which are also identified by
SOMatic, and 15 specific TFs which are only identified by
SMGR. For the lymphoid-like cells, SMGR shows 32 com-
mon TFs with SOMatic, and 13 specific TFs. The common
TFs shared by SMGR’ and SOMatic’s program, such as
RUNX1 (43) and NFE2 (44,45), are known TFs that play
important roles in leukemia. Meanwhile, some TFs which
are known to be important in acute leukemia can only be
identified by the SMGR’s program but not by SOMatic, for
example, RUNX3 (46,47), SNAI1 (48) and THAP1 (49).
Of note, SMGR reveals more regulators based on the co-
regulatory program, suggesting the validity and superior
performance of SMGR.

SMGR identifies cell-type specific co-regulatory programs

Biological samples in clinical or experimental studies are
often heterogeneous mixtures with different cell popula-
tions and cellular states. To fundamentally characterize
cell populations, it is necessary to unveil the heterogene-
ity through the integrative analysis of both transcriptional
level and epigenomics level. Herein, we applied SMGR to
the scRNA-seq and scATAC-seq data of PBMC (Figure
4A) that consists of 12 different cell types including CD4
naı̈ve T cell and memory T cell. SMGR identified the co-
regulatory programs in each of the cell types, with the cor-
responding gene expression and gene-level chromatin activ-
ity shown in Figure 4B and C respectively. Here we only
show the top expressed co-regulatory programs in each cell
type. Specifically, for CD14+ monocytes, we identified the
top co-regulatory program across scRNA-seq (Figure 4B)
and scATAC-seq data (Figure 4C), including RAC2 that
contributes to the activated NADPH oxidase in monocytes
(50), CD44 that mediates cell-cell interaction and partici-
pates in monocyte differentiation (51), and KLF4 as a crit-
ical regulator of monocyte differentiation (52). These genes
present similar patterns in both scRNA-seq and scATAC-
seq data of CD14+ monocytes. Similarly, for CD8 naı̈ve T
cells, we identified the top co-regulatory program includ-
ing CD8A, TRBC2 that is involved in T-cell antigen recep-
tor (TCR) complex, and HMGB1 that induces cytokine se-
cretion (53), which consistently expressed across scRNA-
seq and scATAC-seq data of CD8 naı̈ve T cells. We also
listed the co-regulatory program of Double negative T cells
and pDC cells based on the scRNA-seq (Figure 4B) and
scATAC-seq data (Figure 4C). For Double negative T cells,
we identified the co-regulatory program with genes such as
GAPDH, which is a key player in T cell development and
function (54), and CD247 that regulates T-cell activation
(55). For pDC cells, we obtained the co-regulatory program
with CXCR4 that regulates dendritic cell location and ac-
tivation (56) and CDC37. Full tables of top co-regulatory
programs of each cell type are listed in Supplementary Ta-
ble S1.

To further quantify the coherent patterns of SMGR’s
co-regulatory programs, we characterize them in the la-
tent representation and observed clearly consistent pat-
terns (Figure 4D). Additionally, we did enrichment anal-
ysis of CD4 naı̈ve T cells (red) and CD4 memory T cells

(blue), respectively (Figure 4E). CD4 naı̈ve T cells are
shown to be enriched with JAK-STAT and platelet signal-
ing, while CD4 memory T cells are enriched with activa-
tion of CSF3 (G-CSF) signaling and different interleukin
signaling pathways. These analyses suggest that our iden-
tified co-regulatory programs contribute to the elucidation
of functions in different cell phenotypes through incorpo-
rating scRNA-seq and scATATC-seq by SMGR.

Application of SMGR to single-cell multi-omics data of
MPAL cells

To demonstrate the functional utility, we next extended
the application of SMGR to the scRNA-seq and scATAC-
seq data (Figure 5A) of mixed-phenotype acute leukemia
(MPAL) (9). For revealing the underlying malignancy
mechanisms in MPAL, here we applied SMGR to the
healthy-like and lymphoid-like cells respectively. SMGR de-
tected eight co-regulatory programs in healthy-like cells and
ten co-regulatory programs in lymphoid-like cells (Supple-
mentary Table S2). Based on these programs, we then iden-
tified the most differential ones between lymphoid-like cells
and healthy-like using Wilcox test. The co-regulatory pro-
grams in lymphoid-like cells that were mostly differential
with healthy-like cells were L1, L2 and L3. L1 included
genes such as SIGLEC7 (57), SLC8A1 (58) and RUNX1
(43) that play important roles in AML. L2 and L3 con-
sisted of genes including MDM2 (59) and CD36 (60) respec-
tively. In contrast, the co-regulatory programs in healthy-
like cells that were most distinct with lymphoid-like cells
were H1, H2, H3, H4 (Figure 5B). Example genes identi-
fied in each program were listed accordingly. These differen-
tial co-regulatory programs suggested potential regulatory
mechanisms involved in MPAL. To link genes with regula-
tory TFs, we then identified significant regulatory networks
using GENIE3 (37) (Figure 5C), based on the three differ-
ential co-regulatory programs in lymphoid-like cells. The
hub regulatory network was shown with RUNX1, FOS and
NFE2. Specifically, RUNX1 has well known function in
blood cells (43). The full network table was listed in Sup-
plementary Table S3.

With the specific TFs in lymphoid-like cells, we inves-
tigated their scATAC-seq coverage and found that NFE2
showed strongly distinct chromatin accessibility between
lymphoid-like cells and healthy-like cells (Figure 5D). The
bottom peak-to-gene links colored by pearson correlation
of peak accessibility and gene expression suggested that
NFE2 bound to the linked distal regulatory region of
CBX5. CBX5 encodes the HP1� protein, which is a key het-
erochromatin protein and is critical in chromatin conden-
sation and chromosome segregation. HP1� has been deter-
mined to be required for leukemia cell maintenance (61).
Meanwhile, NFE2 was also shown to putatively regulate
HNRNPA1, which is suggested as a diagnostic marker and
therapeutic target for chronic myeloid leukemia (44,45).

Moreover, we performed differential chromatin accessi-
bility analysis and footprinting analysis. Differential gene
accessibility analysis comparing lymphoid-like cell with
healthy-like cells observed all three TFs were identified with
high increase in accessibility in lymphoid-like cells (Figure
5E). That is, RUNX1, FOS and NFE2 have overall lower
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Figure 4. SMGR identifies cell-type specific co-regulatory programs. (A) UMAP visualization of the scRNA-seq and scATAC-seq data of peripheral blood
mononuclear cell (PBMC). Different colors represent different cell types. (B) Heatmap shows the expression of genes within the top co-regulatory program
for each cell type. Color scale represents the normalized gene expression in scRNA-seq data. (C) Heatmap shows the gene-level based chromatin activities
within the top co-regulatory programs for each cell type. Color scale represents the normalized gene activities in scATAC-seq data. (D) Heatmap shows
the association of gene expression and chromatin activities within a co-regulatory program in the latent representation. Color scale represents the Pearson
correlation. (E) Enrichment analysis of the top co-regulatory programs of CD4 naı̈ve T cells (red) and CD4 memory T cells (blue), respectively.
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Figure 5. Application of SMGR to single-cell multi-omics data of MPAL cells. (A) UMAP visualization of the scRNA-seq and scATAC-seq data of
mixed-phenotype acute leukemia. Different colors represent different cell types. (B) Heatmap shows the co-regulatory programs that differentiate between
lymphoid-like cells and healthy-like. (C) The hub regulatory network of RUNX1, FOS, and NFE2 based on the co-regulatory programs of lymphoid-like
cells. (D) scATAC-seq coverage reveals distinct chromatin accessibility between healthy-like cells and lymphoid-like cells. Peak-to-gene links are colored by
Pearson correlation of the peak accessibility and gene expression. (E) Transcription factor footprints (average ATAC-seq around predicted binding sites)
for three TFs for healthy-like cells and lymphoid-like cells respectively. (F) Kaplan–Meier curve for patients with AML from TCGA stratified by putative
TF–target genes. P-value is calculated by log-rank test.
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TF activity in healthy-like cells than the lymphoid-like cells.
Interestingly, these TFs also presented lower gene activ-
ity in scRNA-seq data of healthy-like cells in contrast to
lymphoid-like cells (Supplementary Figure S1), indicating
these TFs are important regulatory signatures in MPAL.
Further survival analysis using these TFs’ targeted genes
to stratify The Cancer Genome Atlas (TCGA) AML pa-
tients observed significantly decreased survival (P = 0.024
for RUNX1; P = 0.0076 for FOS; P = 0.033 for NFE2).
Altogether, these results suggest that our identified regula-
tory programs are important that putatively upregulate the
leukemic signaling cascade in MPAL.

DISCUSSION

In this study, we have developed a novel statistical method
that is tailored and effective for identifying co-regulatory
programs in single-cell multi-omics data including scRNA-
seq and scATAC-seq. Applications of SMGR in the
scRNA-seq and scATAC-seq data of MPAL identified the
aberrant molecular features for MPAL development, which
provide mechanistic insights into gene regulation at the cel-
lular resolution. SMGR offers to investigate multiple regu-
latory layers that control cellular heterogeneity and com-
plex biological mechanisms, which provides tremendous
clinical value for identifying mechanisms, targets, and pre-
dictors for enhancing translational therapy.

One major distinction separating our method from pub-
lished methods is that we focus on identifying co-regulatory
features rather than cell groups. A common approach of
revealing co-regulatory features is to integrate cells by re-
moving cell-level batch effects first, and then identify the
co-expressed or differentially expressed genes and peaks.
However, our method provides a straightforward way to in-
vestigate the concordant genes and peak values by remov-
ing feature-level batch effects, which achieves better perfor-
mance than available methods. On the other hand, though
there are approaches studying coherent features based on
bulk multi-omics data, none of these approaches can be di-
rectly applied to single cell data as they are not designed to
account for the unique characteristics of single-cell multi-
omics data as well as the technical noise and extrinsic
variance among multiple single-cell samples. Collectively,
SMGR is anticipated to be a very useful tool for identifying
potential biomarkers and novel hypothesis for experimental
validation.

Our SMGR method is provided as a freely available and
open-source R package in GitHub, with detailed tutori-
als and workflows. We anticipate SMGR to unleash the
power of emerging extensive single-cell multi-modal data
and provide data-driven bioinformatics methods as well
as open-source tools to the research community for bet-
ter biological hypothesis testing and experimental design.
Given the merits of SMGR, we also acknowledge that
there are several limitations and caveats that warrant further
study. First, though SMGR identified strongly coherent co-
regulatory programs with genes from scRNA-seq and peaks
from scATAC-seq data, it is still unknown of the hierar-
chical relations among these co-regulatory programs. Sec-
ond, though SMGR is majorly designed for scRNA-seq
and scATAC-seq data, we will further work on adapting

our method to include more omics layers such as single-
cell methylation or single-cell proteomics profiles. Third,
we have used the original cellular annotations provided by
the published data, which can potentially affect the perfor-
mance of SMGR. We recommend use high-quality cell an-
notations of scRNA-seq and scATAC-seq data for appli-
cations, thus to improve the quality of the identified co-
regulatory programs.

CONCLUSION

We have developed a novel method, Single-cell Multi-omics
Gene co-Regulatory algorithm (SMGR), to detect coher-
ent functional regulatory program and target genes from
the joint scRNA-seq and scATAC-seq data. SMGR demon-
strates high accuracy and robust performance in both sim-
ulation data and experimental single-cell multi-omics data.
SMGR is available as a ready-to-use open-source software
for revealing regulatory elements and mechanisms in com-
plex diseases.

DATA AVAILABILITY

Simulation data. Based on the data characteristics, we have
used the zero-inflated negative binomial distribution to gen-
erate simulation data. For simulation data, to obtain the
ground truth of co-regulatory programs, we generate the
synthetic scRNA-seq data with N clusters of genes and the
synthetic scATAC-seq data with N clusters of peaks. We
choose N as 3. For a certain gene cluster and its correspond-
ing peak cluster, we generate the gene counts and peak
counts across cells by the zero-inflated negative binomial
distribution ZI NB(ρ, u, ϕ) with same parameters. Genes
and peaks of different clusters are generated by zero-inflated
negative binomial distributions with different parameters.
Specifically, u, ϕ are chosen randomly between 1 and 5. In
this way, we build the ground truth of co-regulatory pro-
grams, where genes with similar expressions and peak activ-
ities (generated by same distributions) should be captured
as one regulatory program. In Figure 2A, we use 10 sim-
ulation datasets, with each dataset consisting of simulated
scRNA-seq and scATAC-seq.

Real experimental data. (i) 14 benchmarking scRNA-seq
datasets generated using both droplet and plate-based
protocols are downloaded from Tian et al. (40). (ii) PBMC
data. The PBMC scRNA-seq and scATAC-seq datasets
are downloaded from 10× Genomics website through
https://support.10xgenomics.com/single-cell-multiome-
atac-gex/datasets/1.0.0/pbmc granulocyte sorted 10k. (iii)
MPAL data. The MPAL scRNA-seq and scATAC-seq
datasets are downloaded from Gene Expression Omnibus
(GEO) with the accession code GSE139369.

All the functions mentioned above are implemented as
a R package, which is accessible at https://github.com/
QSong-github/SMGR.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://github.com/QSong-github/SMGR
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqac056#supplementary-data
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31. Aibar,S., González-Blas,C.B., Moerman,T., Huynh-Thu,V.A.,
Imrichova,H., Hulselmans,G., Rambow,F., Marine,J.-C., Geurts,P.,
Aerts,J. et al. (2017) SCENIC: single-cell regulatory network
inference and clustering. Nat. Methods, 14, 1083–1086.

32. Hubert,L. and Arabie,P. (1985) Comparing partitions. J. Classif., 2,
193–218.

33. Davies,D.L. and Bouldin,D.W. (1979) A cluster separation measure.
IEEE Trans. Pattern Anal. Mach. Intell., 1, 224–227.

34. Dunn,J.C. (1974) Well-separated clusters and optimal fuzzy
partitions. J. Cybern., 4, 95–104.
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