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Abstract: Nanostructured materials have wide potential applicability as field emitters due to their
high aspect ratio. We hydrothermally synthesized MoS2 nanoflowers on copper foil and characterized
their field emission properties, by applying a tip-anode configuration in which a tungsten tip with
curvature radius down to 30–100 nm has been used as the anode to measure local properties from
small areas down to 1–100 µm2. We demonstrate that MoS2 nanoflowers can be competitive with
other well-established field emitters. Indeed, we show that a stable field emission current can be
measured with a turn-on field as low as 12 V/µm and a field enhancement factor up to 880 at 0.6 µm
cathode–anode separation distance.

Keywords: transition metal dichalcogenides; MoS2; nanoflower; field emission

1. Introduction

The layered materials of the transition-metal dichalcogenides (TMDs) family have attracted
enormous attention for their physical and chemical properties [1,2]. TMDs have a 2H crystal structure
and chemical composition MX2 (where M is a transition metal atom and X is a chalcogen atom);
M atoms are covalently bonded to six chalcogen atoms to form X–M–X sandwich layers. The bulk
materials are the result of the stacking of monolayers by weak van der Waals forces. The transition
metal (Mo, W, Ti, Nb, etc.) and the chalcogen (S, Se, Te) determine TMD properties such as the band
gap, the electron mobility or the thermal and chemical stability. Consequently, it is possible to obtain
metals (NbS2, VSe2), semimetals (WTe2, TiSe2), semiconductors (MoS2, WS2), and superconductors
(NbSe2, TaS2). Moreover, physical properties may be layer-dependent. For instance, for MoS2 there is
a transition from an indirect bandgap (of 1.3 eV) in the bulk material to a direct gap (1.8 eV) in the
monolayer [3]. TMD materials have demonstrated their suitability for several applications, such as
energy storage [4,5], lithium-ion batteries [6], field effect transistors [7–13], electrocatalysis [14,15], gas
sensors [16,17], solar cells [18], memory devices [19,20], and photodetectors [20,21]. Moreover, TMD
nanostructures have very different behaviors in terms of electronic, optical and chemical properties,
depending on the morphology. These can be monolayers [7,22–24], nanoflakes [25], nanotubes [26,27],
and nanoflowers [28–30]. In particular, MoS2 nanoflowers (NFs) have been reported to have good
lithium storage properties [30]. This can be exploited for high-performance anodes, as well as an
efficient catalytic activity for hydrogen evolution reactions [31]. Several studies have also focused the
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attention on the field emission (FE) properties of MoS2 NFs [32,33]. Indeed, almost all conducting
or semiconducting nanostructures are good candidates as field emitters due to the high aspect
ratio that locally favors electric field enhancement [34]. Examples investigated in detail include
single carbon nanotube (CNT) [35,36], CNT films [37–41], nanowires [42,43], nanoparticles [44,45],
and graphene [45–48]. Conversely, FE properties of MoS2 have not until now been investigated in
detail. Only a few studies report FE measurements on MoS2 flakes [49–51], nanoflowers [32,33], and
edge-terminated vertically aligned (ETVA) films [52].

In this paper, we report a detailed characterization of the field emission properties of
hydrothermally synthesized MoS2 nanoflowers. The flower-like configuration provides a great
number of nanoflakes with free open edges suitable for high current emission. Moreover, the use of a
tip-shaped anode makes it possible to collect current emitted from small areas (from 1 to 100 µm2)
with higher spatial resolution than a standard parallel plate set-up. We show that MoS2 nanoflowers
are suitable materials for easy-to-fabricate cold cathodes featuring turn-on field as low as 12 V/µm and
a field enhancement factor up to 880 for a cathode–anode separation distance of 600 nm.

2. Materials and Methods

MoS2 was synthesized using ammonium molybdate ((NH4)6Mo7O24·4H2O) and thiourea
(CH4N2S) (by Sigma Aldrich, UK). A standard procedure was used, whereby (see Figure 1a) 0.70 g of
ammonium molybdate and 4.48 g of thiourea were dissolved in deionized water (70 mL). The solution
was stirred until a clear solution was obtained. Subsequently, the solution was transferred to a Parr
5500 hydrothermal reactor for 12 h at 220 ◦C at a pressure of 40 bar. Finally, the precipitated product,
MoS2, was washed with water and ethanol and dried. A scanning electron microscope (SEM, LEO
1530, Zeiss, Oberkochen, Germany) was used to image the samples revealing several MoS2 flower-like
nanostructures distributed on the surface (Figure 1b) with nanosheet dimensions that were statistically
estimated as 100–200 nm for height and 5–10 nm for thickness.

Figure 1. (a) Schematic of the MoS2 synthesis by the hydrothermal method; (b) Scanning electron
microscope image of a MoS2 nanoflower.

The surface elemental composition was analyzed by X-ray photoelectron spectroscopy (XPS).
Measurements were taken using a PHI 1257 system equipped with a hemispherical analyzer (Physical
Electronics Inc., Chanhassen, MN, USA) and a non-monochromatic Mg Kα source (hν = 1253.6 eV)
and operated with a base pressure in the chamber of 10−9 Torr.

Field emission measurements were performed inside the SEM chamber (Zeiss LEO 1430,
Oberkochen, Germany), at a pressure of 10−6 Torr and at room temperature, using two tungsten tips
as electrodes (curvature radius of tip apex below 100 nm). These were mounted on piezo-driven
nano-manipulators (Kleindeik MM3A, Reutlingen, Germany) allowing fine movements with 5 nm
step resolution. The electrical measurements were performed by means of a semiconductor parameter
analyzer (Keithley 4200-SCS, Beaverton, OR, USA) in the bias range ±120V and with current resolution
of about 10−14 A.
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3. Results and Discussion

3.1. XPS Characterization

The surface chemical properties of MoS2 nanoflowers were analyzed by XPS (results are shown
in Figure 2). Spectra were acquired with a pass energy of 23.50 eV (overall experimental resolution
of 0.8 eV), calibrated to the C 1s core level peak (284.8 eV) of the adventitious carbon [53] and fitted
with the Voigt profile on a Shirley-type background [54]. The calibration value to give the binding
energies (BE) is obtained by the fit of the C 1s spectrum (Figure 2a). C 1s core level spectra reveal
several chemical states of carbon with a dominant lowest-BE peak due to carbon C–C and less intense
contributions that appear at higher BE due to the presence of carbon functional groups [53]. The
O 1s fitted peaks located at 530.2, corresponding to the C=O and Mo–O bonds, 531.8 and 533.2 eV
correspond to the energy of oxygen in C–O–C and OH–C bonds, respectively (Figure 2b).

Figure 2. XPS Characterization of MoS2 nanoflowers. Component peak-fitting of XPS spectra is shown
for (a) C 1s region where C–C, C–OH, C–O–C, C=O, C=O(OH) and C–F are visible; (b) O 1s; (c) Mo 3d;
(d) S 2p. Black solid lines represent the overall fit of experimental data (scattered points). The various
peaks under the overall fitting curves represent the various components assumed to exist.

The high-resolution XPS spectra for Mo 3d and S 2p are shown in Figure 2c,d, respectively. The Mo
3d spectrum (Figure 2c) exhibits two strong characteristic emission peaks at 232.7 (corresponding to Mo
3d3/2) and 229.6 (corresponding to Mo 3d5/2) eV. These BE values are consistent with electrons of Mo4+

for MoS2 [55]. Additionally, in this region, the S 2s peak at a binding energy of 226.6 eV corresponding
to MoS2 is also observed [55]. Another small contribution appears at binding energies of about 233 and
236 eV, and this is attributed to the presence of MoO3 [56,57]. Indeed, in the O 1s core-level spectrum, a
weak peak at 530.9 eV shows a very small presence of MoO3 (O2− oxidation state). In Figure 2d, the S
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2p spectrum is shown, where the double peak corresponding S 2p1/2, and S 2p3/2 are clearly identified
at 163.4 and 162.2 eV, respectively, with 1.2 eV spin–orbit energy separation corresponding to MoS2

(S2− oxidation state) [58]. The XPS results are consistent with data already reported for MoS2 single
crystals, indicating that the nanosheets are in the semiconducting 2H phase [59]. From the XPS data, it
is possible to evaluate the elemental atomic concentration by:

Cx(%) =

Ix
Sx∑n

i=1
Ii
Si

× 100

where Cx is the atomic concentration of the x element, Ix is the peak area of the considered element and
Sx is the relative sensitivity factor. Therefore, considering the peak area in the XPS data of Figure 2 and
taking into account the respective sensitivity factors Sx for the 3d peak of Mo and the 2p peak of S
that are 3.544 and 0.717, respectively, we obtained an atomic concentration of 32.7% and 67.3% for Mo
and S, respectively. Therefore, a stoichiometric ratio of Mo/S = 0.49 confirms the presence of the MoS2

compound.

3.2. Field Emission Characterization

FE measurements on MoS2 NFs were performed at room temperature inside the SEM chamber by
contacting one of the two available W-tips directly on the sample surface (cathode) and positioning
the second W-tip (anode) at a distance d from the surface (Figure 3a). The cathode–anode separation
distance d can be precisely measured through SEM imaging by rotating the sample with respect the
electron beam to have such distance almost perpendicular to the beam. Initially, both tungsten tips
were approached on different areas of a MoS2 NF (schematic is given as inset of Figure 3b) in order
to measure a standard two-probe current-voltage (I-V) characteristic, to check the conductivity of
the sample. We found linear ohmic behavior corresponding to a total resistance RTot of about 90 kΩ
(Figure 3b). For comparison, we repeated the measurements using Au-tips and we found once again
a linear ohmic behavior with RTot ≈ 6 kΩ. For the FE experiment, we chose the W-tips because of
the availability of a tip apex with a very small radius of curvature (~100 nm). Indeed, it has been
demonstrated [60] that the use of a tip-shaped anode allows the extraction of FE current from small
areas (down to 1 µm2 and less) depending on the tip curvature radius and on the cathode–anode
separation distance. Consequently, the tip-shaped anode setup allows to obtain local information
about the FE properties with respect to the standard parallel plate setup that typically probes areas of
several mm2. Moreover, smaller areas favor the possibility of probing the emitters with lower field
amplification factors (<50), which are usually not detected because on large areas (of the order of mm2),
they are hidden by protruding strong emitters with β ∼500-1000 that are often present.

In the following, FE characteristics will be analyzed in the framework of the Fowler-Nordheim (FN)
theory [61], in which the dependence of the FE current I on the applied bias voltage V is expressed as:

I = A·a
β2V2

ϕd2 exp
(
−b d

ϕ3/2

βV

)
, (1)

where A is the emitting area, a = 1.54× 10−6AV−2eV and b = 6.83× 109eV−3/2m−1V are constants, ϕ is
the work function of the emitting surface (we assume ϕ = 5.25 eV [49]) and β is the field enhancement
factor, which takes into account the electric field amplification at the tip apex of the emitter. According
to the model, a linear FN-plot, i.e., ln

(
I/V2

)
vs 1/V, with slope m = −

(
bdϕ3/2

)
/β is expected if the

measured current is due to the FE phenomenon. Despite that this model was derived considering
the electronic emission achieved from a flat metallic surface through a triangular potential barrier
at zero kelvin, the FN theory has proven to be a valid model for achieving a first-approximation
understanding of the emission phenomena from several nanostructures. The model is still widely used
today, although corrections would be required to take into account the effects of non-zero temperature,
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series resistance, inhomogeneous work functions, extreme curvatures, and different dimensionality of
the emitters [62–67].

Figure 3. (a) Schematic of the FE measurement setup; (b) I-V characteristics measured by contacting
both electrodes on the sample surface; (c) FE curve measured as first voltage sweep in a virgin area of the
sample. Three successive regions of emission are identified. Black arrows indicate the turn-on voltage
for each region. Black empty circles are experimental data measured in open circuit configuration.
Black solid lines are the numerical simulations according to FN-theory (Equation (1)); (d) FN-plots for
the different regions. Solid lines are the linear fittings; (e) FE curve measured in a different location
after the initial electrical stress; (f) Three consecutive voltage sweeps measured in a third different
location always after electrical stress to show the FE repeatability.

To perform the FE measurements, one of the W-tips is retracted from the surface to act as the anode
and the separation distance d is finely tuned by means of the piezo-controlled nano-manipulators. The
I-V characteristics are obtained by sweeping the voltage bias applied on the suspended W-tip (anode)
from 0 to a maximum value of 120 V (to prevent setup damages) and measuring the FE current. We
systematically observed that the first I-V characteristic measured in a virgin area is always characterized
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by a significant instability. As an example, we show in Figure 3c a curve measured at a separation
distance d = 600 nm: We observe that the emission started at 7 V (turn-on field Eon ≈ 12 V/µm) and
rapidly increases for more than six orders of magnitude, in a bias window of about 20 V. In this bias
range, there is also an abrupt current raise of about one order of magnitude observed at 15 V. At an
applied bias of 26 V, there is a first sudden drop of the emitted current (from the maximum current
4.5 × 10−7 A) to the floor noise (~10−13 A) of the system (black empty circles in Figure 3c represent the
experimental data measured in open circuit configuration, i.e., having the suspended W-tip far away
from the surface).

By continuing the raising voltage sweep, a second turn-on is visible (Eon ≈ 45 V/µm), with the
emitted current raising in the voltage range 28–40 V again for about six orders of magnitude up to
a maximum current of about 1.3 × 10−7 A before a second sudden drop to the floor noise with no
current emission. Finally, a third emission region is obtained for the bias range between 40 V and 50 V
(Eon ≈ 67 V/µm). In this case, lower current (1.4 × 10−10 A) is reached before the drop. For all these
three regions (identified in Figure 3c), we compare the experimental results (colored scattered points)
with the FN theoretical expectation from Equation (1) (black solid lines) to confirm the FE nature
of the measured current. In Figure 3d, we show the FN-plots corresponding to the three different
regions indicated in Figure 3c. All FN-plots have a clear linear behavior (solid lines represent the
numerical linear fitting of the experimental data). The electrical conditioning of the sample surface, as
described above, is a standard procedure used to stabilize the behavior and the performance of large
area emitters [40,60,68,69], in order to modify the surface towards a more homogeneous configuration
that allows repeatability of the measurements. The observed features, with several turn-ons in the same
voltage bias sweep, are explained in terms of non-uniform array of emitters, with few protruding MoS2

platelets with respect to the multitude of the nanoflower. Indeed, the screening effect in non-uniform
arrays may cause many emitters to become idle emitters, while several protruding platelets are
overloaded by carrying all current. Consequently, such emitters can burn out and/or evaporate by
Joule heating [68,69]. However, the overall structure of NFs remains unchanged, with no variations
being visible by SEM imaging. We notice that when a protruding emitter is burned by the too high a
current density, new emitters (previously idle) become active. However, due to a larger separation
from the anode, they need a higher turn-on voltage to start the emission. From the linear fitting of the
FN plots we can also estimate the field enhancement factor for the three different regions. As expected,
the larger value is obtained for the more protruding flake, with β ≈ 550. For a more accurate estimation,
we also have to take into account the correction factor due to the tip-shaped anode setup. In such a
case, a correction factor ke f f = 1.6 has to be considered [60] in the expression that relates the slope of

the FN plot and the field enhancement factor m = −
(
ke f f bdϕ3/2

)
/β, obtaining β ≈ 880. For the other

voltage regions, (II) and (III), we found β ≈ 72 and β ≈ 37, respectively. The lower field enhancement
factor is responsible for the larger turn-on field requested to start the emission and it is explainable in
terms of enhanced electrostatic screening effect provoked by the proximity of platelets to each other.

In Figure 3e we show a FE characteristic measured in the bias range 0–120 V after the electrical
conditioning of the surface. The emission never drops to the noise floor, despite some fluctuations still
being present, probably due to the desorption of adsorbed species, caused by sample heating and/or
stretching and re-orientation of platelets. In particular, adsorbates [40,41] are usually present on the
surface, originating regions with reduced work-function (and increased enhancement factor) that can
cause the FE current instabilities. The observed FE current drops (of about one order of magnitude) are
probably due to the evaporation of adsorbates from the sample surface, being more evident at larger
current because caused by the local increase of temperature. However, several successive electrical
sweeps are usually effective to stabilize the FE characteristics, as demonstrated in Figure 3f in a different
sample area. Reporting three successive voltage sweeps clearly demonstrates reproducibility and
is in agreement with the expected FN behavior (solid line). Interestingly, for all curves reported in
Figure 3e,f, we found that the field enhancement factor was β ≈ 38 and β ≈ 37, respectively, with
the cathode–anode separation distance always being 600 nm. These data demonstrate that the FE
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characteristics measured on small areas of MoS2 NFs are clearly reproducible after the electrical
conditioning. In Table 1, we summarize the values of the slope m resulting from the linear fitting of
the FN-plots for the experimental data of Figure 3 and the consequent extracted β values, with the
separation distance d being fixed at d = 600 nm.

Table 1. Summary of FE parameters for curves of Figure 3.

Data Slope m of Linear FN Plot Field Enhancement Factor β

Figure 3c Region(I) −89 880
Figure 3c Region (II) −1098 72
Figure 3c Region (III) −2150 37

Figure 3e −2030 38
Figure 3f −2121 37

Finally, we verified the effect of tuning the separation distance on the FE characteristics. In Figure 4a,
we show the I–V curves measured by increasing the distance d to 800 nm and to 1100 nm. The numerical
fittings (solid lines) confirmed that experimental data are a signature of field-emitted current according
to the FN model, as also demonstrated by the linear behaviors of the corresponding FN plots in the
inset. We established that at these distances, a turn-on field above 80 V/µm is necessary to extract
the current from the NFs while the field enhancement factor shows a decreasing trend for increasing
distance, so that β ≈ 11 at d = 1100 nm.

Figure 4. Effect of cathode–anode separation distance variation on the FE I-V characteristics. (a) Curves
are measured for d = 800 nm and 1100 nm and are compared to theoretical FN behavior (solid lines).
Inset: FN-plots and linear fittings. (b) Dependence of the turn-on field and of the field enhancement
factor on the cathode–anode separation distance d in the range 600 nm–1100 nm.

4. Conclusions

We performed field emission characterization of hydrothermally synthesized MoS2 nanoflowers,
with sheets having typical size between 100–200 nm, and thickness 5–10 nm. Using a tip-shaped anode
setup, we demonstrate that small areas, down to 1 µm2, can be probed, evidencing the presence of few
protruding strong emitters characterized by field enhancement factor up to 880 that allow emission at
turn-on field as small as 12 V/µm. After the electrical annealing that burns out the strong emitters,
idle emitters become active, but due to the electric screening effect, larger field is necessary to extract
electrons from the MoS2 nanosheets. We demonstrate that the flower-like configuration provides
a great number of nanoflakes with free open edges suitable for high current emission opening the
technological scenario to realize large area emitting cold cathodes.
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