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Background. Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The idea of
therapeutic angiogenesis in ischemic myocardium is a promising strategy for MI patients. Buyang Huanwu decoction (BHD), a
famous Chinese herbal prescription, exerted antioxidant, antiapoptotic, and anti-inflammatory effects, which contribute to
cardio-/cerebral protection. Here, we aim to investigate the effects of BHD on angiogenesis through the caveolin-1 (Cav-
1)/vascular endothelial growth factor (VEGF) pathway in MI model of mice. Materials and Methods. C57BL/6 mice were
randomly divided into 3 groups by the table of random number: (1) sham-operated group (sham, n = 15), (2) AMI group (AMI
+sham, n = 20), and (3) BHD-treated group (AMI+BHD, n = 20). 2,3,5-Triphenyltetrazolium chloride solution stain was used to
determine myocardial infarct size. Myocardial histopathology was tested using Masson staining and hematoxylin-eosin staining.
CD31 immunofluorescence staining was used to analyze the angiogenesis in the infarction border zone. Western blot analysis,
immunofluorescence staining, and/or real-time quantitative reverse transcription polymerase chain reaction was applied to test
the expression of Cav-1, VEGF, vascular endothelial growth factor receptor 2 (VEGFR2), and/or phosphorylated extracellular
signal-regulated kinase (p-ERK). All statistical analyses were performed using the SPSS 20.0 software and GraphPad Prism 6.05.
Values of P < 0 05 were considered as statistically significant. Results and Conclusion. Compared with the AMI group, the BHD-
treated group showed a significant improvement in the heart weight/body weight ratio, echocardiography images, cardiac
function, infarct size, Mason staining of the collagen deposition area, and density of microvessel in the infarction border zone
(P < 0 05). Compared with the AMI group, BHD promoted the expression of Cav-1, VEGF, VEGFR2, and p-ERK in the
infarction border zone after AMI. BHD could exert cardioprotective effects on the mouse model with AMI through targeting
angiogenesis via Cav-1/VEGF signaling pathway.

1. Introduction

Based on the fourth edition of universal definition of myocar-
dial infarction (MI), acute MI (AMI) was defined as having
clinical evidences of acute myocardial injury with at least
one of the following items: clinical symptoms of myocardial
ischemia, new ischemic changes in electrocardiogram
(ECG), development of pathological Q waves, imaging evi-
dences in accordance with an ischemic aetiology as new loss
of surviving myocardium or new regional ventricular wall

motion abnormality, and identification of a coronary throm-
bus by coronary angiography or autopsy [1]. Epidemiological
findings from National Health and Nutrition Examination
Survey 2011 to 2014 (National Heart, Lung, and Blood Insti-
tute tabulation) manifested that the overall prevalence of MI
was 3.0% in US adults greater than or equal to 20 years old
[2]. Reperfusion and revascularization therapy, including
thrombolysis and/or percutaneous coronary intervention
(PCI), should be administrated as quickly and effectively as
possible to limit infarct size or prevent complete occlusion
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[3]. Reduction in the mortality rate of AMI is one big success
story of modern medicine [3]. However, the process of
restoring coronary blood flow to the ischemic myocardium
may lead to myocardial ischemia/reperfusion (I/R) injury
such as myocardial stunning, no-reflow phenomenon, and
reperfusion arrhythmias. Several strategies such as pharma-
cological treatment and mechanical therapies could reduce
I/R injury in animal studies or small-scale clinical trials, but
the results are inconclusive [4]. Thus, there is still a need to
develop a novel cardioprotective strategy for AMI patients.

Angiogenesis is defined as the growth and proliferation of
new blood vessels from preexisting vascular structures [5].
Therapeutic angiogenesis refers to utilizing angiogenic
growth factors to increase the growth of collateral blood ves-
sels and promote new vascularization, so as to improve blood
flow and tissue perfusion [6]. Promoting angiogenesis in
ischemic myocardium that lack sufficient perfusion remains
a promising strategy for MI patients [7, 8]. Although there
will be a spontaneous angiogenic response in AMI which
could partly reestablish blood flow in myocardium, this
protective response is usually insufficient to restore the phys-
iological level of tissue perfusion [7]. However, limited
medical therapies have yet been proved to be able to success-
fully promote angiogenesis in AMI patients [9].

Growing evidences have shown that Chinese herbal med-
icines (CHM) could provide therapeutic effect on AMI by
targeting angiogenesis [10–12]. Buyang Huanwu decoction
(BHD), originally recorded in Yilin Gaicuo (Correction on
Errors in Medical Classics) written by Wang in 1830, is a
famous Chinese herbal prescription, has been used for the
treatment of various vascular diseases in China for hundreds
of years [13], and now is still being used in China and other
countries around the world. BHD is composed of seven kinds
of Chinese herbs (Table 1): (a) huang qi (radix astragali, the
dried roots of Astragalus membranaceus (Fisch.) Bunge),
(b) dang gui (radix angelicae sinensis, the dried lateral roots
of Angelica sinensis (Oliv.) Diels), (c) chi shao (radix paeo-
niae rubra, the dried roots of Paeonia lactiflora Pall), (d)
chuan xiong (rhizoma chuanxiong the dried rhizomes of
Ligusticum striatum DC), (e) hong hua (flos carthami, the
dried flowers of Carthamus tinctorius L), (f) tao ren (peach
kernel, the dried seeds of Prunus persica (L.) Batsch), and
(g) di long (Lumbricus, the dried bodies of Pheretima asper-
gillum (E. Perrier)), all of which are recorded in http://www
.theplantlist.org and Chinese Pharmacopoeia. Based on tradi-
tional Chinese medicine theory, BHD has the function of
invigorating the body, enhancing blood circulation, and acti-
vating Qi flow through energy meridians. Growing evidence
has suggested the cardio-/cerebral protective functions of
BHD in humans and animal models [14–22]. Recent studies
on pharmacology and biochemistry also have shown that the
protective functions of BHD on cardiocerebrovascular
disease at least in part through the following mechanisms:
antioxidant [18, 23, 24], antiapoptosis [25, 26], anti-
inflammatory [19, 27], and improving hemorheological dis-
orders [19]. An overview of systematic reviews indicated that
BHD could treat a wide range of vascular disorders such as
acute ischemic stroke and angina pectoris through targeting
vascularity [28]. Studies showed that BHD could promote

angiogenesis through increasing the expression of VEGF,
VEGFR2, Flk-1, bFGF, and angiopoietin-1 (Ang-1) in ische-
mic stroke models both in vivo and in vitro [14, 29–33]. The
regulation of BHD on the vascular endothelial growth factor
(VEGF) signaling pathway according to the pathway enrich-
ment analysis deserves to be studied in order to fully appre-
hend its latent capacity on treatment and its correlation
with angiogenesis [34].

Caveolin-1 (Cav-1), the signature protein of endothelial
cell caveolae, is involved in many physiological and patholog-
ical processes such as antifibrosis [35], inflammation [36],
and oxidative stress [37]. Recent studies [38, 39] have dem-
onstrated that Cav-1 is highly expressed in the vasculature
in the process of blood vessel growth and could regulate the
angiogenic activity of endothelial cells. Loss of Cav-1 would
lead to the inhibition of vessel development and vascular
remodeling [40]. Furthermore, Cav-1 plays a pivotal role in
the signaling pathway of VEGF/VEGFR2-stimulated angio-
genesis and is associated with angiogenic biological activities
[41]. Resveratrol, a Cav-1 agonist, significantly elevated
eNOS and VEGF protein levels in hypercholesterolemic rats
with focal myocardial ischemic injury [42]. These evidences
suggested that the Cav-1/VEGF pathway might play a critical
role in angiogenesis after myocardial ischemic injury. Thus,
in the present study, we aim to investigate the effects of
BHD on angiogenesis through the Cav-1/VEGF pathway
on the MI model of mice.

2. Materials and Methods

2.1. Animals. Thirty adult C57BL/6 male mice at 6-8 weeks of
age and 20-25 g weight were obtained from Shanghai Slack
Laboratory Animal Research Center and housed in the labo-
ratory animal center of Wenzhou Medical University. All the
mice were kept under 12 h light/dark cycles, temperature 22
± 1°C, and provided with food and water ad libitum. The
animals used were treated in accordance with the Guide for
the Care and Use of Laboratory Animals, published by the
National Institutes of Health (NIH). The study instructions
were approved by the Animal Ethics Committee of the labo-
ratory animal center of Wenzhou Medical University (num-
ber wydw2014-0058). All efforts were made to minimize the
suffering of animals used.

2.2. Drugs and Reagents. BHD which consists of huang qi
(radix astragali seuhedysari), dang gui (radix angelica sinen-
sis), chi shao (radix paeoniae rubra), chuan xiong (rhizoma
ligustici chuanxiong), hong hua (flos carthami), tao ren
(semen persicae), and di long (Lumbricus) with a dispensing
ratio of 120 : 6 : 4.5 : 3 : 3 : 3 : 3 was purchased from Sanjiu
Medical & Pharmaceutical Co. Ltd., Shenzhen, China
(granule preparations, approval number: country medicine
accurate character Z44020711); CD31 antibody (ab28364),
Cav-1 polyclonal antibody (ab2910), and VEGF polyclonal
antibody (ab46154) were purchased from Abcam (UK);
extracellular regulated protein kinases (ERK1/2) monoclonal
antibody (4695), phosphorylated extracellular regulated pro-
tein kinases (p-ERK1/2) monoclonal antibody (4370), glycer-
aldehyde phosphate dehydrogenase (GAPDH) monoclonal
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antibody (5174), and vascular endothelial growth factor
receptor 2 (VEGFR2) monoclonal antibody (2479) were pur-
chased from Cell Signaling Technology (USA).

2.3. AMI Model Establishment. Establishment of the AMI
model referred to the previous publication [43]. Briefly, mice
were anesthetized by isoflurane, and respiration was assisted
with a ventilator (Inspira, Harvard Apparatus, Holliston,
MA) in a volume-controlled mode at 80 strokes per minute.
After fixation, thoracotomy was done at the 3rd intercostal
space via the left lateral chest wall to expose the pericardium
and heart. The AMI model was established by perpetually
ligating the left anterior descending coronary artery (LAD)
in 2mm from its origin (near the main pulmonary artery)
with a 7-0 silk suture, resulting in the development of pale
color in the distal part of ligation.

All C57BL/6 mice (n = 55) were randomly divided into 3
groups by the table of random number: (1) sham-operated
group (sham, n = 15), the LAD was encircled by a 7-0 silk
suture without ligation; (2) AMI group (AMI+sham, n = 20
), gavage with 0.2ml 0.9% normal saline (once a day) 3 days
before modeling until 14 days after modeling; and (3) BHD-
treated group (AMI+BHD, n = 20), gavage with 0.2ml BHD
(20 g/kg, once a day) 3 days before modeling until 14 days
after modeling.

2.4. Doppler Echocardiography Study. Fourteen days after
modeling, mice undergo transthoracic echocardiography by
the M-mode transducer (Acuson Sequoia 512, Sonos, Ger-
many) after induction of anesthesia. At the papillary muscle
level, M-mode tracings through short-axis view were
recorded through the anterior and posterior left ventricle
(LV) walls to measure LV end-diastolic dimension (LVEDd),
LV end-systolic dimension (LVESd), LV fraction shortening
(LVFS), and LV ejective fraction (LVEF) with the Simpson
approach. All measurements were done by an experienced
doctor who was blinded to the experimental design.

2.5. Determination of Myocardial Infarct Size. Euthanasia
was done on the mice at 14 days after modeling through
intraperitoneal injection of excessive pentobarbital sodium.
The heart of the mice was separated from the aortic arch,
major blood vessels, and extracardiac connective tissue and
rinsed in phosphate-buffered saline to wash away the blood-
stain. The heart tissues were semifreezed in a −20°C freezer

for 30 minutes and then cut into 5 slices (1mm thick) in a
perpendicular way to the long axis. The slices were incubated
in 1% 2,3,5-triphenyltetrazolium chloride solution (TTC) at
37°C for 15 minutes. After carefully evaluating the whole sur-
face area, segments with brick red staining were identified as
viable (noninfarcted area) and those without staining were
identified as nonviable (infarcted area). Finally, the 3rd slice
of each heart was chosen to calculate the infarct size
infarcted area/ noninfarcted area + infarcted area by the
Image-Pro Plus 6.0 software (Media Cybernetics, Silver
Spring, USA).

2.6. Myocardial Histopathology. The left ventricle including
the region of MI was embedded in paraffin. The samples were
then sectioned into 5μm thick slices. Masson staining and
hematoxylin-eosin (HE) staining were applied separately.
Morphological changes of nuclei and cytoplasm around the
marginal zone of MI in HE staining were observed by an
optical microscope (Olympus, Japan). Image-Pro Plus 6.0
software (Media Cybernetics, Silver Spring, USA) was used
to calculate the percentage of collagen deposition around
the marginal zone of MI to assess the degree of fibrosis in
the infarcted myocardium.

2.7. Western Blot Analysis. Total protein isolated from the
myocardium was separated by SDS-PAGE and transferred to
a polyvinylidene difluoride (PVDF) membrane. The mem-
branes were then blocked with 5% fat-free milk and incubated
overnight at 4°C with primary antibodies including Cav-1
(1 : 1000), VEGF (1 : 1000), VEGFR2 (1 : 1000), GADPH
(1 : 10000), ERK1/2 (1 : 1000), and p-ERK1/2 (1 : 2000). After
washingwithTBST for three times, themembraneswere incu-
bated with secondary antibodies (1 : 10000) for 2 h at room
temperature. ChemiDoc™ XRS+ Imaging System was used
to visualize the signals. Javas freely available NIH ImageJ soft-
ware (NIH, Bethesda, MD, USA) was used to quantify the
intensity of immune reactivity.

2.8. Immunofluorescence Staining. After routine dewaxing
and hydration, the antigens in myocardial tissue sections
were repaired by sodium citrate buffer at 100°C. After wash-
ing thrice with PBS, tissues were treated with 3% hydrogen
peroxide for 30min. 1% bovine serum albumin (BSA) was
used to block the antigen. The tissues were then incubated
with CD31 antibody (1 : 300), Cav-1 antibody (1 : 500),

Table 1: Overview of Buyang Huanwu decoction.

Chinese name Common name Latin name/family/medicinal parts Amount (%)

Huang qi Radix astragali Astragalus membranaceus (Fisch.) Bunge/Leguminosae/dried roots 120 g (84.2%)

Dang gui Radix angelicae sinensis Angelica sinensis (Oliv.) Diels/Apiaceae/dried lateral roots 6 g (4.2%)

Chi shao Radix paeoniae rubra Paeonia lactiflora Pall/Paeoniaceae/dried roots 4.5 g (3.2%)

Chuan xiong Rhizoma chuanxiong Ligusticum striatum DC/Apiaceae/dried rhizomes 3 g (2.1%)

Hong hua Flos carthami Carthamus tinctorius L/Compositae/dried flowers 3 g (2.1%)

Tao ren Peach kernel Prunus persica (L.) Batsch/Rosaceae/dried seeds 3 g (2.1%)

Di long Lumbricus Pheretima aspergillum (E. Perrier)/dried bodies 3 g (2.1%)
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VEGF antibody (1 : 400), VEGFR2 antibody (1 : 200), and p-
ERK antibody (1 : 200) at 4°C and then followed by 60min of
incubation with Alexa Flour 647- or 488-conjugated anti-
body (1 : 400) at 37°C. To visualize the nuclei, the cells were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI)
for 5min in the dark. The images were captured using a
fluorescence microscope and then analyzed with the
Image-Pro Plus 6.0 software (Media Cybernetics, Silver
Spring, USA).

2.9. Real-Time Quantitative Reverse Transcription
Polymerase Chain Reaction (RT-qPCR). Total RNA was iso-
lated using the TRIzol reagent (Invitrogen, USA). RNA sam-
ples from each group were reverse transcribed into cDNA
using the PrimeScript™ RT reagent Kit (TAKARA, Japan).
Quantitative RT-qPCR was performed on a LightCycler
thermal cycler system (Bio-Rad, USA) using SYBR® Premix
Ex Taq™ II (TAKARA, Japan) and gene-specific primers.

Gene-specific primers were as follows: Cav-1: forward, 5′
-GACCTAATCCAACCATCAT-3′ and reverse, 5′-AGCA
AGAACATTACCTCAA-3′; VEGF: forward, 5′-GACTAT
TCAGCGGACTCA-3′ and reverse, 5′-AAGAACCAACC
TCCTCAA-3′; VEGFR2: forward, 5′-AATGATTGTTG
GCGATGAA-3′ and reverse, 5′-GTGAGGATGACCGT
GTAG-3′; and β-actin: forward, 5′-ACCTGCCCTTTAGA
ACTT-3′ and reverse, 5′-GCTCCAGGGACTATCTTT-3′.

2.10. Statistical Analysis. All data were expressed as mean ±
standard deviation (SD). Difference between two groups
was analyzed using two-tailed Student’s t-test. Multiple
groups were compared using one-way analysis of variance
(ANOVA) and followed by LSD post hoc comparisons when
appropriate. All statistical analyses were performed using the
SPSS 20.0 software and GraphPad Prism 6.05. Values of
P < 0 05 were considered as statistically significant.
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Figure 1: Survival rate and heart weight/body weight ratio at 14 days after AMI in mice (sham: n = 15, AMI: n = 15, and BHD+AMI: n = 18).
(a) The survival rate of mice in the BHD-treated group compared with the AMI group (log-rank: P = 0 0829); (b) the heart weight/body
weight ratio of mice (mean ± SD). ∗P < 0 05, compared with the sham group; #P < 0 05, compared with the AMI group.
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Figure 2: Continued.
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3. Result

3.1. Effect of BHD on the Survival Rate and the Heart
Weight/Body Weight Ratio after AMI. After 14 days, all mice
in the sham group survived, while the BHD-treated group
exhibited a trend towards an improved overall survival rate
after the induction of AMI, but differences did not reach

statistical significance (log-rank: P = 0 0829, Figure 1(a)).
The heart weight/body weight ratio was significantly
decreased in the BHD-treated group compared with the
AMI group (P < 0 05, Figure 1(b)).

3.2. Effect of BHD on Cardiac Function and Infarct Size after
AMI. As shown by echocardiography images (Figure 2(a)),
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Figure 2: Cardiac function and infarct size at 14 days after AMI in mice. (a) M-mode echocardiographic images of the mice in each group. (b)
The analysis of LVEF (n = 6). (c) The analysis of LVFS (n = 6). (d) The analysis of LVIDd (n = 6). (e) The analysis of LVIDs (n = 6). (f)
Representative image of infarct size by cardiac 2,3,5-triphenyltetrazolium chloride (TTC) staining. (g) The analysis of the infarcted size
(sham: n = 5, AMI: n = 5, and BHD+AMI: n = 6). ∗P < 0 05, compared with the sham group; #P < 0 05, compared with the AMI group.
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there was significant improvement of LVEF in the BHD-
treated group (75 65 ± 0 64%) compared with the AMI
group (39 40 ± 2 21%) at 14 days after AMI (Figure 2(b)).
Significant improvements in cardiac function were also
observed in LVFS, LVIDd, and LVIDs (P < 0 05). The infarct
size in the AMI group was 56 20 ± 2 26% (Figures 2(g) and
2(h)). Compared with the AMI group, the infarct size
(36 74 ± 1 22%) was markedly reduced in the BHD-treated
group (P < 0 05).

3.3. Effect of BHD on Histological Changes and Fibrosis in
Myocardial Tissue after AMI. ByHE staining, the AMI group
showed marked necrotic changes in myofibrils with severe
infiltration of inflammation and interstitial edema (Figure 3).
BHD-treated group exhibited only focal tissue necrosis,
mild inflammatory infiltration, and interstitial edema
(Figure 3). Compared with the AMI group, Mason staining
of the collagen deposition area on myocardial fibrosis was
significantly decreased in the BHD-treated group (P < 0 05
, Figures 4(a) and 4(b)).

3.4. Effect of BHD on Angiogenesis after AMI. To verify
whether myocardial protection of BHD is associated with
angiogenesis in the infarction border zone, the immunohis-
tochemical analysis was performed by CD31 staining. As
shown in Figure 5(b), the density of microvessel in the
BHD-treated group was much higher than that in the AMI
group (P < 0 05).

3.5. Effect of BHD on Expression of Cav-1, VEGF, VEGFR2,
and p-ERK in the Infarction Border Zone after AMI. Expres-
sion of Cav-1, VEGF, and VEGFR2 was elevated in the AMI
group compared with the sham group (P < 0 05). Further-
more, the expression of Cav-1, VEGF, and VEGFR2 was fur-
ther increased in the BHD-treated group compared with the
AMI group (P < 0 05, Figures 6(a) and 6(b)). BHD treatment
promoted the phosphorylation of ERK compared with the

AMI group (P < 0 05, Figures 6(c) and 6(d)). Immunofluores-
cence indicated that the integrated optical density of Cav-1
(Figures 7(a) and 7(e)), VEGF (Figures 7(b) and 7(f)),
VEGFR2 (Figures 7(c) and 7(g)), and p-ERK (Figures 7(d)
and 7(h)) was significantly increased in the BHD-treated
group compared with the AMI group (P < 0 05). RT-PCR
showed that the mRNA level of Cav-1 (Figure 8(a)), VEGF
(Figure 8(b)), and VEGFR2 (Figure 8(c)) in the BHD-treated
group was significantly increased compared with the AMI
group (P < 0 05).

4. Discussion

During AMI, the damage inflicted on the myocardium
results in two processes: ischemia and the following reperfu-
sion (I/R) [44]. The edema/sarcolemma rupture, calcium
overload/hypercontracture, mitochondrial dysfunction, pro-
teolysis (caspase, calpain), and apoptosis lead to a large
amount of reduction of cardiomyocytes. And, the embolism,
vasomotor disorder, leukocyte adherence/infiltration, stasis,
and capillary rupture/hemorrhage appeared in coronary
vascular caused severe myocardial injury [45]. Thus, cardio-
vascular protection drugs generally work through one or
combined aspects of the above targets. In the present study,
BHD reduced the myocardial fibrosis and inflammation, pro-
moted angiogenesis in the infarction border zone via Cav-
1/VEGF signaling pathway, then reduced the MI size, and
improved the cardiac function. It may be because of these
improvements that we finally observed a trend towards an
improved overall survival rate of the BHD-treated group.

Cav-1 is a major component of the caveola membrane
that is expressed in the majority of differentiated cells [46]
and plays an important role in regulating the cellular signal
transduction, endocytosis, transcytosis, and molecular trans-
port [47]. The cardioprotective effects of Cav-1 in ischemic
heart disease have been well reported [48] in both mouse
and human specimens; an increase of Cav-1 in an infarcted
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Figure 3: Histological changes in myocardial tissue at 14 days after AMI in mice (sham: n = 4, AMI: n = 4, and BHD+AMI: n = 6).
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area was detected in the early stage of MI [38]. Several studies
have shown that the activation or preservation of Cav-1
played a protective role in myocardial I/R injury [49–51].
Subsequently, compared with the wild-type mice, Cav-1-/-

mice showed a more severe cardiac dysfunction and a lower
survival rate after MI [52]. In Cav-1-/- mice, a low-intensity
pulsed ultrasound, which is a potential cardiac protection
strategy, presented absent cardioprotective effects after myo-
cardial ischemic injury [38]. Cav-1 is also a vital regulator of
vascular endothelial homeostasis which controls angiogene-
sis and vessel function [53]. The adverse influence on angio-
genesis after Cav-1 knockout has been confirmed in multiple
disease models, including hindlimb ischemia [54], sclero-
derma fibroblasts [55], colitis [39], AMI [38], and cerebral
ischemia [56]. In the present study, BHD increased angio-
genesis and the expression of Cav-1 in the infarction border
zone, suggesting that the cardioprotective effect of BHD tar-
geted angiogenesis by Cav-1.

Previous studies also indicated that Cav-1 could reduce
infarct volume and promote angiogenesis through the VEGF
signaling pathway [57, 58]. Recent studies showed that the
expression of Cav-1 and VEGF was significantly decreased
after the use of the caveolin-1 inhibitor, resulted in increase
in neurological deficit and infarction volume [59–61]. Other
studies also confirmed this phenomenon at the genetic level.
The ablation of Cav-1 gene in mice could result in an impair-
ment in angiogenesis and reduction of VEGF expression [56,
62]. VEGF is a pivotal regulator of blood vessel formation
during embryogenesis and angiogenesis [63]. Lots of evi-
dences have shown that VEGF, through combining with its
receptor VEGFR2, could trigger multiple downstream signals
such as p-ERK, thereby promoting angiogenesis [64–66].
Taken together, these results indicate that Cav-1 could pro-
mote angiogenesis by upregulating the VEGF signaling path-
way. The present study indicated that BHD increased the
CAV-1, VEGF, VEGFR2, and p-ERK in the infarction border
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Figure 4: Fibrosis in myocardial tissue at 14 days after AMI in mice (mean ± SD; sham: n = 4, AMI: n = 4, and BHD+AMI: n = 6). (a)
Representative images of Masson’s trichrome staining. (b) Quantitative analysis of the collagen deposition area. #P < 0 05, compared with
the AMI group.
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Figure 6: Western blot analysis of Cav-1, VEGF, VEGFR2, and p-ERK1/2 expression in the infarction border zone at 14 days after AMI in
mice (mean ± SD, n = 6). (a) Western blot analysis of the expression of Cav-1, VEGF, and VEGFR2. (b) Quantitative analysis for the western
blot results of Cav-1, VEGF, and VEGFR2. (c) Western blot analysis of the expression of p-ERK1/2. (d) Quantitative analysis for the western
blot results of p-ERK1/2. ∗P < 0 05, compared with the sham group; #P < 0 05, compared with the AMI group.
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Figure 7: Immunofluorescence staining of Cav-1, VEGF, VEGFR2, and p-ERK1/2 in the infarction border zone at 14 days after AMI in mice
(mean ± SD; sham: n = 4, AMI: n = 4, and BHD+AMI: n = 6). (a) Immunofluorescence staining of Cav-1. (b) Immunofluorescence staining of
VEGF. (c) Immunofluorescence staining of VEGFR2. (d) Immunofluorescence staining of p-ERK1/2. (e) Quantitative analysis of Cav-1. (f)
Quantitative analysis of VEGF. (g) Quantitative analysis of VEGFR2. (h) Quantitative analysis of p-ERK1/2. ∗P < 0 05, compared with the
sham group; #P < 0 05, compared with the AMI group.
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Figure 8: The mRNA expression of Cav-1, VEGF, and VEGFR2 at 14 days after AMI in mice (mean ± SD, n = 6). (a) The mRNA expression
of Cav-1. (b) The mRNA expression of VEGF. (c) The mRNA expression of VEGFR2. ∗P < 0 05, compared with the sham group; #P < 0 05,
compared with the AMI group.
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zone, suggesting that BHD could promote angiogenesis
through the Cav-1/VEGF pathway.

Herbal formulae, with multicomponents and multitar-
gets, may potentially satisfy the demands of complex disease
treatment in an integrated manner. Furthermore, investiga-
tion on new molecular targets and principles indicated that
a single angiogenic substance might be insufficient for induc-
ing therapeutic angiogenesis [67]. Hundreds of constituents
have been identified in BHD such as polysaccharides, astra-
galosides, and isoflavonoids in radix astragali seuhedysari
[68], as well as phthalides and phenolic acids in radix angel-
icae sinensis and rhizoma ligustici chuanxiong, etc. [69, 70].
Network pharmacology can forecast multiple targets and
pathways affected by the active components in TCM formu-
lae. Among them, key targets/signaling pathways might be
selected and should be experimentally validated.

5. Conclusion

The present study demonstrated that BHD could exert cardi-
oprotective effects on the mouse model with AMI through
targeting angiogenesis via Cav-1/VEGF signaling pathway.
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