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ABSTRACT

Motivation: Large-scale phenotyping projects such as the Sanger

Mouse Genetics project are ongoing efforts to help identify the influ-

ences of genes and their modification on phenotypes. Gene–pheno-

type relations are crucial to the improvement of our understanding of

human heritable diseases as well as the development of drugs.

However, given that there are�20 000 genes in higher vertebrate gen-

omes and the experimental verification of gene–phenotype relations

requires a lot of resources, methods are needed that determine good

candidates for testing.

Results: In this study, we applied an association rule mining approach

to the identification of promising secondary phenotype candidates.

The predictions rely on a large gene–phenotype annotation set

that is used to find occurrence patterns of phenotypes. Applying

an association rule mining approach, we could identify 1967

secondary phenotype hypotheses that cover 244 genes and 136

phenotypes. Using two automated and one manual evaluation

strategies, we demonstrate that the secondary phenotype candidates

possess biological relevance to the genes they are predicted for. From

the results we conclude that the predicted secondary phenotypes

constitute good candidates to be experimentally tested and

confirmed.

Availability: The secondary phenotype candidates can be browsed

through at http://www.sanger.ac.uk/resources/databases/phenodigm/

gene/secondaryphenotype/list.

Contact: ao5@sanger.ac.uk or ds5@sanger.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A causative gene has not yet been identified for almost half of the

existing human heritable diseases (Schofield et al., 2012).

Without the knowledge of the molecular basis of a disease, treat-

ment possibilities are limited to treating symptoms instead of

curing the underlying defects. In order to be able to find cures

and prevention mechanisms for human genetic disorders, we

need to comprehensively understand how each disease originates

and progresses over time. A collection of human diseases to-

gether with confirmed and speculative causes is available from

resources such as the Online Mendelian Inheritance in Man

(OMIM) (Amberger et al., 2011) or Orphanet (Aym�e, 2003)

database.

In the quest for identifying causative genes for human genetic

disorders, model organisms have gained increasing importance

due to the opportunities arising from targeted gene

modifications. For example, the mouse shares 99% of genes

with humans, and gene modifications leading to phenotypes

characteristic for a disease may offer clues to the origins of this

disease (Rosenthal and Brown, 2007). Experimental results of

mutagenesis experiments are stored in species-specific Model

Organism Database (MOD)s (Leonelli and Ankeny, 2012), e.g.

the Sanger Mouse Genetics Project (Sanger-MGP) (White et al.,

2013), WormBase (Yook et al., 2012), the Mouse Genome

Database (MGD) (Bult et al., 2012) or FlyBase (Drysdale and

FlyBase Consortium, 2008).
The Sanger-MGP is part of the International Mouse

Phenotyping Consortium (IMPC) project that aims to identify

the phenotypic implications of 20 000 genes by 2021 (Brown and

Moore, 2012). In the framework of this project genetically mod-

ified mouse models are assessed according to 20 pre-defined

standard operating procedures (SOPs) that are linked to meas-

urable physical parameters to ascertain the implications of gen-

etic mutations on phenotypes (Mallon et al., 2012). An example

of a SOP is the assessment of the grip strength of mice at the age

of 9 weeks to assess their neuromuscular function as muscle

strength (https://www.mousephenotype.org/impress/protocol/

83/7). Mammalian Phenotype Ontology (MP) (Smith and

Eppig, 2009) annotations are assigned using a reference range

method followed by an expert review. Later studies explore the

application of other statistical methods to assign MP phenotype

annotations based on the obtained parameter readings

(Beck et al., 2009; Karp et al., 2012a), however, these

methods only cover a subset of the phenotypes covered by the

20 SOPs.
The process of assessing physical measurements in accordance

with the 20 pre-defined SOPs is referred to as primary phenotyp-

ing (Justice, 2008). According to the European Mouse Disease

Clinic (EUMODIC) web page (http://www.eumodic.org/) “A

distributed network of centres with in depth expertise in a

number of phenotyping domains will undertake more complex, sec-

ondary phenotyping screens and apply them to a subset of the mice

which have shown interesting phenotypes in the primary screen.”.

However, with the increasing amount of genes being assessed in

the primary phenotyping screen, a manual investigation for inter-

esting results from the primary screens becomes impossible. In

addition, the manual assessment of experimental results is time

consuming, expensive and requires trained biologists. Therefore,

automated methods enabling the search for promising secondary

phenotypes are needed to complement the results obtained from

the primary screens.
Existing automated solutions include the prediction of pheno-

types based on orthologous genes (Groth et al., 2007; McGary

et al., 2010) as well as functional annotations of genes*To whom correspondence should be addressed.
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(King et al., 2003). However, orthologous genes do not necessar-
ily exhibit the same function or expression patterns across differ-

ent species and therefore, do not always provide reliable answers.

A solution relying only on existing phenotype annotations could
overcome the problem in differing gene function and resulting

phenotypes across different species. To the best of our know-

ledge, the prediction of secondary phenotypes from primary
screen annotations in combination with literature-curated pheno-

types in mouse has not been addressed before.
Here, we present an association rule mining approach that

enables the identification of potential secondary phenotype

screens in mouse using data from MGD, and complementing
the primary phenotype screens in Sanger-MGP. Applying asso-

ciation rule mining, we were able to discover 188 rules, covering

242 phenotypes and leading to 1967 predictions for secondary
phenotypes for 244 genes contained in the Sanger-MGP data-

base. These 1967 suggested gene–phenotype associations include

136 unique phenotypes for which new assays can be defined for.
The predicted associations are neither contained in MGD nor

Sanger-MGP. We automatically as well as manually evaluated

the secondary phenotype predictions and can demonstrate that
our results show viable candidates. In conclusion, we believe that

novel biological hypotheses and secondary phenotype screens

can be formulated from the predicted secondary phenotypes.

2 METHODS

Figure 1 illustrates the overall workflow of this study. The following

subsections describe the prediction approach and the utilized datasets

in detail.

2.1 Prediction of secondary phenotype candidates for

mouse genes

To determine candidates for secondary phenotyping, we first analysed

MGD’s phenotype annotations for mouse mutants. We hypothesized

that phenotypes that significantly co-occur with each other more often

than expected by chance, given the overall amount of phenotype anno-

tations, constitute good candidates for the secondary phenotype

experiments. For example, it is known that body weight correlates with

bone density or grip strength and changes in body weight often lead to

changes in the correlated phenotypes (Karp et al., 2012a, b; Valdar et al.,

2006). Using a large dataset of phenotype annotations, we can determine

pairs of phenotypes that may be biologically linked.

Association rule mining was originally used to find patterns of items

that are frequently purchased together in one transaction in a supermar-

ket. Each association rule assigns a probability to an implication based on

the dataset, e.g. how likely is it that someone who bought bread and milk

also purchased butter. In the Bioinformatics domain, association rule

mining has been previously successfully applied to large annotation sets

with the aim to find relationships between gene functions described with

Gene Ontology (GO) (Botstein et al., 2000; Kumar et al., 2004; Manda

et al., 2012). As the goal of determining significantly co-occurring con-

cepts to define relationships is the same here, association rule mining can

also be applied. We used the apriori (http://www.borgelt.net/doc/apriori/

apriori.html) software implementation (Agrawal et al., 1996; Borgelt,

2003) with the following parameter settings:

-tr -s-6 -m2 -n2 -c90 -ep -v ‘‘%e’’

with -tr to enforce the output of association rules instead of item sets, -s-6

to obtain only rules that are supported by at least six item sets, -m2 to

include only rules with a minimum of two items, -n2 to include only rules

with a maximum of two items, -c90 to only allow rules with a confidence

of 90%, -ep to provide P-values for each rule and -v “%e” to add the

P-value separated by space to each of the rules. The input to the apriori

software was the set of literature-curated phenotype annotations of

mouse genes and the output of rules of the type phenotype_1 ! pheno-

type_2. As a starting point, we limited the output to rules including only

two phenotypes to avoid complex dependencies between the annotations.

However, in future work we aim to extend the approach to address more

complex dependencies between phenotypes.

The two parameters that are used to narrow down the associations’

rules to obtain meaningful, biologically related phenotypes, are support

and confidence. We set the support for association rules to six which

means that a minimum of six genes have to be annotated with both

phenotype_1 and phenotype_2. The confidence corresponds to the ratio

of genes being annotated with phenotype_1 as well as phenotype_2 over

the genes that are only annotated with phenotype_1. In our case, at least

90% of the genes annotated with phenotype_1 must have also pheno-

type_2 as annotation in order for this rule to be reported. Changing

either parameter may lead to the report of different association rules in

the output. We considered this to be conservative settings for an initial

study, and the determination of the ideal settings for both parameters is

subject to future work.

Rules are returned together with their corresponding P-value to enable

potential further filtering and user confidence, e.g.

MP:00047255- MP:00094480

MP:00056065- MP:00094483.9905e-212

MP:00056065- MP:00095574.22726e-182

MP:00002455- MP:00111712.64518e-125

All extracted rules are then sorted according to the phenotypes includ-

ing them, i.e. one phenotype may potentially be associated with more

than one secondary phenotype candidate. As shown by the rules given

before as an example, a decreased platelet ATP level phenotype

(MP:0009448) would be associated with an increased bleeding time

phenotypes (MP:0005606) and a decreased platelet serotonin level

(MP:0004725). Following this procedure will lead to a list of mapped

phenotypes including the phenotypes from the high-throughput assess-

ment in the primary phenotype screening defined in the SOPs. Therefore,

the mapped phenotypes are then filtered to exclude the phenotypes cov-

ered by the Sanger-MGP SOPs. Because of this filtering, we obtain only

Fig. 1. Overall workflow of the study. After determining-related pheno-

types, the primary phenotype annotations assigned to genes in Sanger-

MGP are enriched with potentially related phenotypes. The additional,

predicted secondary phenotypes are evaluated in several steps
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predictions for secondary phenotypes that have not been included in the

primary screens.

For all the genes contained in Sanger-MGP, we then generated a list of

secondary phenotype annotation predictions by going through all the

existing phenotype annotations for a gene and adding those phenotypes

that have been mapped based on co-occurrence. Then we removed all

gene–phenotype associations that have been identified already and are

contained in either MGD or Sanger-MGP to only generate potentially

novel links between genes and phenotypes. We refer to the remaining

phenotype annotations as predicted secondary phenotypes.

We chose the MGD phenotype annotations for gene knockouts as

basis for our predictions and downloaded the report file on July 20,

2013. The downloaded file comprised 126522 MP annotations for 9447

genes, covering 7393 unique MP concepts. The Sanger-MGP covers 20

SOPs that correspond to 367 MP annotations. Deducting the 367 MP

that are covered by the SOPs from the unique number of MP concepts in

MGD, provides the target phenotype annotation space. This means that

7027 unique phenotype concepts can be potentially associated with any of

the 725 genes that had been assessed by the primary screens in the Sanger-

MGP at the time this study was conducted. All the phenotype annotation

datasets were applied without conducting a taxonomic closure on the

annotations. However, once the secondary phenotypes have been pre-

dicted, corresponding assays would have to be determined to test the

generated phenotype hypotheses.

2.2 Evaluation of secondary phenotype predictions

We evaluated the secondary phenotype predictions automatically as well

as manually. The automated evaluation was realized by applying the

secondary phenotype candidates in two use cases for phenotype annota-

tions: the clustering of genes according to phenotypes leading to clusters

of gene function, and the prediction of disease gene candidates by com-

paring disease phenotypes with phenotypes that have been determined to

be affected by a gene mutation. In both use cases, we applied first pheno-

type annotations determined during the primary screens, and after that a

combination of the primary screen annotations together with the predic-

tions for secondary phenotypes. We assume that if the performance im-

proves when adding the secondary phenotype predictions, the secondary

phenotypes possess biological validity. In addition, we manually investi-

gated five diseases further where the predictability of at least one known

causative gene improved. More information about the evaluation of the

secondary phenotypes is provided in the following subsections.

2.2.1 Automated evaluation based on gene function In previous

studies, it has been demonstrated that phenotype annotations can be

used to determine biologically meaningful clusters with respect to gene

function and protein interactions (van Driel et al., 2006). Oti et al. ex-

tended the method to validate the content of three human phenotype

databases with respect to consistency and completeness. We assume

that the secondary phenotype predictions once added to the annotations

assigned in the primary screens improve consistency and completeness of

the phenotype data. Therefore, we applied the method introduced by Oti

et al. relying on the biological coherence of gene clusters built on pheno-

type similarity. The biological coherence is calculated based on the over-

lap of GO annotations among all the genes falling into one cluster.

To assess the biological coherence without and with the predicted sec-

ondary phenotypes, we generated gene clusters based on the primary

phenotypes solely, as well as clusters based on the primary and secondary

phenotype data in conjunction. Before the actual clustering step, we per-

formed a taxonomic closure based on MP, which means that all super-

classes for each assigned phenotype annotation were added to a gene’s

phenotype annotation set. Clusters were formed based on the phenotype

similarities, and the similarity between pairs of genes based on their

phenotype annotations using a Jaccard coefficient (the ratio of shared

phenotypes over the unique set of phenotypes assigned to both the genes).

Genes were clustered with respect to their phenotype similarity using

average linkage clustering. Clusters were determined by applying the

Dynamic Treecut package in R (Langfelder et al., 2008) to the obtained

dendrogram. We set the parameters of the Dynamic Treecut package to

require a minimum of two genes falling into one cluster. For each of the

determined cluster, the biological coherence was calculated with

Cc=
Xn

i;j

Cði; jÞ=n; ð1Þ

where C(i,j) is the term overlap between gene i and gene j, and n is the

number of genes in this cluster. The overall biological coherence score for

all clusters is obtained by averaging the individual scores for the clusters:

Ct=
Xm

i=1

Cc=m; ð2Þ

where m is the number of clusters formed for a particular dataset.

In compliance with the method described in (Oti et al., 2009), the

datasets are not directly compared, instead they are compared to rando-

mized datasets to correct for gene annotation biases. For this purpose, we

randomized each of the two phenotype annotation sets—primary and

secondary—maintaining the number and uniqueness of phenotype anno-

tations per gene. We randomized the original set of annotations 1000

times leading to 2002 phenotype annotation sets in total. We increased

the number of randomizations from 30 to 1000 to compensate for the fact

that Sanger-MGP contains a number of genes that are poorly

described in terms of gene function and may generate a high variation

of coherence score ratios otherwise. For each phenotype annotation set,

the ratio of the overall biological coherence Ct of the respective original

phenotype annotation set (either primary or secondary) over the rando-

mized data is calculated. If this ratio is41, the biological coherence of the

original dataset is greater than the randomization data; vice versa for

scores in the range [0,1], the biological coherence for the randomized

data exceeds the coherence of the respective original dataset. The ratio

scores are then summarized in box plots and the difference between all the

ratios of both datasets is calculated with a non-parametric, two-sided

Wilcoxon rank-sum test implemented in R. Figure 2 illustrates this evalu-

ation step.

We assessed gene cluster coherence based on functional annotations of

mouse genes. For this purpose, we downloaded the GO annotations of

Fig. 2. Illustration of the calculation of biological coherence scores to

evaluate secondary phenotype predictions. Boxes that possess the same

background colour are based on the same analysis scripts, only the input

data differ (either randomized or original data). Black boxes symbolize

the ratio of the biological coherence original versus randomized data

which are used as input for the box plots depicted in Figure 3
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mouse genes from the MGD database on July 12, 2013 (ftp://ftp.inform

atics.jax.org/pub/reports/gene_association.mgi). The dataset comprised

annotations for 25 499 MGD marker accession identifiers with 13 551

unique GO concepts, with an average of 11.64 GO annotations per

gene. Using the original Sanger-MGP dataset with primary annotations

only, we obtain 33 clusters for the 480 genes investigated that are then

assessed for the biological coherence based on their gene function

annotations.

2.2.2 Automated evaluation based on disease gene candidate
predictions Among other tools for disease gene candidate prediction,

PhenoDigm uses phenotype annotations to predict gene candidates

underlying a disease (Smedley et al., 2013). Disease gene candidates are

predicted based on the primary phenotype annotations assigned to mouse

and zebrafish models and their phenotypic similarity to human genetic

disorders described in OMIM (http://www.human-phenotype-ontology.

org/contao/index.php/downloads.html). The better the overlap of pheno-

types between a model and a disease, the higher the corresponding knock-

out gene is ranked for this disease.

To assess the performance of a ranking algorithm, commonly Receiver

Operating Characteristic (ROC) curves are used that are calculated based

on a benchmark dataset. In our case, we used known gene–disease asso-

ciations to assess the value of the predictions. If the secondary phenotypes

add value to the predictions, then a performance increase should be vis-

ible from the Area Under Curve (AUC) of the two ROC curves (one for

the predictions based on primary phenotype data, and one for the pre-

dictions based on primary and secondary phenotype data). To test

whether the increase in the AUC is significant, we used a two-sided test

for ROC curves available online (http://vassarstats.net/roc_comp.html;

Hanley and McNeil, 1982).

Using PhenoDigm as an automated evaluation algorithm of the sec-

ondary phenotype predictions required a benchmark set of known gene–

disease associations. If the secondary phenotype annotations improve the

phenotypic overlap of genes and diseases, the ROC curves used for the

evaluation should show an improvement. To generate the ROC curves,

we used the gene–disease associations contained in OMIM’s MorbidMap

file (http://omim.org/downloads), which was downloaded on July 20,

2013. This dataset comprised 3781 gene–disease associations, including

2530 genes and 3158 diseases.

2.2.3 Manual evaluation To evaluate some of the secondary pheno-

type predictions, we manually investigated some of the cases were the

predictability of known disease genes improved when adding the pre-

dicted secondary phenotypes. We chose five gene–disease associations

where the gene improved with respect to its rank for the disease and

looked based on which annotations the match between disease and

gene could be made. The information concerning the matched phenotype

annotations of a disease and a gene is contained in Supplementary

Material S1.

2.3 Implementation of PhenoDigm extension to provide

secondary phenotype predictions online

To enable access to the predicted secondary phenotypes, we imple-

mented an extension to our online tool PhenoDigm (Smedley et al.,

2013) that predicts causative genes for human heritable disorders.

The extension is, as well as the original tool, implemented using the

Play! Framework (http://www.playframework.com/) (version 1.2.5),

jQuery (http://jquery.com/) (version 1.6.4) and jQuery UI (http://jquer

yui.com/) (version 1.9.1). The secondary phenotype predictions were

imported into PhenoDigm’s underlying MySQL database (http://www.

mysql.com/) by extending the database schema. However, secondary

phenotype predictions are not incorporated into PhenoDigm’s disease

gene candidate predictions available from the web page, unless

experimentally confirmed and integrated into one of the phenotype an-

notation databases.

3 RESULTS

Applying association rule mining, we were able to identify 188

rules (provided in Supplementary Material S1) that lead to sec-

ondary phenotype hypotheses for 244 Sanger-MGP genes. In

total, we could predict 1967 novel gene–phenotype associations

containing 136 unique phenotypes that are not contained in

MGD. Out of these 1967 gene–phenotype relationships, 47

were covered by the taxonomy of the ontology, i.e. the predicted

phenotypes were ancestor concepts of annotations already used

for one particular gene. The 136 unique phenotype concepts span

23 of MGD’s 30 top level phenotypes, such as tumorigenesis

(MP:0002006), nervous system phenotype (MP:0003631) or

muscle phenotype (MP:0005369), showing the diversity of pheno-

types that could be added to the annotation of genes. The 136

phenotypes also cover different hierarchy levels in the ontology

spanning from the second to the 11th level, with the highest

group falling into level 6 (all measured as shortest distance

from the root node of the MP ontology). For example, adeno-

hypophysis hypoplasia (MP:0008365) as well as abnormal cranium

size (MP:0010031) are suggested as secondary phenotypes. In

general, the deeper an ontology term is the more specific is the

concept it is representing. This means that the predictions not

only span a variety of different high level phenotypes but also

add detailed information to the genes they are associated with

which allows for a better characterization of individual genes.

Supplementary Material S1 provides all the predicted secondary

phenotype annotations together with additional information

such as the high level phenotype, term name and frequency of

occurrence in the prediction dataset.

3.1 Predicted secondary phenotypes significantly improve

the biological coherence of gene clusters

In recent studies, phenotypes have successfully been applied

to determine disease gene candidates and gene function

(Smedley et al., 2013; van Driel et al., 2006). In order to asses

the validity and quality of the predicted secondary phenotype

annotations, we assessed the biological coherence of gene clus-

ters, built based on phenotype similarity between genes.

Applying the method described by Oti et al. first to the primary

phenotype annotations only, and then to both primary and

predicted secondary phenotype annotations, shows that the bio-

logical coherence of clusters increases when adding the predicted

secondary phenotype annotations. The obtained results are de-

picted in Figure 3.
In addition to calculating the biological coherence for both

datasets, we determined the significance of the fold-increase of

the coherence of the clusters. Using a two-sided Wilcoxon

signed-rank test (as implemented in R, �=0.05), we obtained

a P-value of 2.2� 10�16, indicating a significant improvement

when adding secondary phenotype annotations to the previously

confirmed in the primary phenotype scans. These results suggest

that the predicted secondary phenotypes possess biological val-

idity but will have to be experimentally verified in secondary

phenotype screens.
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3.2 Secondary phenotypes significantly improve the

predictability of disease gene candidates

In addition to assessing the biological coherence of gene clusters,

we also verified the predicted secondary phenotype annotations

by applying them in a second application use case: the prediction

of disease gene candidates. One tool that already uses the pri-

mary phenotype data of genes to predict disease gene candidates

is PhenoDigm (Smedley et al., 2013). To assess whether the sec-

ondary phenotypes possess biological validity, we first used only

the primary annotations to predict disease gene candidates and

then added the secondary phenotype annotations. For both pre-

dictions, we calculated the ROC curves, using gene–disease as-

sociations contained in MGD as benchmark dataset. Both the

obtained ROC curves are depicted in Figure 4. Applying a one-

tailed Student’s t-test (�=0.05) to the ROC curves, we obtain a

P-value of P=0.02.

3.3 The Coq9 mouse improves as a model for primary

coenzyme Q10 deficiency 5

To further assess the value added by the predicted secondary

phenotypes, we manually assessed diseases that show rank im-

provements for known causative genes. We determined the

number and particular phenotypes that could be matched be-

tween models and diseases, where causative genes improved in

the ranking as disease candidates. In the best case, the gene Coq9

(MGI:1915164) that has been recognized as a being disrupted in

cases of Primary coenzyme Q10 defiency 5 (COQ10D5;

MIM:#614654) improves from rank 181 to rank 2 based on

the secondary phenotype annotations. Using the annotations as-

signed in the primary screens, only one pair of matching

phenotypes can be determined: Hyperreflexia (HP:0001347)

and hyperactivity (MP:0001399). Applying in addition the pre-

dicted secondary phenotypes, other signs and symptoms of this

disease, such as Postnatal microcephaly (HP:0005484) and Left

ventricular hypertrophy (HP:0001712), are detected.
Another example for gene rank improvement is that the Cfh

(MGI:88385) gene was ranked in second place after adding the

predicted secondary phenotypes (rank 43 when using only pri-

mary phenotypes) for Complement factor H deficiency

(MIM:#609814). Including the predicted secondary phenotypes

allows for a coverage of the following additional phenotypes:

Thickening of the glomerular basement membrane (HP:0004722),

Progressive renal insufficiency (HP:0000106) and Hematuria

(HP:0000790). Interestingly, the Cfh gene is not only associated

with Complement factor H deficiency but also with Atypical

hemolytic uremic syndrome 1 (MIM:#235400), and adding the

secondary phenotype information, the gene also obtained an im-

proved rank for this disease (rank 177 with primary phenotypes

only and rank 41 with inserting secondary phenotype informa-

tion). From the improvement in both cases, we conjecture that

the secondary phenotypes cover correct functional aspects of the

gene that could not have been identified with the primary pheno-

type screens.
This information together with additional information for an-

other three diseases and their respective genes is provided in

Supplementary Material S1.

3.4 Browsing the secondary phenotype predictions online

To provide access to the secondary phenotype predictions,

we implemented an extension to our disease gene candidate

prediction tool PhenoDigm (Smedley et al., 2013). The results

can be browsed at http://www.sanger.ac.uk/resources/databases/

phenodigm/. The web interface provides all the genes that pos-

sess secondary phenotype candidates as a list and the user can

Fig. 3. Adding the predicted secondary phenotype annotation to the

Sanger-MGP genes with reference range annotations and using these to

create gene clusters based on phenotype similarity, improves the biolo-

gical coherence of the obtained gene clusters

Fig. 4. Accumulating the predicted secondary phenotypes together with

reference range annotations for Sanger-MGP genes improves the predict-

ability of causative disease genes using PhenoDigm
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select individual genes for further investigation. Upon selecting a

gene, the user is provided with all the details available for this

gene, i.e. diseases the gene has been confirmed to be a cause for,

phenotype annotations from the primary screens, the literature-

curated annotations from MGD and the suggested phenotypes

for secondary screens. Providing this information together, a

biologist or clinician could easily assess whether the secondary

phenotype candidates are worthwhile to be tested in a biological

experiment. Figure 5 provides a snapshot of the available gene-

centric information through PhenoDigm’s web interface.

4 DISCUSSION

In this study, we applied an association rule mining approach to

mine secondary phenotypes and computationally verify their bio-

logical validity using two automated and a limited manual evalu-

ation. We used the manually assigned phenotype annotations

contained in MGD for learning phenotype co-occurrence pat-

terns and merged the identified patterns with phenotypes that

were experimentally verified in primary screens and are available

from the Sanger-MGP (White et al., 2013).
Using data from particular resources creates dependencies to-

wards those data resources. For example, annotation guidelines

such as those employed by MGD ensure a consistency of human

annotators but can also create artefacts in the predictions gener-

ated from the data. In our particular case, we may find pheno-

type co-occurrence patterns that are intrinsic to annotation

guidelines and not purely due to their co-occurrence. This may

occur when the annotation guidelines cover rules that enforce a

set of phenotypes to be annotated in particular circumstances

instead of only one. However, as these guidelines exist to

ensure biological correctness of the data, we expect that those

cases still constitute biologically interesting, though known con-

nections between individual phenotypes.
The implementation of the secondary phenotype prediction

pipeline relies solely on an association rule mining approach.

Using the pipeline in conjunction with 7027 unique phenotypes

(see Section 2.1), the obtained result of 188 new rules seems

comparatively small. As the number of rules is directly related

to the settings for the apriori software, the number of potential

hypotheses may be increased by changing these parameters.

However, and as with any prediction tool, we applied conserva-

tive measures that would reduce the likelihood of creating false

hypotheses. In addition, starting with a small subset of rules

enables better verification possibilities and selection mechanisms

for biological experiment design. Potential areas of extension are

the incorporation of additional pattern recognition methods that

could then be used to form a support system and provide prov-

enance for identified patterns, e.g. only predictions that are made

by a number of systems are more likely to be secondary

phenotypes.

Using phenotype patterns to generate secondary phenotype

predictions implies that phenotypes that co-occur often with

each other, are likely to always co-occur. For some biological

phenomena this assumption has been validated, e.g. the correl-

ation of body weight with bone density or blood calcium levels

(Karp et al., 2012b). Given that the secondary phenotypes per-

form well in the evaluation, we feel that the assumption can still

be used for forming secondary phenotype hypotheses. However,

in future work we envisage a more complex filtering strategy for

assigning phenotype annotations using not only primary pheno-

types, but also gene function annotations and disease

Fig. 5. An extension of PhenoDigm’s web interface holds the secondary phenotype predictions
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involvement to reduce the number of falsely associated genes and
phenotypes in addition to voting from different prediction

algorithms.

4.1 Predicted secondary phenotypes improve the biological

coherence of the clusters

Using automated evaluation procedures that apply predictions in

biological use cases may mask-specific problems that can only be
spotted by human curators, e.g. if it is known that one particular

gene does not cause a particular phenotype in particular circum-

stances. However, the methods can provide a summarized judge-

ment over all the results instead of providing details for all cases.
As demonstrated by van Driel et al., clustering genes according

to phenotypes leads to clusters consistent with gene function and

protein interaction networks. The same evaluation mechanism

that has been applied here, had been successfully applied to assess

the quality of existing human phenome databases (Oti et al.,
2009). Using gene function annotation to determine biological

coherence is directly influenced by the number of annotations

available.

4.2 Secondary phenotypes improve the predictability of

causative disease genes

In addition to the use case of gene characterization, phenotype
annotations are applied to identify the underlying mechanisms of

human heritable diseases (Hoehndorf et al., 2011; Robinson

et al., 2013; Smedley et al., 2013; Washington et al., 2009). As

the primary screens only cover 20 SOPs, the outcome of pheno-

type annotations is limited by the screens. Using the predicted
secondary phenotype annotations may highlight phenotypes of

genes that are currently limiting the predictability of certain dis-

eases or groups of diseases. Our results show that adding the

secondary phenotype annotations improve the predictability of
disease genes and the characterization of genes on a phenotype

level can be improved with the suggested phenotypes. However,

experimental verification is necessary and assays would have to

be incorporated to test for the 137 identified phenotypes.

4.3 Secondary phenotypes further characterize genes

assessed with primary phenotyping

As illustrated with a small subset of selected diseases, adding the

predicted secondary phenotypes leads to an increase of matched

phenotypes between diseases and models. As discussed before,

these results indicate that the predictions indeed possess biolo-

gical validity and constitute good biological hypotheses to guide
the design of experimental setups for secondary screens. The se-

lection of diseases, however, was limited to the cases where an

improvement for the causative gene happened. In future work,

we will also have to extend our analysis to genes where no im-
provement or rank decrease was experienced. However, we note

here that the rank changes of known causative disease genes are

only indicators for performance changes and need manual inves-

tigation. Some of the OMIM diseases may possess multiple
causative genes, some of which have not yet been discovered

or listed in OMIM. As a consequence, those genes will be recog-

nized as false positives during the evaluation. If one of the causa-

tive genes that have not been listed in OMIM improves

tremendously over those genes that are listed, we could obtain
a rank decrease for genes that are listed in OMIM.

4.4 Future development of the PhenoDigm extension

The data have been made available through a web interface that

provides a gene-centric view on the data. All the predictions can

be assessed and are provided in the context of diseases and in-

formation about the primary phenotype screens for easy verifi-
cation and hypothesis derivation. As more data become

available, e.g. through additional automated, statistical screens

such as suggested by Karp et al., further information can be

included such as effect size and additional phenotype

annotations.
Furthermore, even though the annotations have been vali-

dated using the predicted secondary phenotype annotations in

PhenoDigm’s disease prediction algorithm, the disease gene can-

didate predictions based on the secondary phenotype data are

not yet available. A possible extension of the web interface in

future work could be the inclusion of these predictions. If the

predictions are included, possible new emerging disease groups

relevant for a gene could be easily spotted from the list and guide

new experiments.

5 CONCLUSION

Here, we presented a method to predict secondary phenotype

candidates based on existing large-scale phenotype annotation

sources and primary screens for genes. We verified the secondary

phenotype candidates by applying it in two use cases and could

demonstrate that the predictions add value in either use case and,

therefore, seem biologically relevant to the genes they are pre-

dicted for. We could show that the phenotype candidates not

only increase the biological coherence of gene clusters, but also

improve the candidate prediction of genes for human heritable

diseases. In conclusion, we provide a set of gene–phenotype as-

sociations that can be further assessed in biological experiments
and guide the experimental design to further investigate specific

genes or gene groups. All the data are freely available online

from http://www.sanger.ac.uk/resources/databases/phenodigm/.

In future work, we aim to further improve the method by

determining the best parameter settings for the association rule
learning, but also investigate other phenotype co-occurrence pat-

tern recognition methods. One possibility is the application of a

hypergeometric distribution and find support for patterns that

have been identified with the association rule mining approach.

We further intend to provide update results through the web

interface and improve the integration with other existing

resources.
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