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ABSTRACT Mycobacteriophage phiT45-1 is a newly isolated bacteriophage sponta-
neously released from Mycobacterium abscessus strain Taiwan-45 that lytically infects
M. abscessus strain BWH-C; phiT45-1 also infects M. abscessus ATCC 19977 but not
Mycobacterium smegmatis. Phage phiT45-1 has a 43,407-bp genome and carries a
polymorphic toxin-immunity cassette associated with type VII secretion systems.

Nontuberculous mycobacteria (NTM) are mycobacterial species that do not cause
tuberculosis or leprosy (1). Among the many NTM pathogens, Mycobacterium

abscessus is often antibiotic resistant and refractory to treatment. M. abscessus infec-
tions are frequent among cystic fibrosis patients and those with bronchiectasis and
can disseminate in immunosuppressed patients (2, 3). The robust nature of M. absces-
sus contributes to the prevalence of latent infections and the evolution of multidrug-
resistant (MDR) strains (1). The rise of antibiotic resistance in M. abscessus cases has
prompted consideration of mycobacteriophages—viruses that infect mycobacteria—
as a therapeutic alternative (4).

It is not uncommon for strains of M. abscessus to contain prophages (5), and sponta-
neous release of phage particles from such strains has been previously described (6).
Phage phiT45-1 was isolated by plating culture supernatant from M. abscessus Taiwan-
45 onto a lawn of M. abscessus strain BWH-C (both provided by Chidiebere Akusobi
and Eric Rubin) on solid medium at 37°C using standard methods (7). Phage were
picked from infected areas, plaque purified, and amplified on BWH-C (7), followed by
DNA extraction using the Wizard DNA cleanup system (catalog no. A7280; Promega,
Madison, WI). Sequencing libraries were prepared from genomic DNA by using a
NEBNext Ultra II FS kit with dual-indexed barcoding. Forty-eight libraries were pooled
and run on the Illumina MiSeq platform, yielding 192,000 single-end 150-bp reads and
500-fold coverage of the genome. The raw sequence reads were assembled using
Newbler v2.9 with default settings, yielding a single phage contig of 43,407 bp with
65% G1C content. The contig was assessed for completeness, accuracy, and phage
genomic termini determination using Consed v29 as previously described (8); the viral
genome sequence has defined ends with 10-base 39 single-strand extensions. Protein-
coding genes were identified using GeneMarkS v4.30 (9), Glimmer v3.02 (10), the
Phamerator database Abscessus_phage_and_prophage v3 (11, 12), and DNA Master
v5.23.5 (http://cobamide2.bio.pitt.edu) (Fig. 1). Putative functions were assigned to
52% of the 66 protein-coding genes using BLAST (13) and HHpred (14, 15). No tRNA
genes were identified by ARAGORN v1.2.41 (16). All tools were run with default param-
eters unless otherwise stated.

Phage phiT45-1 does not have overall similarity (all BLASTN bit scores of ,190) to
phages isolated on M. smegmatis (17), although its portal, capsid maturation protease,
and capsid proteins (4, 5, and 6, respectively; Fig. 1) share .60% amino acid identity
with cluster N mycobacteriophages, which have genome sequence lengths similar to
that of phiT45-1 (18, 19); like cluster N phages, phiT45-1 also has a siphoviral morphol-
ogy (family Siphoviridae) (Fig. 1). Early lytic genes include a RecET-like recombination
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system (48 and 49) and several predicted HNH endonucleases (57, 59, 60, 65, and 66;
Fig. 1). The presence of a tyrosine integrase (34) and immunity repressor (35) is consist-
ent with phiT45-1 being temperate. Interestingly, phiT45-1 codes for a polymorphic
toxin (PT) cassette, including an immunity protein (30), a polymorphic toxin (31) with
RipA-like and WXG-100 domains (20, 21), and a WXG-100 protein (32) (22), situated
close to the integrase and repressor genes, and likely lysogenically expressed; phiT45-1
gp31 and gp32 are presumably exported via a type VII secretion system. A similar PT
system has been reported for M. abscessus phage phiT46-1 (6).

Data availability. Phage phiT45-1 is available at GenBank under accession no.
MW570842 and BioProject accession no. PRJNA488469. The sequencing reads are avail-
able in the SRA under accession no. SRX10050651.
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