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Abstract

Codon substitution models have traditionally attempted to uncover signatures of adaptation within protein-coding
genes by contrasting the rates of synonymous and non-synonymous substitutions. Another modeling approach, known as
the mutation–selection framework, attempts to explicitly account for selective patterns at the amino acid level, with
some approaches allowing for heterogeneity in these patterns across codon sites. Under such a model, substitutions at a
given position occur at the neutral or nearly neutral rate when they are synonymous, or when they correspond to
replacements between amino acids of similar fitness; substitutions from high to low (low to high) fitness amino acids
have comparatively low (high) rates. Here, we study the use of such a mutation–selection framework as a null model for
the detection of adaptation. Following previous works in this direction, we include a deviation parameter that has the
effect of capturing the surplus, or deficit, in non-synonymous rates, relative to what would be expected under a
mutation–selection modeling framework that includes a Dirichlet process approach to account for across-codon-site
variation in amino acid fitness profiles. We use simulations, along with a few real data sets, to study the behavior of the
approach, and find it to have good power with a low false-positive rate. Altogether, we emphasize the potential of recent
mutation–selection models in the detection of adaptation, calling for further model refinements as well as large-scale
applications.
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Introduction

There has long been a great interest in characterizing the
selective regimes involved in the evolution of protein-
coding genes. Much of the focus has been on whether traces
of molecular adaptation can be detected through the use of
phylogenetic statistical methods, including likelihood-based
models of codon substitution. The central idea of some of the
most well-known codon substitution models is to estimate
the ratio of the non-synonymous over the synonymous sub-
stitution rates, denoted dN/dS. Assuming no selection acting
on synonymous mutations, a dN/dS greater than 1 indicates
that non-synonymous substitutions accumulate more rapidly
than expected in the absence of selection on them. Such a
result is considered a typical signature of an adaptive process,
and is indeed usually qualified as positive selection.

Stemming from the early versions of codon models
(Goldman and Yang 1994; Muse and Gaut 1994), the most
basic approach would invoke a single global parameter, usu-
ally denoted x, capturing the average dN/dS over the entire
protein and along all branches of the phylogenetic tree.
Combined with a set of parameters controlling a point-
mutation rate from one codon i to another j, denoted lij,
the substitution rate matrix Q has entries of the form:

Qij ¼
lij; if i and j are synonymous;

lijx; if i and j are nonsynonymous:

(
(1)

However, positive selection is rarely detected using such
simple models. This is because adaptation most often oper-
ates on a background of strong purifying selection, against
mutations that would disrupt conformational stability or
other fundamental biochemical and cellular requirements.
As a result, even in the presence of some adaptation, the
overall x ¼ dN=dS of a protein is typically well below 1.

Hoping to increase statistical power, several variants of
these codon models have been developed, most of which
rely on the original idea of detecting a value of x that would
exceed 1. These variants, however, operate at a more fine-
grained level—typically, at the level of individual branches
(Yang and Nielsen 1998), sites (Nielsen and Yang 1998;
Yang et al. 2000; Yang and Swanson 2002; Yang et al. 2005),
or their combination (Yang and Nielsen 2002; Guindon et al.,
2004; Zhang et al. 2005; Pond et al. 2011)—in the hope that
positive selection is sufficiently concentrated, either in space
or in time, to be detected in this more local fashion.

With this in mind, an important strategy has been to at-
tempt to capture the modulations of x along the sequence
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(Nielsen and Yang 1998; Yang et al. 2000; Yang and Swanson
2002; Yang et al. 2005). Technically, these site models assume
that the codon sites along the gene sequence are composed
of a mixture of several categories of sites, being either under
negative selection (x < 1), in a neutral regime (x¼ 1), or
under positive selection (x > 1). The proportion of sites for
which x > 1 is typically estimated by maximum likelihood
(e.g., as with the M8 model in Yang et al. 2000), and the model
is tested against a null model without sites under positive
selection (e.g., the M7 model in Yang et al. 2000).

When applied to genome-wide empirical data, site mod-
els uncover a number of interesting candidate genes under
adaptation (Kosiol et al. 2008). On the other hand, these
genes represent only a small fraction of the proteome
(around 5%), and the fraction of sites inferred to be under
positive selection among detected genes is also typically
small (around 10%). This is in sharp contrast with alternative
methods for measuring selection, comparing patterns of
synonymous and non-synonymous polymorphism and di-
vergence (McDonald and Kreitman 1991; Sawyer and Hartl
1992; Keightley and Eyre-Walker 2007; Eyre-Walker and
Keightley 2009; Keightley and Eyre-Walker 2010; Galtier
2016), which tend to infer that a large fraction of non-
synonymous substitutions might be adaptive (Sawyer et al.
2003; Halligan et al. 2010). A possible cause for the lack of
power of site models could be that adaptive processes,
rather than being intensely concentrated on a small number
of sites, are more diluted over a larger number of positions
across a functional region of a protein. In addition, even at
the level of a single site, only a small subset of possible amino
acid-changing mutations are likely to be adaptive at any
given instant, whereas all other possible non-synonymous
mutations at that site might still be highly deleterious, and
thus subject to strong purifying selection.

Branch-site models represent a second strategy (Yang and
Nielsen 2002; Zhang et al. 2005; Pond et al. 2011). Their mo-
tivation is to test for the presence of a short episode of adap-
tive evolution along a particular branch of a phylogenetic tree.
These models are based on contrasting the patterns of syn-
onymous and non-synonymous substitution rates along the
branch of interest with those of the background provided by
the remaining branches of the tree.

Branch-site models have uncovered many cases of putative
episodes of adaptive evolution on some branches (Clark et al.
2003; Sawyer et al. 2004, 2005; Kosiol et al. 2008). By design,
however, they have to assume that no adaptive regime oper-
ates along most of the tree (which can thus be taken as a
meaningful neutral background) and are therefore inherently
driven toward the detection of rare and isolated spikes of
adaptive evolution. They are much less helpful in the case of
proteins that are constantly under adaptation over very long
evolutionary periods. In such situations, the putative episodes
detected by branch-site models would merely be the emerging
part of the iceberg—essentially, the branches over which ad-
aptation has been strongest—revealing but a small fraction of
the true extent of adaptation undergone by these proteins.

As an alternative to the classical codon models, an emerg-
ing trend in recent developments is the recognition of the

potential to devise mechanistic codon substitution models
that are rooted in first principles (Rodrigue et al. 2010a;
Thorne et al. 2012; Echave et al. 2016). In particular, a model-
ing strategy based on an underlying population-genetics ra-
tionale has been studied with increased interest in recent
years (Rodrigue et al. 2010b; Bloom 2014; Tamuri et al.
2014; Spielman and Wilke 2015). These mutation–selection
models rely on an explicit account of the underlying fitness
landscape, such that the selection coefficient associated with
any particular mutation at any given instant is specified. Thus
far, the models have essentially assumed a fixed fitness land-
scape, with multiplicative fitnesses across sites. However, the
importance of accounting for heterogeneity of amino acid
fitness profiles across codon sites is now well recognized
(Halpern and Bruno 1998; Rodrigue et al. 2010b; Bloom
2014; Tamuri et al. 2014), which has led to models in which
the fitness landscape is entirely characterized by an array of
site-specific fitness vectors; for instance, the scaled fitness of
the amino-acid encoded by codon i at position n, would be
denoted F

ðnÞ
i . The Markov process operating at codon site n is

then given as (Halpern and Bruno 1998; Yang and Nielsen
2008):

Q
ðnÞ
ij ¼

lij; if i and j are synonymous;

lij

S
ðnÞ
ij

1� e�S
ðnÞ
ij

; if i and j are nonsynonymous;

8>><
>>:

(2)

where S
ðnÞ
ij ¼ F

ðnÞ
j � F

ðnÞ
i ¼ 4Nesij is the scaled selection co-

efficient (scaled by the effective population size Ne and a
ploidy-dependent constant, here 4) associated with a mutant
protein with the amino acid encoded by j, in a wild-type
population where the amino-acid encoded by i is fixed at
that position. Site-specific fitness profiles have been estimated
either by maximum likelihood (Holder et al. 2008; Tamuri
et al. 2014; Bloom 2016), by experimental means (Bloom
2014, 2016), or, have been considered as random-effects in-
tegrated over a distribution (Rodrigue 2013), sometimes itself
non-parametrically estimated using Dirichlet process priors
(Rodrigue et al. 2010b; Rodrigue and Lartillot 2014).

Under these mutation–selection models with constant
fitness landscapes, the long-term evolutionary process is
such that the protein-coding gene essentially fluctuates at
the mutation–selection balance, maintaining itself around
the optimum defined by the fitness landscape. We refer to
this as a nearly neutral regime, since most mutations are
deleterious (having a negative S

ðnÞ
ij ) and are purified away

by selection, whereas the mutations that reach fixation, the
substitutions, are typically either mildly deleterious or mildly
advantageous, being neutral on average (having S

ðnÞ
ij � 0). As

a result, the dN/dS induced by the modeling of purifying se-
lection, which we refer to herein as x0, is predicted to be in
the 0–1 range (Halpern and Bruno 1998; Spielman and Wilke
2015). The extreme cases are also noteworthy: if, for some
reason, all 20 amino acid have a very similar fitness, then
x0 � 1, whereas if the fitness landscape is greatly dominated
by a single amino acid, then x0 � 0.
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Importantly, however, even if they capture only purifying
selection, mutation–selection models with a constant fitness
landscape nevertheless imply that, at mutation–selection
equilibrium, some of the non-synonymous mutations (and
half of the non-synonymous substitutions, owing to the time-
reversibility of the Markov process; Yang and Nielsen 2008)
are still characterized by a positive selection coefficient
(S
ðnÞ
ij > 0). This connects to a more general point: that one

should not identify purifying and adaptive evolutionary re-
gimes with S

ðnÞ
ij < 0 and S

ðnÞ
ij > 0 (Mustonen and L€assig

2009). The distinction between purifying selection versus on-
going adaptation should primarily be seen as a more global
question, not linked to the selection coefficients attached to
specific mutations or substitutions, but instead, relating to
the evolutionary regime followed by the protein under study:
fundamentally, whether the protein of interest is at equilib-
rium under a fixed fitness landscape, or whether it is con-
stantly challenged by changing ecological conditions or
ongoing evolutionary Red-Queens, such that it is evolving
under a constantly fluctuating fitness landscape. If the fitness
landscape changes at a very high rate, and with sufficient
amplitude, this may lead to situations where
x ¼ dN=dS > 1. However, one can readily imagine less ex-
treme Red-Queen regimes that would remain unapparent to
current dN/dS models. For instance, building on a mutation–
selection framework with a site-heterogeneous amino acid
fitness landscape assuming multiplicative fitness across codon
sites, suppose a process where, at an average rate of 1 per Myr,
a position of the protein is taken at random, and the amino
acid fitness profile at that position is mildly changed. Each
round of such a Red-Queen process mildly changes a profile
at a different position, and each time for a potentially specific
amino acid target. If the rate of the Red-Queen were to be
reduced to 0, the protein-coding gene would be evolving
in the nearly-neutral regime specified by Equation (2),
typically inducing a dN/dS well below 1 (Spielman and
Wilke 2015), as described above. In contrast, with the
Red-Queen active, the protein sequence is tracking a con-
stantly moving fitness optimum. Even in this regime,
however, most non-synonymous mutations still tend to
move the sequence away from the target and are there-
fore deleterious. However, since the protein sequence is
always lagging behind the moving target defined by the
amino acid profiles, while accepting substitutions prefer-
entially in the direction of this target, substitutions are on
average adaptive. This results in a net increase in the rate
of non-synonymous substitutions, and thus a higher over-
all dN/dS, even if it is still well below 1. Only when the
Red-Queen operates at an extremely high rate, drastically
perturbating the fitness landscape as fast or faster than
substitutions occur, would we observe a dN/dS greater
than 1.

In their current form (Halpern and Bruno 1998; Rodrigue
et al. 2010b; Tamuri et al. 2012, 2014), site-heterogeneous
mutation–selection models have been constructed under
the assumption of multiplicative fitness across sites. In reality,
it is suspected that epistasis represents an important feature
of protein evolution (Lunzer et al. 2010; Ashenberg et al. 2013;

McCandlish et al. 2013; Weinreich and Knies 2013; Gong and
Bloom 2014). One consequence of epistatic interactions is to
change the fitness landscape experienced by each site, as the
sequence at other interacting sites changes over time. Thus,
like Red-Queen adaptive regimes, epistasis also results in a
fluctuating fitness landscape at each site. However, and unlike
in the case of most ecological or intra-genomic Red-Queens,
which unfold at a relatively high rate, these fluctuations are
slow (reviewed by Bazykin 2015). Furthermore, under epista-
sis, fluctuations at a given site are such that the fitness land-
scape at that site tends to change so as to stabilize the fitness
of the current state, a phenomenon referred to as entrench-
ment (Shah et al. 2015), or evolutionary Stokes shift (Pollock
et al. 2012). Also, whereas it has been pointed out that when a
deleterious mutation becomes fixed in the protein, it may be
subsequently compensated by clusters of mutations becom-
ing fixed at interacting sites, so as to restore the fitness
(Cutler 2000), at mutation–selection balance, such a
strongly deleterious mutation would unlikely to be fixed
in the first place, precisely because it is strongly deleteri-
ous; thus, such clusters would be rare. For these reasons,
and in contrast to Red-Queen situations, epistatic inter-
actions will tend to result in a decrease of the dN/dS,
compared with the expectation under the nearly neutral
null model with plain multiplicative fitness across sites.
This reasoning has been put to use for estimating the
contribution of epistasis in protein evolution
(McCandlish et al. 2013), although without relying on
explicit mutation–selection models.

New Approaches
An interesting idea suggested by all these observations is
that, in order to study molecular evolutionary regimes at
protein-coding genes, one could try to detect deviations in
dN/dS, relative to that induced by the nearly neutral regime.
Doing so represents a fundamental change in perspective,
which places the emphasis on the adoption a more ade-
quate null model of neutrality against which to conduct
statistical tests. Using a more realistic null model of what
happens in the absence of on-going adaptation should result
in a higher sensitivity of the test.

Detecting deviations from the null hypothesis implied by
the mutation–selection model under a constant and multi-
plicative fitness landscape can be done by introducing a pa-
rameter, denoted x�, absorbing any deviation from the
mechanistic mutation–selection formulation. This idea can
be traced to several previous works (Robinson et al. 2003;
Yang and Nielsen 2008). In the present context, rate matrix
entries are given as:

Q
ðnÞ
ij ¼

lij; if i and j are synonymous;

lijx�
S
ðnÞ
ij

1� e�S
ðnÞ
ij

; if i and j are non-synonymous:

8>><
>>:

(3)

Significant upward deviation of x� from 1 then signals that
there are too many non-synonymous substitutions,
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compared with the null expectation under the nearly-neutral
regime, potentially due to the presence of ongoing Red-
Queen-like adaptation. Significant downward deviation of
x� signals a deficit in non-synonymous substitutions, perhaps
due to the presence of epistatic effects.

It is noteworthy that the overall dN/dS of the model given
in 3 will be the dN/dS induced by the modeling of purifying
selection (which we have denoted x0) multiplied by the de-
viation parameter (denoted x�), written symbolically as
x ¼ x� � x0. Re-writing this into x� ¼ x=x0 highlights
the interpretation of x� as measure of deviation in the overall
x ¼ dN=dS from what would be expected under the nearly
neutral regime of the mutation–selection model, x0. The
standard application of codon substitution models is in fact
a special case of this viewpoint, where x0 ¼ 1; in other words,
with standard codon models, the (nearly-)neutral regime is
one that assigns the same fitness to each amino acid, for all
sites. However, Kimura emphasized that this is not the in-
tended meaning of neutrality, stating (Kimura 1983, p. 53):
“The neutral theory does not assert that all [original empha-
sis] amino acids are equivalent at a certain site, only that the
majority of evolutionary changes concern those mutant that
are equivalent.” The misconstrued concept of neutrality of
classical codon models may explain their lack of sensitivity,
which would be only partially compensated for by focusing
the detection of adaption on specific sites and/or specific
branches. In contrast, by explicitly accounting for the back-
ground of strong purifying selection, such as in Equation
(3), x� should capture very modest shifts in fitness land-
scapes, even if these shifts are distributed across several
different positions, and are evenly distributed over the
branches of the phylogeny. Specifically, a signature of mo-
lecular adaptation would not need to be pronounced to
the point of producing x > 1 to be detected, but instead
only requiring x� > 1.

Bloom (2016) has very recently introduced an analogous
framework in a maximum likelihood context. In his main
approach, S

ðnÞ
ij ¼ F

ðnÞ
j � F

ðnÞ
i values are built from experimen-

tally derived site-specific amino acid profiles; site-specific ML
inference of x� is performed, along with single-observation
likelihood ratio tests at each of the sites. However, most of
currently available protein-coding DNA data are not amena-
ble to experimental construction of amino acid profiles, and
there remains an interest for random-effects models that in-
clude a deviation parameter x� in the context of a joint
probabilistic inference.

We perform simulations under the mutation–selec-
tion construct of the nearly-neutral regime, along with
simulations of Red-Queen adaptive regimes, and
protein-structure-based epistatic regimes, to study the
above models. We show that, when combined with the
Dirichlet process capturing across-site amino acid fit-
ness heterogeneity, x� is able to detect the evolutionary
regimes of the simulations in accordance with the above
predictions. Applying the approach to a few empirical
cases suggests that, for the purpose of detecting adap-
tation in protein coding sequences, it may provide a
promising alternative to current codon models.

Results and Discussion

Simulated Data
We simulated protein-coding sequence data under a muta-
tion–selection-based approach at the scale of placental mam-
mals, as explained in the “Materials and Methods” section.
Among other values, these simulations require amino acid
profiles to be defined. Three different sets of site-specific
amino acid fitness profiles were explored, as inferred from
three arbitrarily chosen real protein-coding sequence align-
ments under a model based on Equation (2) (Rodrigue et al.
2010b), again at the mammalian scale, for the following genes:
SAMHD1, TRIM5a, and BRCA1. We refer to these simulations
as those of the nearly neutral regime. We also simulated data
taking the nearly-neutral regime parameter values as a start-
ing point, but making small changes to the amino acid pro-
files along the branches of the phylogenetic tree; these are the
Red-Queen adaptive regime simulations. And, finally, we sim-
ulated a contact map and statistical potential to further mod-
ulate non-synonymous rates of a nearly neutral setting, with a
model similar to that in Robinson et al. (2003); these are
referred to as the epistatic regime simulations (see
“Materials and Methods” for details on simulations).

Figure 1 shows examples of results for inferences on three
simulated data sets, produced from the three types of evolu-
tionary regimes, and utilizing different sets of site-specific
amino acid profiles in each column of panels. The top three
panels (A, B, and C) show the posterior distributions of x
under the plain MG model of Equation (1). All three top
panels show distributions with x < 1, and in all three cases
the central distribution (green) is the one from the simulation
under the nearly neutral regime. The epistatic regime (blue)
thus shifts the distributions to the left, whereas the adaptive
regime (red) shifts it the right. Such shifts match well with the
predicted behavior of the models applied to these simulated
data, with epistatic effects having a tendency to reduce non-
synonymous rates, and Red-Queen-like adaptation increasing
non-synonymous rates. Based on the simple MG model, how-
ever, the three regimes would still be qualified as being under
purifying selection.

Among the top three panels of figure 1, only in panel C
does x approach 1; this panel shows the simulations based
on the posterior mean amino acid profiles inferred from the
BRCA1 data set. Indeed, the posterior mean x obtained on
the real BRCA1 data set with the MG model is about 0.8
(table 1, first column), whereas the posterior mean x ob-
tained from simulations using profiles “trained” from that
data set are close, but mildly below, in this case at about
0.7 (fig. 1C, green histogram). When using the BRCA1 profiles
as a starting point, and activating the Red-Queen adaptive
process, the distribution of x (fig. 1C, red histogram) shifts to
the right to the point of slightly over-stepping 1 in this in-
stance. On the other hand, when simulating using the other
two sets of amino acid profiles, obtained from data sets that
lead to comparatively lower x values under the plain MG
model (with posterior means of about 0.3 and 0.45, respec-
tively, for SAMHD1 and TRIM5a, see table 1, first column),
the distributions of x are always well below 1 (fig. 1A and B).
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With the nearly neutral regime simulations, the values of x
are again found to be close (with posterior means at 0.23 and
0.43, respectively, for these example SAMHD1 and TRIM5a
simulations) to the values obtained on the true data (at 0.31
and 0.45, respectively, table 1, first column).

The three panels of the middle row in figure 1D–F show
the posterior distributions of x� under the site-
homogeneous formulation of Yang and Nielsen (2008),
referred to herein as MutSelYN; this is essentially the
model written in Equation (3), but with all sites having
the same amino acid fitness profile. As had been previ-
ously noted (Yang and Nielsen 2008), these distributions

hardly differ from those of the panels above. We believe
these and other previous attempts at combining a model-
ing of purifying selection with a scalar parameter on non-
synonymous rates were simply not suitably capturing the
overall form of the sequence fitness landscape. In this
particular case, the explanation is straightforward: amino
acid profiles are not global quantities, but highly variable
across different coding positions, such that a global ap-
proach is likely very far from reflecting a realistic fitness
landscape.

Finally, the bottom three panels of figure 1G–I show the
posterior distributions of x� when invoked with the Dirichlet

A B C

D E F

G H I

FIG. 1. Posterior distributions of x (for MG model, panels A, B, and C) and x� (for MutSelYN model in D, E, and F, and MutSelDP in G, H, and I) using
three different sets of amino acid profiles (those obtained from SAMHD1 in left panels, those obtained from TRIM5a in middle panels, and those
obtained from BRCA1 in right panels). Three simulation conditions were used: the nearly neutral regime (green), an adaptive regime (red) and an
epistatic regime (blue).

Table 1. Posterior Means and 95% Credibility Intervals, in Parentheses, of x (with the MG model) and x� (with MutSelYN and MutSelDP models)
on Six Mammalian Genes is shown in square brackets.

Data MG MutSelYN MutSelDP

S1pr1-67-325 0.049 (0.042, 0.055) 0.058 (0.051, 0.065) 0.681 (0.538, 0.857) [0.001]
Rbp3-54-412 0.190 (0.177, 0.203) 0.193 (0.181, 0.206) 0.726 (0.654, 0.806) [0.000]
Vwf-62-392 0.205 (0.188, 0.220) 0.212 (0.199, 0.226) 0.960 (0.865, 1.063) [0.220]
Samhd1-67-543 0.309 (0.288, 0.332) 0.324 (0.300, 0.348) 1.731 (1.542, 1.935) [1.000]
Trim5a-68-363 0.454 (0.426, 0.484) 0.468 (0.439, 0.498) 1.240 (1.128, 1.355) [1.000]
Brca1-64-941 0.783 (0.750, 0.817) 0.802 (0.770, 0.837) 1.188 (1.123, 1.257) [1.000]

NOTE.—With the MutSelDP model, the posterior probability pðx� > 1jDÞ is shown in square brackets.
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process controlling across-site heterogeneity in amino acid
profiles, referred to as MutSelDP. These distributions have
greater variance than those of the upper panels, since they
are based on a much richer underlying model, and their lo-
cations are clearly very different than those of the panels
above. In the three cases, the nearly neutral regime simula-
tions lead to distributions that clearly straddle 1 (in green),
indicating that the approach recovers well the actual simula-
tion conditions. The adaptive Red-Queen simulations lead to
distributions that clearly surpass 1 (red), indicating that the
approach clearly recognizes the presence of an adaptive re-
gime. The epistatic simulations show a tendency to lead to
distributions of x� below 1 (blue), again suggesting that the
approach can detect the presence of such an effect.

Each histogram in figure 1 is obtained from a single syn-
thetic 300 codon alignment, from one of the three types of
regimes (and with three sets of amino acid profiles), under
one of three inference models. The histograms serve to illus-
trate the general behavior of the models under the simulation
conditions. However, we performed several instances of our
simulations. Moreover, we incremented the rate of the Red-
Queen process of the adaptive regimes over four values. We
did likewise for the degree of epistatic interaction across sites,
by progressively increasing the number of interacting sites.
Under each simulation condition, we generated 100 repli-
cates. For each replicate, with ran a Bayesian MCMC with
the model combining the Dirichlet process prior on amino
acid profiles, along with x� and all other parameters, and
computed the posterior mean, and 95% credibility interval
of x�. The posterior means of x� are displayed across the
various simulation settings for each batch of 100 replicates as
boxplots in figure 2, with simulations conducted with the
three sets of amino acid profiles from SAMHD1, TRIM5a,
and BRCA1 in panels A, B, and C, respectively.

Most simulations conducted under nearly-neutral condi-
tions have posterior means close to 1 (fig. 2, green boxplots).
Looking more closely at each of the distributions, we find that
87 of the 100 nearly neutral replicates using the SAMHD1
amino acid profiles included 1 in their posterior 95% credi-
bility interval of x�. All 13 cases that did not include 1 were
below it. For nearly neutral simulations with TRIM5a amino

acid profiles, 95 of the 100 replicates included 1 in their pos-
terior 95% credibility interval, with only 1 of the 5 error cases
being above 1. For the nearly neutral simulations with the
BRCA1 profiles, 97 of 100 replicates included 1 in their pos-
terior 95% credibility interval of x�; of the three replicates
that did not, one had a 95% credibility interval below 1, and
two are above 1. Overall, these results generally indicate a
well-behaved system, although there appears to be a bias
toward under-estimation of the value of x�. More work is
required to investigate this mild bias.

We next note from figure 2 that the posterior mean value
of x� tends to increase when the rate of the Red-Queen
increases (red boxplots), i.e., when amino acid profiles change
more rapidly along the branches of the tree, the detected
deviation is indeed greater. Only 16 replicates of the 1,200
simulations under the adaptive regimes had 95% credibility
intervals of x� that included 1, and these were all amongst
the slowest setting of the Red-Queen. In all other cases, the
credible intervals were above 1. This is in spite of the model’s
under-estimation of x�, revealed by the results from the
nearly neutral simulations, which is likely still the case in these
Red-Queen simulations. Altogether, these results suggests
that uncovering genes with high posterior probability support
for x� > 1 provides a powerful test for the presence of on-
going, Red-Queen-like adaptation in protein coding se-
quences, while having a tendency to be conservative.

We also ran CODEML from the PAML package (Yang
2007) with several of the classic site models on these adaptive
regimes simulations. Applied to the SAMHD1-based simula-
tions, even with the most intense Red-Queen rate, none the
site models detected any traces of adaptation (i.e., the likeli-
hood was not significantly improved by including a class with
x > 1). Applied to the BRCA1-based simulations, on the
other hand, site models in CODEML can detect on average
5% of sites at the lowest rate of the Red-Queen, and this
climbs to 11% of sites at the highest rate of the Red-Queen.
The TRIM5a-based simulations exhibit an intermediate
behavior, going from 2% to 9% across the range of Red-
Queen rates explored. That site models can readily detect
adaptive regimes in some cases and not others can be under-
stood from the fact that the BRCA1-based simulations start

A B C

FIG. 2. Summary of posterior means of 100 replicates for each boxplot. Results for simulations under the nearly-neutral regime are in green,
whereas results for four different degrees of epistatic regimes (with increasing percentage of possible pairwise amino acids being in contact) are in
blue, and results of four different rates of the Red-Queen are in red. Simulations were based on three initial sets of amino acid profiles, taken from
SAMHD1 in A, TRIM5a in B, and BRCA1 in C.
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from a model that already induces a relatively high non-syn-
onymous rate; it does not take very much for the Red-Queen
to push x beyond 1 at certain sites, whereas the SAMHD1-
based simulations start out from a point that induces low
non-synonymous rates, such that there is a long way to go for
the Red-Queen to attain x > 1. Still, detecting 11% of sites as
being under an adaptive regime is very inaccurate, since 100%
of sites are in fact under a mild (on average) adaptive regime.

Figure 2 also shows that epistatic effects tend to lead to
x� < 1 (blue boxplots), although in some cases (7 out of
1,200 replicates) it does surpass 1 with a posterior probability
greater than 0.99. We are still unsure as to why a few epistatic
simulations result in x� > 1, but we suspect that the greater
variance in the results across replicates as the extent of epis-
tasis increases comes from the fact that a higher degree of
epistasis requires one to simulate more contacts within the
contact map protein structure representation; there are
many more possible contact maps when 4% of each possible
pair of amino acid positions are in contact than when only
one 1% of pairs are. Given the random simulation of contact
maps and statistical potentials, these simulations are not nec-
essarily representative of epistasis at large. Rather, they show
that, in principle, epistasis can occasionally lead to an x� > 1,
but that it’s overall tendency will be to produce x� < 1.

Empirical Data
As example applications, six empirical data sets, correspond-
ing to 6 genes sampled in placental mammals (S1Pr1, RBP3,
VWF, TRIM5a, SAMHD1, and BRCA1) were analyzed with the
models of interest herein (table 1). The MG model leads to
posterior distributions of x that are well below 1, with pðx
> 1jDÞ � 0 in all cases. As noted on the simulations, the
MutSelYN model has little impact, and leads to x� values
that hardly differ from the x of the MG model. The
MutSelDP model with x� is able to detect a signal of adaptive
evolution in the TRIM5a, SAMHD1, and BRCA1 genes, which
all lead to posterior distributions of x� beyond 1; as shown in
table 1, their posterior probability of x� being greater than 1
is essentially 1 in these three cases. Interestingly, TRIM5a and
SAMHD1 are known to be involved in the immune response
against retroviruses in primates (Lee and KewalRamani 2004;
Laguette et al. 2012; Zheng et al. 2012). In the case of BRCA1, a
Red-Queen-like evolutionary regime is also suspected, possi-
bly due to antagonistic selection between mother and off-
spring (Crespi and Summers 2004). The other three data sets
(VWF, RPB, and S1PR1) either have x� below 1, or include 1
in its 95% credibility interval.

When analyzed with the site models, only the TRIM5a,
SAMHD1, and BRCA1 data sets show evidence of adaptive
evolution. Thus, in the present case, site-models would detect
the same protein-coding genes as being under adaptation as
would MutSelDP. On the other and, for the three proteins thus
selected, the M8 model estimates that 13%, 8%, and 11% of
sites, respectively, for TRIM5a, SAMHD1, and BRCA1, are under
adaptive evolution. Given that these percentages are around
the same as those found with site models in some of the most
extreme Red-Queen adaptive simulations applied to 100% of

sites, it seems plausible that a large proportion of adaptive
evolution may remain undetected by the classical approaches.

Conclusions and Future Work
Here, we introduce a codon model framework relying on a
fine-grained mechanistic model of the nearly neutral regime
acting on protein coding sequences. A deviation parameter,
x�, is introduced, such that upward deviations of x� away
from 1 of are suggestive of the presence of an ongoing Red-
Queen-like adaptive regime (diversifying selection).
Technically, this codon framework can be used as a test for
the presence of adaptation, by uncovering genes such that the
posterior probability that x� > 1 is sufficiently high. Being
based on a more realistic null model of neutrality, our ap-
proach has the potential to be more powerful than classic
codon models. This is particularly apparent in simulation con-
ditions where adaptation occurs on a background of strong
purifying selection (table 2).

More generally, the simulations performed here suggest
that, if conducted at a 95% posterior probability threshold,
the resulting test has a good power (with only 16 out of
1,200 true positive cases, i.e., about 1.3%, missed by the test),
while having a good control of the rate of false positives (<1%
on genes evolving under a pure nearly-neutral regime or when
epistatic interactions are explicitly accounted for in the simu-
lation model). Indeed, results under the pure nearly neutral
simulations indicate a tendency to under-estimate x�. The
Dirichlet process may not always capture the distribution of
amino acid profiles across sites sufficiently well, which would
most likely lead it to an under-estimate of the intensity of
purifying selection, or, in other words, an over-estimate of
x0. One modeling avenue to explore this issue would be to
extend the base distribution of the Dirichlet process, perhaps
so as to be a mixture itself.

It will also be important to investigate many more simu-
lation conditions, such as varying a relative effective popula-
tion size over the branches of the tree, introducing codon
usage bias, or context-dependent mutation rates, in order to
better understand the possible reasons for results where
x� 6¼ 1. Moreover, combining these simulation complexities
together, or even just combining the different simulation
conditions explored herein, would be revealing; given our
results, one can readily imagine that a sort of tug-of-war

Table 2. Number of Replicates among sets of 100 Where pðx� > 1
jDÞ � 0:95 (and � 0:99)

Samhd1-67-543 Trim5a-68-363 Brca1-64-941

Nearly-neutral 0 (0) 1 (0) 2 (0)
Epistatic

1 0 (0) 0 (0) 0 (0)
2 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 3 (3)
4 0 (0) 3 (3) 1 (1)

Adaptive
25 95 (89) 97 (95) 96 (85)
50 100 (100) 100 (100) 100 (100)
75 100 (100) 100 (100) 100 (100)
100 100 (100) 100 (100) 100 (100)
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between adaptive Red-Queen-like regimes across certain sites,
and epistatic interactions across certain sites, such that, for
instance, x� � 1. One would thus be mislead into thinking
that the evolutionary regime is a nearly neutral one.

Another extension from this point would be to combine
the heterogeneous modeling ideas of site models to the new
x� parameter within the MutSelDP. Indeed, Rodrigue (2008)
discussed the idea of a model that combined two independent
Dirichlet processes: one to account for heterogeneous amino
acid profiles across sites, and another to account for hetero-
geneous x� parameters across sites. Note that such a model-
ing framework differs from the site-specific ML x� of Bloom
(2016). In any case, approaches to heterogeneous modeling of
x� within a rich mutation–selection framework seem much
more accessible than explicitly accounting for the features we
introduced within the simulation conditions (Robinson et al.
2003; Blanquart and Lartillot 2008; Rodrigue et al. 2009), and
would enable a powerful analysis. The present work could act
as a stepping-stone toward a re-appraisal of evolutionary re-
gimes discernible from interspecific molecular data.

Materials and Methods

Data
We used six protein-coding genes at the scale of placental
mammals: RBP3-54-412: retinol-binding protein 3 (former
IRBP gene), 54 taxa; S1PR1-67-325: sphingosine-1-phosphate
receptor 1, 67 taxa; VWF-62-392: von Willebrand factor, 62
taxa; BRCA1-64-941: breast cancer 1, 64 taxa; TRIM5a-68-363:
tripartite motif-containing protein 5, 68 taxa; a virus restric-
tion factor; SAMHD1-67-543: SAM domain and HD domain-
containing protein, 67 taxa; cellular enzyme responsible for
blocking retroviral replication.

For Samhd1, Trim5a, placental mammalian sequences
were retrieved from GenBank, translated and aligned using
Muscle (Edgar 2004). The protein alignment was used as a
template to align the nucleotide sequences whereas respect-
ing the coding structure. Finally, the sequences were filtered
using Gblocks (Castresana 2000), with the default options. For
all other datasets, the alignments were obtained from Lartillot
and Delsuc (2012).

Simulations
We simulated the evolution of sequences of length N¼ 300
codons, along a pre-specified tree, with 38 tips. The simula-
tion model is parameterized by a nucleotide mutation pro-
cess and a fitness landscape defined at the protein level (the
model assumes no selection on synonymous variants). Three
alternative models of the fitness landscape were considered:

Nearly neutral and multiplicative. In the absence of epista-
sis, and if constant through time, the fitness landscape is
entirely characterized by the fitness of each amino-acid at
each position. Each site is thus endowed with a 20-dimen-
sional vector, w, specifying a fitness profile. Since fitnesses are
relative, w profiles are by convention normalized to sum to 1.
We used three different sets of profiles, which we obtained by
running the model of Equation (2) on the Samhd1- 67-543,
Trim5a- 68-363, and Brca1- 64-941 data sets. In each case the

site-specific posterior mean amino acid profiles were then
computed. With all of these values at hand, each coding
site of the simulated sequence is attributed an amino-acid
profile selected at random (with replacement) from one of
the three sets of possible profiles. Let us call
FðnÞðaÞ ¼ lnwnðaÞ, the fitness of amino-acid a at position n
induced by this random set of profiles, and let s ¼ ðsnÞn¼1::N
be an amino-acid sequence (with sn ¼ 1 . . . 20 for each po-
sition n). The fitness of the entire sequence s is then given by:

FðsÞ ¼ lnWðsÞ ¼
XN

n¼1

lnwnðsnÞ:

Nearly neutral with epistatic interactions. Epistatic interac-
tions are introduced on the top of the site-specific fitness
profiles introduced above, as follows: a pre-specified propor-
tion of pairwise contacts is chosen uniformly at random
across all possible contacts. For each contact belonging to
this subset, the following is simulation is applied: a series of
210 normal variates of mean 0 and standard deviation repi are
drawn, so as to define a contact potential, say between po-
sitions m and n, denoted �mnða; bÞ, with a; b ¼ 1::20 run-
ning over all possible pairs of amino-acids. For all other pairs
of positions, we set �mnða; bÞ ¼ 0 for all a and b. Once this
pairwise contact potential is defined, the fitness of an amino-
acid sequence s of length N is given by:

FðsÞ ¼ lnWðsÞ ¼
XN

n¼1

lnwnðsnÞ þ
X

1�m<n�N

�mnðsm; snÞ:

Fluctuating, adaptive Red-Queen fitness landscape. In this
regime, the fitness landscape is allowed to fluctuate through
time, according to a Markov-modulated process. This process is
characterized by its rate of change q, a standard deviation for
the fluctuations rRQ, and a number of hidden states K per
fluctuating site; here, we set K¼ 2. For a given fluctuating
site, say n, each hidden state k ¼ 1::K defines a modulating
profile hnkðaÞ, where a ¼ 1 . . . 20 is running over the 20
amino-acids. Here, only two entries in the two modulating
profiles have non-zero values. Specifically, the entries corre-
sponding to the two highest fitness amino acids in the starting
empirical profile, say a and b, are set as
hn1ðaÞ ¼ d; hn1ðbÞ ¼ �d; hn2ðaÞ ¼ �d, and hn2ðbÞ ¼ d,
where d is a random variable drawn from of normal distribu-
tion of mean 0 and standard deviation rRQ ¼ 6. At each fluc-
tuating site, the hidden state knðtÞ is time-dependent and
evolves according to a simple Jukes–Cantor model of rate q;
we refer to q as the rate of the Red Queen, for which we
explored four values (as displayed in figure 2). Then, the fitness
of a sequence s at time t is given by:

FðsÞ ¼ lnWðsÞ ¼
XN

n¼1

lnwnðsnÞ þ hnknðtÞðsnÞ:

The mutation process is assumed to be strand-symmetric.
Accordingly, it is characterized by six relative mutation rates
(given below). An absolute mutation rate is also defined here,
scaling the rates below by 2� 10�4.
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l ¼

A C G T

A � lA:T>C:G ¼ 3:16 lA:T>G:C ¼ 8:01 lA:T>T:A ¼ 3:26

C lC:G>A:T ¼ 2:29 � lC:G>G:C ¼ 2:18 lC:G>T:A ¼ 5:75

G lC:G>T:A ¼ 5:75 lC:G>G:C ¼ 2:18 � lC:G>A:T ¼ 2:29

T lA:T>T:A ¼ 3:26 lA:T>G:C ¼ 8:01 lA:T>C:G ¼ 3:16 �

0
BBBBBBBB@

1
CCCCCCCCA
:

The overall simulation process is Markovian. The events
can be either a point substitution (to any one of all possible
single-nucleotide mutants away from the current sequence,
except those resulting in a premature stop codon) or, in the
case of the fluctuating fitness regime, a modulation of the
fitness parameters at any of the fluctuating sites (i.e., a tran-
sition undergone by the hidden state at that site). Given the
current sequence at time t, and given the hidden states at all
fluctuating sites, the rate associated to each possible event is
calculated. In the case of substitution events, these rates are
given by the mutation rate multiplied by the fixation factor,
which itself depends on the fitness of the final and the initial
sequence variant (Halpern and Bruno 1998). Note that, in the
presence of epistasis, the fitness of each single-mutant de-
pends on the sequence at all other positions. The total rate
Rtot, summed over all possible events at time t, is calculated,
and the time until the next event is randomly drawn from an
exponential distribution of rate Rtot. Then, the exact nature of
the next event is chosen with a probability equal to the rel-
ative rate of this event (from the mutation rate, for synony-
mous mutations, or from the product of the mutation rate
and the fixation factor, for non-synonymous cases).
Whenever the waiting time to the next event exceeds the
amount of time remaining until the next branching event
along the phylogenetic tree, the simulation process is started
with the current state, independently along each of the two
daughter branches. The procedure is started at a time
T¼ 100 time units before the root (so as to ensure that
the process has reached stationarity before starting from
the root) and is propagated forward in time down to all
tips of the tree.

Priors and Implementation
We used the same priors as in previous works (Lartillot et al.
2013; Rodrigue and Lartillot 2014):

Branch lengths are i.i.d. exponential of rate k, itself expo-
nential of rate 0.1.

We use a Dirichlet process over amino-acid fitness profiles,
with base distribution a Dirichlet(ai), where the ai are i.i.d.
exponential of rate 1.

The granularity parameter of the Dirichlet process is expo-
nential of rate 0.1 (mean 10).

Nucleotide exchangeability parameters and nucleotide fre-
quency parameters are each flat Dirichlets.

Non-synonymous rate factors x and x� are ratios of two
exponential random variables (Huelsenbeck et al. 2006).

The use of PhyloBayes-MPI with the mutation–selection
model is explained within the online manual, and activating
the x� parameter is done by adding the option -freeomega to

the command. To obtain the plain MG model, the options -
freeomega and -catfix uniform are applied, whereas to obtain
the MutSelYN model, the options -freeomega, -rigidbaseprior,
and -ncat 1 are applied. For simulated data, inferences based
on MCMC calculations were conducted under fixed tree to-
pology, as originally used for the simulations, and were run for
1,100 cycles, discarding the first 100 as burn-in. Note that each
cycle itself includes hundreds of Gibbs and Metropolis-
Hastings updates within PhyloBayes-MPI. Real data analyses
were run with 5,500 cycles (500 as burn-in), treating the to-
pology (with uniform priors) as a nuisance variable of the
inference. Source code is freely available within the
PhyloBayes-MPI package, distributed at www.phylobayes.org.
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