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Many physical systems characterized by nonlinear
multiscale interactions can be modelled by
treating unresolved degrees of freedom as random
fluctuations. However, even when the microscopic
governing equations and qualitative macroscopic
behaviour are known, it is often difficult to derive a
stochastic model that is consistent with observations.
This is especially true for systems such as turbulence
where the perturbations do not behave like Gaussian
white noise, introducing non-Markovian behaviour
to the dynamics. We address these challenges
with a framework for identifying interpretable
stochastic nonlinear dynamics from experimental
data, using forward and adjoint Fokker–Planck
equations to enforce statistical consistency. If the
form of the Langevin equation is unknown, a simple
sparsifying procedure can provide an appropriate
functional form. We demonstrate that this method
can learn stochastic models in two artificial examples:
recovering a nonlinear Langevin equation forced by
coloured noise and approximating the second-order
dynamics of a particle in a double-well potential with
the corresponding first-order bifurcation normal form.
Finally, we apply Langevin regression to experimental
measurements of a turbulent bluff body wake and
show that the statistical behaviour of the centre of
pressure can be described by the dynamics of the
corresponding laminar flow driven by nonlinear
state-dependent noise.
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1. Introduction
It is widely accepted in physics that nominally deterministic systems with many degrees of
freedom can often be modelled more effectively from a statistical point of view. In many
complex multiscale systems, a variety of processes lead to emergent large-scale structures whose
dynamics are described by a relatively small set of macroscopic variables [1,2]. The influence
of the unresolved degrees of freedom can be approximated with random forcing in the spirit
of statistical mechanics [3–5]. This stochastic treatment of unresolved variables has become
commonplace in fields including climate science [6], ecology [7], epidemiology [8], protein
folding [9], neuroscience [10] and turbulence [11].

The stochastic evolution of a state x is often represented with Langevin dynamics

ẋ = f (x) + σ (x)w(t). (1.1)

The deterministic ‘drift’ dynamics f (x) describe the evolution of the slow macroscopic variables,
while the fluctuations are paramterized by the diffusion term σ (x)w(t), where w(t) is typically
assumed to be a Gaussian white noise process. If this model cannot be derived from first
principles, a model can sometimes be inferred from observations of the natural dynamics of the
system, as illustrated in figure 1.

A significant challenge in constructing approximate stochastic models is that many of these
systems are far enough from thermal equilibrium that even when the microscopic governing
equations are known, fundamental principles such as detailed balance and the fluctuation–
dissipation theorem cannot be readily applied. For example, widely separated time scales for
forcing and dissipation prevents viscous turbulence from approaching a state of equipartition
[11,12]. This scale separation is captured by the Reynolds number, which can be interpreted as
a ratio of the time scales characterizing the energetic large-scale dynamics and the small-scale
viscous motions [13].

As with equilibrium statistical physics and quantum mechanics, there are several ways to
represent stochastic dynamics, as exemplified by the differing treatments of Brownian motion
by Einstein [14] and Langevin [15]. Einstein’s theory is constructed around a diffusion equation
governing the evolution of the distribution of particles, while Langevin’s describes an individual
trajectory of a particle subject to friction and a random fluctuating force. This duality persists in
the modern theory; the same stochastic process can be represented with a generalized Langevin-
type differential equation governing trajectories or a Fokker–Planck equation for the evolution of
the probability distribution [3].

Linear dynamics can be analysed from either perspective, but in the nonlinear case
the most convenient representation often depends on the application. Nonlinear Langevin-
type stochastic differential equations are difficult to treat analytically, but fit more naturally
with low-dimensional modelling and control objectives. On the other hand, Fokker–Planck
equations replace nonlinear trajectory dynamics with a linear partial differential equation for
the probability distribution. The ensemble perspective also facilitates comparison with long time
series measurements of ergodic systems.

In this work, we seek to exploit these equivalent representations to identify Langevin dynamics
by using both the forward and adjoint Fokker–Planck equations to ensure consistency with
observations. We propose a framework for identifying nonlinear stochastic models from noisy
experimental data, building on previous work in sparse regression [16,17] and adjoint-based
parameter estimation [18]. After presenting background material on stochastic dynamics in §2,
we describe the method in §3. Finally, we demonstrate its application to three example systems
in §4: a cubic model driven by coloured noise, a particle in a double-well potential, and a
symmetry-breaking instability in a turbulent wake.
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ẋ  = lx – µx3 + h(t)
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Figure 1. Schematic of Langevin regression (a)with example applications (b). Given a long time series of amacroscopic variable
describing a complex system, we seek to identify an approximate stochastic model. The variable x might represent a reaction
coordinate capturing metastable protein configurations or the temporal coefficient of a dominant global hydrodynamic mode,
for instance. Langevin regression uses both the forward and adjoint Fokker–Planck operators to optimize free parameters ξ of
the model, ensuring consistency with observed statistics such as the finite-time Kramers–Moyal coefficients m(n)

τ (x) (see §2).
(Online version in colour.)

(a) Related work
As we study increasingly complex systems that deviate from the restrictive near-equilibrium
conditions of classical statistical mechanics, fully empirical system identification becomes more
appealing. The primary goal of these methods is not to simply fit the statistics, but to identify
a minimum-complexity mechanistic model that describes the important interactions in the
system [19]. The resulting models stand in for those derived via traditional analysis and can
be used to gain physical insight into the system. Secondary goals in engineering fields can
include the design of control systems [20] or parametric surrogate models for design and
optimization [21]. Predicting response to exogenous inputs or parametric variation is clearly
more difficult, but a dynamic model of the autonomous behaviour is a necessary prerequisite
to these aims.

Stochastic systems can be broadly categorized according to the type of dynamics, noise and
stochasticity. Dynamics may be linear or nonlinear, the noise process may be white (uncorrelated
in time) or coloured (time-correlated), and the strength of the fluctuations may be constant
(additive diffusion) or state-dependent (multiplicative diffusion). Similarly, stochastic model
identification methods can be similarly categorized by the type of models they are able to
construct.

For example, realization algorithms are a mainstay of engineering disciplines, although
these methods are restricted to linear input/output systems with additive white noise [22–24].
Perhaps the most general and successful nonlinear approach is the NARMAX framework,
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which can construct nonlinear models driven by state-dependent coloured noise [19]. However,
NARMAX models typically cannot be transformed to continuous time, which is often the
most natural setting for physical problems, making them difficult to interpret. More recent
work has explored a variety of strategies for modelling nonlinear stochastic systems, including
operator theoretic methods [25], optimal transport [26], deep learning [27–29] and identifying
distribution evolution equations [30], although none of these pursues a representation in terms of
nonlinear state-space dynamics. On the other hand, recent work has demonstrated that a stable
linear system driven by coloured noise can accurately reproduce the second-order turbulent
statistics [31].

Recent advances have made significant inroads towards continuous-time model discovery
in deterministic nonlinear systems [32,33]. For example, sparse identification of nonlinear
dynamics (SINDy) approximates time derivatives with a sparse linear combination of candidate
functions [16]. However, even without the difficulties of estimating time derivatives from
noisy data, a major challenge for extending deterministic methods to stochastic modelling
lies in disambiguating the macroscopic dynamics from the unresolved degrees of freedom. In
cases where the dynamics can be closely approximated by one-dimensional dynamics forced
by additive white noise, parameters may be identified by regression to analytic solutions of
the probability density function (PDF) [34,35]. For more general systems, recent work has
approached the parameter estimation problem with inference methods based on ensemble
Kalman filtering [36] and information theory [37,38]. Alternatively, Boninsegna et al. introduced
a major contribution to stochastic modelling by demonstrating that SINDy could be extended
to stochastic systems without Monte Carlo approximation via the conditional moments used in
the Kramers–Moyal expansion [17]. This stochastic SINDy method was capable of recovering the
correct model structure and parameters from large libraries of candidate functions.

Approximating stochastic dynamics from data with the Kramers–Moyal average has a
long history of successful modelling in a wide range of fields [4]. However, as with many
theoretical results, it is predicated on the assumption that the dynamics are driven by Gaussian
white noise. As recognized by Einstein, even the molecular forcing involved in Brownian
motion has some finite decorrelation time since it is a continuous physical system [14].
Moreover, omitting degrees of freedom from an otherwise Markovian1 system generally
leads to explicit memory effects in the dynamics [39]. We therefore expect that all systems
will have some characteristic ‘Einstein–Markov’ time scale over which the time evolution of
macroscopic variables may depart significantly from the standard assumptions of stochastic
modelling [4]. For Brownian motion, this time scale is of the order of picoseconds, while for
complex, multiscale, far-from-equilibrium systems it may even be longer than experimental
sampling rates.

These considerations make the sampling rate used to construct stochastic models from
experimental time series an important choice. Theoretical difficulties introduced by time-
correlated forcing and non-Markovian effects can be avoided to some extent by deliberately
subsampling. This has been established in finance [40,41] and shown for artificial dynamics
with two widely separated time scales [42]. Qualitatively, coarse sampling allows the unresolved
degrees of freedom to decorrelate, while ideally still resolving the coherent macroscopic scales
(figure 2). If the fluctuations appear uncorrelated in time, standard theoretical tools, such as
the Kramers–Moyal average, may once again be applied. However, coarse sampling leads to
distorted estimates of the conditional moments used in the Kramers–Moyal expansion [43],
although these finite-time effects can be accounted for using the adjoint Fokker–Planck
equation [44].

The relevance of this result for parameter estimation in stochastic models was realized by
Honisch & Friedrich, who proposed an optimization framework designed to correct for finite
sampling-rate effects [18]. This technique has recently been refined and applied to parameter
estimation for amplitude equations describing several different physical systems by Boujo

1In this context, meaning that the evolution of the system only depends on its current state and not its time history.
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Figure2. Dual scale separation for stochasticmodelling. Even the fastest scales of continuousphysical systemsare characterized
by some finite decorrelation rate α (e.g. (2.6)). However, if the macroscopic dynamics have a much slower characteristic
timescaleω � α, we may be able to choose a sampling rate τ−1 which can simultaneously resolve the dominant dynamics
and allow the unresolved scales to decorrelate. For example, the power spectrumof the radial centre of pressure of the turbulent
wake is shown at bottom along with the subsampling rate used in §4c.

et al. [45–47]. As with the majority of work in nonlinear time series analysis [32,48,49], existing
studies have focused on modelling scalar observables, although the theory readily generalizes to
complex- or vector-valued systems.

(b) Contributions
Here we show that these finite-time corrections generalize the stochastic SINDy method [17] to
the broad class of systems for which the forcing cannot be treated as white noise. Specifically,
we explore systems for which the fast scales have nontrivial dynamics, the exclusion of which
formally breaks the Markovian properties of the full physical system. This includes coloured
noise, latent variables and ‘microscopic’ degrees of freedom with significantly non-zero time
correlations. This non-Markovian character is a fundamental problem for stochastic systems with
unresolved degrees of freedom that have internal dynamics. Although in principle it could be
more effective to identify a nonlinear, continuous-time, non-Markovian model of a stochastic
system, it would be significantly more difficult when the underlying evolution operator is
unknown, since many of the fundamental tools of stochastic analysis (e.g. the Fokker–Planck
equation) rely on the assumption of Markovian behaviour.

This problem can be mitigated against by coarsely sampling in time, allowing the forcing to
decorrelate. This introduces distortions to the finite-time statistics, which can be corrected with
parameter estimation based on the adjoint Fokker–Planck equation. We extend this adjoint-based
optimization problem with the forward steady-state solution to enforce consistency between the
model and the empirical probability distribution.

The proposed modelling framework, which we refer to as Langevin regression, is designed to
identify nonlinear Langevin-type equations directly from noisy experimental data. This method
combines the advantages of three previously distinct approaches: adjoint-based parameter
estimation with the Kramers–Moyal average [18,44], learning unknown model structure with
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sparse regression [16,17], and steady-state PDF fitting [34]. Central aspects of our approach have
been introduced in these previous works, but here we develop a single, unified framework. The
main contributions of this work are detailed in §3 and may be summarized as follows:

(i) Unresolved degrees of freedom often have non-trivial time correlations. We show that
with deliberate subsampling and finite-time corrections, macroscopic variables can be
modelled by low-order nonlinear dynamics driven by uncorrelated white noise.

(ii) Finite-time effects due to coarse sampling rates can be corrected with parameter
estimation based on the adjoint Fokker–Planck equation. We extend this optimization
with the forward solution, enforcing consistency with the steady-state probability
distribution.

(iii) If the form of the stochastic model is unknown, its structure can be automatically
identified with an iterative SINDy-type model selection procedure. We show that this
stepwise sparse regression can be straightforwardly combined with the Fokker–Planck
optimization.

We explore the proposed nonlinear stochastic model identification method on several example
systems. First, we illustrate the importance of judicious subsampling and finite-time corrections
for correlated forcing by recovering a nonlinear Langevin equation driven by coloured noise.
We then show that the Langevin regression can construct a reduced-order model approximating
the second-order dynamics of a particle in a double-well potential with a first-order bifurcation
normal form. Both of these illustrative examples avoid the latent variable problem for the
unresolved degrees of freedom by learning stochastic closure models. An implementation of
Langevin regression along with code to reproduce the results from the simulated system is
available on GitHub.2

Finally, we apply Langevin regression to experimental measurements of a turbulent bluff-body
wake; the sparse model selection procedure identifies a model similar to that proposed by Rigas
et al. [34], but with an additional nonlinear noise term that improves the correspondence with
both the empirical probability distribution and power spectral density. Langevin regression draws
from both the long legacy of stochastic modelling and recent advances in data-driven methods
to form a flexible and general framework for approximating complex nonlinear dynamics with
statistically consistent stochastic models.

2. Background on stochastic dynamics
This section briefly reviews relevant theoretical concepts in stochastic modelling, including
the Fokker–Planck equation, the Kramers–Moyal conditional average, and adjoint corrections
for finite-time sampling effects. For more comprehensive background on the topics of non-
equilibrium statistical mechanics and the physical applications of stochastic differential equations
we refer the reader to excellent reference texts such as [3,5,39].

In this work, we seek to model the macroscopic variables x ∈ R
d with Langevin dynamics of

the form given by equation (1.1). The influence of unresolved degrees of freedom on the standard
deterministic dynamics ẋ = f (x) is modelled with the diffusion term σ (x)w(t), where w(t) is a
white noise process. The diffusion is called additive if σ (x) is a constant, or multiplicative if it
is state-dependent. The majority of stochastic models assume additive noise, since is easier to
treat analytically and is often a reasonable approximation for systems without strong coupling
across scales. For instance, additive process noise is the standard assumption for linear state-space
models of electronic circuits subject to thermal fluctuations. However, for systems such as fluid
dynamics where the quadratic nonlinearity leads to bidirectional coupling between the coherent
and turbulent degrees of freedom, state-dependent noise may improve the model [50].

Perhaps the most restrictive assumption is that placed on the noise process w(t). In order to
treat Langevin dynamics analytically, the forcing is typically taken to be Gaussian-distributed and

2See https://github.com/dynamicslab/langevin-regression.

https://github.com/dynamicslab/langevin-regression
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delta-correlated in time, i.e. 〈w(t)w(t′)〉 = δ(t − t′). If this is not the case, the following discussion
becomes more complicated [3,39]. For a macroscopic or integral quantity, the assumption of
Gaussian statistics can be argued by appealing to the central limit theorem, but the time-
correlation requirement is generally more difficult to justify.

(a) Fokker–Planck equation
The Langevin equation (1.1) describes individual trajectories, but due to the variability inherent in
stochastic dynamics it is often more natural to approach stochastic dynamics from the ensemble
perspective. For the Langevin dynamics given by equation (1.1), conservation of probability
requires that the PDF p(x, t) evolves in time according to the Fokker–Planck equation3:

∂p(x, t)
∂t

= − ∂

∂xi

[
fi(x)p(x, t)

] + ∂2

∂xi∂xj

[
aij(x)p(x, t)

] ≡Lp, (2.1)

where the diffusion tensor a(x) is given by aij(x) = σi(x)σj(x)/2 and the subscripts indicate
Einstein summation notation. As an alternative approach to Langevin equations, the multiscale
interactions in complex spatiotemporal systems can be modelled explicitly with Fokker–Planck
equations [51].

Often we are interested in the case where the system is statistically stationary, so that Lp = 0
and p = p(x). For example, if x is a scalar and the diffusion σ is a constant, the steady-state solution
can be determined analytically:

p(x) = C exp
[

2
σ 2

∫
f (x) dx

]
, (2.2)

where the constant C is determined by the normalization condition
∫

p(x) dx = 1. However,
solving the Fokker–Planck equation for general nonlinear dynamics is challenging and typically
must be approached approximately or numerically [3].

(b) Kramers–Moyal average
The Fokker–Planck equation may also be derived by expressing the time evolution of a general
PDF as a Taylor series of conditional finite-time moments m(n)

τ (x), where the conditional finite-time
moments m(n)

τ (x) are
m(n)

τ (x) =
〈(

x′(t + τ ) − x′(t)
)n

〉
x′(t)=x

. (2.3)

This leads to the Kramers–Moyal expansion. For scalar x,

∂p
∂t

= lim
τ→0

1
τ

∞∑
n=1

(
− ∂

∂x

)n m(n)
τ (x)
n!

p(x, t). (2.4)

Viewing the conditional mean in equation (2.3) as a finite-difference formula, the first moment
m(1)

τ (x) gives the average displacement over a time interval τ if the system is in state x. Likewise,
the second moment m(2)

τ (x) gives a conditional variance of the short-time evolution.
However, according to Pawula’s theorem, if the system is driven by Gaussian white noise all

moments n ≥ 3 vanish [3], leading to the Fokker–Planck equation (2.1). The leading moments are
related to the drift and diffusion functions of the corresponding Langevin equation in the limit of
vanishing time interval, i.e.

fi(x) = lim
τ→0

1
τ

〈
x′

i(t + τ ) − x′
i
〉
x′(t)=x (2.5a)

and
aij(x) = lim

τ→0

1
2τ

〈
(xi(t + τ ) − xi)(xj(t + τ ) − xj)

〉
x′(t)=x . (2.5b)

We refer to these relationships as the Kramers–Moyal average.

3Here and throughout we use the Itô interpretation of stochastic integrals.
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Figure 3. Schematic of Kramers–Moyal coefficient estimation for the first moment (drift). The drift estimate is determined
by the conditional mean of the state evolution over the interval, while the diffusion is given by the conditional variance.
The conditional moments can be approximated by dividing a long time series into histogram bins and taking the mean and
variance within each bin. For example, the Kramers–Moyal drift estimate gives an approximate discretized vector field for the
deterministic component of the dynamics (right).

In principle, these averages could offer a way to approximate unknown drift and diffusion
functions from data by binning the time series into histograms and computing (2.5a,b) with
the sampling rate τ = 1/fs, as illustrated in figure 3. This is a classic approach to constructing
approximate Langevin equations from data [4,52]. Boninsegna et al. also demonstrated that the
Kramers–Moyal average can be combined with SINDy sparse regression to discover analytic drift
and diffusion equations from data [17].

(c) Finite-time effects
The Kramers–Moyal average has chiefly been a theoretical tool; its application to time-series
analysis depends strongly on the assumption of Gaussian white noise and fast enough sampling
rates to approximate τ → 0. In practice, these two requirements tend to be in tension; if the forcing
originates with unresolved scales, then increasing the sampling rate leads to stronger correlations
in the ‘noise’. The assumption of uncorrelated forcing is never strictly satisfied for continuous
physical systems. Einstein recognized this in his work on Brownian motion [14], although in that
case the separation of scales is pronounced enough that experimental sampling rates run little risk
of capturing correlation effects in the molecular forcing. In complex systems of modern interest,
the scale separation is typically much less obvious.

As a simple illustrative model, consider a system driven by a coloured noise process η(t):

ẋ = f (x) + σxη (2.6a)

and

η̇ = −αη + σηw(t), (2.6b)

where w(t) is a true Gaussian white noise process. In this case, the forcing η(t) is characterized
by a decorrelation time α−1. When f (x) is a stable Navier–Stokes operator linearized about a
turbulent mean profile, coloured noise forcing has been shown to accurately reproduce turbulent
statistics [31]. A generalized Langevin equation driven by time-correlated forcing can also be
derived from the Euler equations using the direct-interaction approximation [11]. This perspective
is also popular in climate modelling, where models of this form can be derived from the governing
equations using perturbation arguments [50].

Despite the formally non-Markovian nature of the resolved variables, it is advantageous to
approximate the forcing as white-in-time, since most foundational theoretical tools are based
on this assumption. One strategy to avoid dealing with the latent variable η(t) is deliberate
subsampling, as illustrated in figure 2. If the macroscopic dynamics have a characteristic timescale
ω, we may be able to choose a sampling rate fs = τ−1 such that ω � fs � α and the forcing appears
decorrelated. That is, 〈η(t + kτ )η(t)〉t ≈ δk0. In this case the forcing appears to be (band-limited)
white noise.
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Figure 4. PDF evolution from the Fokker–Planck operator L. The distribution used to evaluate the conditional finite-time
moments (2.3) can be interpreted as the evolution of a delta function initial condition over the sampling interval τ , where the
state is known to be x′ at time t.

The minimum τ for which this is true is often called the Einstein–Markov scale [4]. This
time scale is not necessarily related to the autocorrelation time of the macroscopic dynamics x,
but may be identified from data by checking the Markov property at different sampling rates
(see appendix A and [4]). This strategy of subsampling at the approximate Einstein–Markov
scale was proposed to model spatial fluctuations in turbulence [53] and the cosmic microwave
background [54].

In order to sample the resolved dynamics coarsely enough that the forcing is decorrelated,
finite-time effects in the Kramers–Moyal estimates of drift and diffusion must be accounted
for [43]. However, these effects can be determined exactly in terms of the adjoint Fokker–Planck
operator [44]. For notational clarity, we give the result for scalar x, although the result generalizes
naturally to higher dimensions.

The conditional moments defined in equation (2.3) can be written equivalently as

m(n)
τ (x) =

∫∞

−∞
(x′ − x)np(x′, t + τ |x, t) dx′, (2.7)

where p(x′, t + τ |x, t) indicates the conditional joint probability that the system is in state x′ at time
t + τ given that it was in state x at time t. If the drift and diffusion are not time-dependent, then the
conditional probability p(x′, t + τ |x, t) can be interpreted as the propagation of uncertainty over an
interval τ if the state x is known at time t, as shown in figure 4. According to equation (2.1), this
evolution is given by the Fokker–Planck equation acting on a Dirac delta function:

p(x′, t + τ |x, t) = eτL(x′)δ(x′ − x). (2.8)

Using the definition of the adjoint operator and evaluating the integral with the delta function,

m(n)
τ (x) =

[
eτL†(x′)(x′ − x)n

]
x′=x

, (2.9)

where the adjoint Fokker–Planck operator is given in tensor summation notation by

L†(x) = fi(x)
∂

∂xi
+ aij(x)

∂2

∂xi∂xj
. (2.10)

Thus, Lade [44] showed that the effect of coarse sampling rates can be understood as the
adjoint Fokker–Planck operator evolving the moments of the distribution in time. Honisch and
Friedrich demonstrated the use of this relationship to optimize free parameters in a Langevin
model [18]; the proposed method in §3 builds on this result.

The close correspondence between the Fokker–Planck and Liouville operators also suggests
an interpretation of this result in terms of Koopman theory [55,56]. The adjoint Fokker–Planck
operator is a linear generator of the time evolution of observable functions, even when the
underlying dynamics are nonlinear [25,39]. In this case, the observables are the conditional
moments (x′ − x)n.
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These corrections are difficult to compute analytically for nonlinear dynamics, so equation (2.9)
is typically approximated on a discretized domain. The matrix exponential eτL†

is relatively
inexpensive in one dimension, but more generally it may be helpful to interpret the correction
as the solution of a PDE. That is, if w(n)(x, t) is the solution to the adjoint Fokker–Planck equation

∂w(n)

∂t
=L†(x)w(n)(x, t), w(n)(x, 0) = xn, (2.11)

then by linearity of L† the finite-time conditional moments m(1)
τ (x), m(2)

τ (x) are given by

m(1)
τ (x) = w(1)(x, τ ) − x (2.12a)

and

m(2)
τ (x) = w(2)(x, τ ) − 2xw(1)(x, τ ) − x2. (2.12b)

3. Proposed Langevin regression method
The decomposition of a multiscale system into dominant deterministic dynamics and stochastic
forcing is conceptually simple. However, the gulf between detailed first-principles descriptions
and a simple Langevin model is large enough that developing accurate stochastic models is
difficult. This is especially true when the dynamics are nonlinear and the unresolved scales have
internal dynamics and cannot be treated as true Gaussian white noise.

Owing to the intrinsic volatility of individual trajectories, model identification methods
typically rely on ergodicity and exploit the connection to ensemble properties via the Fokker–
Planck equation. For example, a scalar model with additive noise can be determined by fitting to
the analytic steady-state probability distribution given by equation (2.2). However, this fitting
procedure cannot independently estimate drift and diffusion; an additional quantity, such as
mean-square displacement, must also be used [34,35]. This presents a challenge for modelling
multiplicative noise, which some studies have suggested is important for capturing interactions
between the resolved and unresolved degrees of freedom [50,52]. Furthermore, the use of a
time average to estimate steady-state statistics destroys temporal information, so that oscillatory
dynamics cannot be resolved.

Seeking to address a number of these challenges, several recent studies have proposed
methods whereby stochastic models may be derived from the Kramers–Moyal average [17,18,
45]. Here we synthesize and extend these methods into a single optimization framework for
identifying sparse, interpretable Langevin-type models from experimental data by constraining
the model to both the stationary PDF and the Kramers–Moyal average. In particular, we
generalize the stochastic SINDy method proposed by Boninsegna et al. [17] with finite-time
corrections that enable modelling systems whose forcing is not approximately given by Gaussian
white noise.

(a) Knownmodel structure: Fokker–Planck optimization
Estimating the Kramers–Moyal coefficients (2.5a) and (2.5b) by binning a long time series is
an attractive option for estimating drift and diffusion functions directly from data. However,
as discussed in §2c, the sampling rate must be chosen carefully for unresolved dynamics to
decorrelate. This subsampling can introduce significant finite-time distortion to the empirical
Kramers–Moyal coefficients. This distortion is given in terms of the adjoint Fokker–Planck
equation by equation (2.9), although constructing the Fokker–Planck operator itself requires the
drift and diffusion.

Based on these considerations, Honisch & Friedrich suggested an iterative procedure to
estimate free parameters of drift and diffusion functions [18], which may be summarized as
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follows. If the Langevin model is given in terms of a set of parameters ξ , so that

ẋ = f (x; ξ ) + σ (x; ξ )w(t), (3.1)

then the problem is to choose the parameters such that the finite-time conditional moments are
consistent with the empirical Kramers–Moyal estimates. Leaving aside numerical details, the
optimization consists of the following:

Parameter optimization

(i) Select an appropriate sampling rate τ (see appendix A).
(ii) Estimate empirical finite-time conditional moments m̂(n)

τ (x) for n = 1, 2 using equation (2.3).
(iii) For a set of parameters ξ , construct the adjoint Fokker–Planck operator L† in

equation (2.10).
(iv) Compute the exact moments m(n)

τ (x, ξ ) using the adjoint correction given by
equation (2.9).

(v) Choose ξ to minimize the discrepancy between the empirical moments m̂(n)
τ (x) and the

exact moments m(n)
τ (x, ξ ).

More concretely, the optimal ξ solves the following problem on a discrete domain of N points xi:

min
ξ

2∑
n=1

N∑
i=1

w(n)
i

[
m(n)

τ (xi, ξ ) − m̂(n)
τ (xi)

]2
. (3.2)

Here the weights w(n)
i reflect pointwise uncertainty in the empirical estimate of the moments.

Owing to the diffusive nature of the Fokker–Planck equation, it is not clear that this problem
is necessarily well posed. That is, when the system is sampled coarsely there may be a range
of parameters that are consistent with the observed conditional moments within experimental
uncertainty.

We propose ‘regularizing’ the optimization problem (3.2) as proposed by Honisch &
Friedrich [18] with the Kullback–Leibler (KL) divergence DKL between the empirical PDF p̂(x)
and the solution of the steady-state Fokker–Planck equation p(x, ξ ), given by equation (2.1). The
modified cost function is

min
ξ

2∑
n=1

N∑
i=1

w(n)
i

[
m(n)

τ (xi, ξ ) − m̂(n)
τ (xi)

]2 + ηDKL
(
p̂(x), p(x, ξ

)
), (3.3)

where η is the relative weight of the two contributions to the cost function. The KL divergence is
a statistical measure of the difference between two probability distributions p and q, defined as

DKL(p, q) =
∫

p(x) log
(

p(x)
q(x)

)
dx. (3.4)

This regularization ensures that the resulting Langevin model is consistent with both the finite-
time Kramers–Moyal coefficients and the asymptotic steady-state probability distribution. The
optimization problem in Langevin regression is shown schematically in figure 5. Because the
typical dimension of ξ is relatively small compared to the dimension x, we find that gradient-
free optimization methods such as a Nelder–Mead simplex search are more efficient than those
designed for large parameter spaces and relatively inexpensive cost function evaluations, such as
automatic differentiation.

The resulting optimization problem requires solution of both the forward and adjoint Fokker–
Planck equations at each evaluation of the cost function. For a scalar variable x, the steady-state
solution to the forward equation can be computed directly with equation (2.2). In higher
dimensions, there is no analytic steady-state solution to the forward equation; we describe several
solvers in appendix B. We solve the adjoint equation with a second-order finite difference method.
In one and two dimensions, the resulting matrix exponential is relatively inexpensive, while for
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Figure 5. Schematic of the Langevin regression optimization problem. The Fokker–Planck equation can be used to compare
the conditional moments and distribution for a proposed model to those observed empirically. The model parameters are
chosen to minimize the discrepancy between the model and observations, as described in §3a. The form of the model may
be simultaneously identified with the model selection procedure outlined in §3b.

higher dimensions a time-stepping approach that exploits the sparse operator structure will be
more efficient.

(b) Unknownmodel structure: stochastic SINDy
If the form of the model can be assumed up to a set of unknown parameters, the Fokker–Planck
optimization problem detailed in the previous section is sufficient to estimate the free parameters.
However, in many cases we might have some partial prior assumptions about the model structure
(e.g. the model consists of polynomials with a particular symmetry, or that one variable is forced
by another), but the exact form is unknown. The SINDy method has recently shown promise
for obtaining nonlinear reduced-order models of laminar flows [16,57–59] from data. However,
SINDy typically relies on estimated time derivatives, which is a significant barrier to modelling
experimental data or multiscale systems. In related work, SINDy has recently been leveraged for
turbulence closure modelling [60].

Boninsegna et al. [17] recently proposed a stochastic SINDy algorithm based on the Kramer–
Moyal average without an adjoint correction for finite-time effects. Empirical estimation of
conditional moments gives point estimates of drift and diffusion at each histogram bin; if the
moments are estimated reliably, then the system identification problem reduces to fitting a curve
through these points. In its simplest form, a parsimonious model can be chosen using the SINDy
framework, where the model parameters are a coefficient vector for a "library" matrix whose
columns consist of candidate functions [16]. For instance, the library Θ(x) might consist of
polynomials in x; then we look for polynomial representations of the drift f (x) and diffusion σ (x),
so that

f (x) = ΘT
f (x)ξf σ (x) = ΘT

σ (x)ξσ , (3.5)

where ξf and ξσ are sparse vectors that have as many zero entries as possible while still capturing
the observed dynamics. Standard sparse regression algorithms can be used to select a set of
functions balancing parsimony and accuracy.

In the deterministic SINDy algorithm, this regression problem is constructed by concatenating
column vectors of an estimated time derivative ẋ and the evaluations of the candidate functions.
In the present case, however, the regression is performed over the discretized spatial domain
rather than a long time series. The conditional finite-time coefficients are estimated by computing
equation (2.3) over observations that fall into each spatial histogram bin, as visualized in figure 3.
The regression problem is constructed over these bins rather than the direct time series. In
practice, this typically reduces the length of the column vectors from O(106) to O(102).

One consequence of this formulation is that standard sparse regression algorithms, such as
thresholded least squares or forward regression orthogonal least squares, do not work well. A
simple alternative is the reverse-greedy stepwise sparse regression (SSR) [17]. With this method,
terms are sequentially removed from the model according to some criteria. In the original
SSR algorithm, the coefficients were identified with a simple least squares and terms with the
smallest absolute value were removed. However, in general the smallest coefficient does not
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necessarily imply the least important contribution. For this reason, we sequentially remove terms
corresponding to the smallest increase in cost function. The cost function itself can then serve as a
model-selection criterion; for a Pareto-optimal model the cost function should jump significantly
from a near-minimum value once important terms begin to be discarded.

When combined with the forward/adjoint Fokker–Planck optimization described in the
previous section, this model selection procedure represents a flexible and general framework
for identifying stochastic approximations to multiscale nonlinear dynamics, which we refer
to as Langevin regression. In the following section, the Fokker–Planck parameter estimation is
demonstrated on two example systems for which the form of the model is clear. The ability of
Langevin regression to simultaneously identify the structure and parameters of a model from
data is demonstrated in §4c for experimental measurements of a turbulent wake.

4. Results
Here we apply Langevin regression to three example problems of increasing complexity. First, we
show that the coarse sampling and scale separation ideas discussed in §2 enable the identification
of stochastic systems with time-correlated forcing. For this example, we assume knowledge about
the structure of the model in order to highlight the effects of coloured noise and parameter
estimation in the case where the correct structure is known.

Second, we demonstrate the construction of a statistically consistent reduced-order model
by approximating the second-order dynamics of a particle in a double-well potential with the
corresponding first-order bifurcation normal form. A stochastic normal form model can be
derived analytically for this system, although its accuracy quickly degrades away from the
bifurcation point. We fix the structure of the model and show that Langevin regression can
maintain statistical accuracy even far from the bifurcation point.

Finally, we derive an accurate and efficient stochastic model for the turbulent flow in the wake
of an axisymmetric bluff body from experimental measurements. This example presents several
challenges, including partial and noisy measurements of a multiscale system, and has relevance
to numerous industrial applications [20]. Although the structure of the drift dynamics may be
inferred from laminar stability analysis, we instead apply sparse model selection to discover this
structure entirely from data. Our procedure identifies a simple and interpretable nonlinear model
with a multiplicative noise term that improves the correspondence with the empirical power
spectrum and probability distribution compared with previous stochastic modelling results.

The synthetic examples in §4a,b are simulated using the SRIW1 stochastic Runge–Kutta
method [61], available in the DifferentialEquations.jl package [62]. Langevin regression is
performed on Kramers–Moyal coefficients and empirical PDFs computed from a time series of
107 points sampled at 
t = 10−2. The turbulent wake model in §4c is based on the aerodynamic
centre of pressure, a global integral quantity estimated from 64 evenly spaced pressure taps [63].
The model is estimated from a time series of 8.9 × 106 experimental measurements of the centre of
pressure sampled at 225 Hz. Monte Carlo evaluation of this model is performed in Python using
a standard Euler–Maruyama numerical integration scheme at the same sampling rate. The coarse
subsampling rate for Kramers–Moyal averaging is chosen for each system according to the criteria
discussed in appendix A. The relative weight η of the KL divergence in the optimization function
is a multiple of 10, which is chosen to be roughly equal to the minimum cost function with η = 0.
In other words, the Kramers–Moyal coefficients and the PDF are given roughly equal weight in
the optimization.

(a) Pitchfork bifurcation normal form
The normal form for a supercritical pitchfork bifurcation provides a canonical example of
bistability, where an eigenvalue with zero imaginary part crosses the real axis as a parameter is
varied. For example, this normal form describes the amplitude equation governing the symmetry-
breaking mode of the wake behind a circular disc, which can be derived by a weakly nonlinear
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Figure 6. Pitchfork normal form forced by coloured noise. Top: the noise induces random switching between the metastable
equilibria. Bottom: if the Kramers–Moyal coefficients are computed with a sampling rate faster than the decorrelation of the
noise (circles), the drift still appears cubic but the amplitude is underestimated by approximately an order ofmagnitude. On the
other hand, if the noise is allowed to decorrelate (triangles), the estimated Kramers–Moyal coefficients are the right order of
magnitude, but are distorted from the zero-time value. The diffusion appears multiplicative and quadratic. The adjoint finite-
time corrections recover a consistent Langevin model driven by white noise (dashed line). (Online version in colour.)

stability analysis [64]. This result inspired the use of a stochastically forced pitchfork normal form
to model the turbulent evolution of the centroid of the base pressure distribution on the back of an
axisymmetric bluff body [63] and the bistability of a three-dimensional Ahmed body wake [35].

However, unresolved degrees of freedom in a turbulent flow do not typically resemble delta-
correlated white noise. Here we investigate the impact of correlated noise on stochastic system
identification by considering the supercritical pitchfork normal form forced by coloured noise:

ẋ = λx − μx3 + η (4.1a)

and
η̇ = −αη + σw(t). (4.1b)

Here η is an Ornstein–Uhlenbeck process with characteristic relaxation time α−1, which acts as
an effective low-pass filter on the white noise process w(t). We choose μ = λ = β = 1, α = 102 and
σ = 0.5α so that the typical amplitude of η is around 0.5.

The non-zero relaxation rate for the Ornstein–Uhlenbeck process introduces temporal
correlations that invalidate many of the standard analytic approaches to stochastic modelling if η

is not directly observed. However, if the relaxation rate is much larger than any natural dynamics
of the slow variable (i.e. α � λ) we can appeal to the dual scale separation idea of figure 2 and
approximate the fast scales as uncorrelated noise.

As demonstrated in figure 6, the correlated forcing destroys the Kramers–Moyal average
as the sampling interval τ → 0. This can be mitigated by sampling coarsely enough that the
noise decorrelates and appears to whiten. For instance, if we choose τ = 0.5 = 50α = 0.5λ (slower
than the noise decorrelation but faster than the drift dynamics), the Kramers–Moyal average is
of the correct order of magnitude. However, finite-time sampling rates now significantly deform
the observed drift and diffusion, even introducing apparent state dependence in the diffusion
(figure 6, bottom middle). This observation by Ragwitz & Kantz called into question many earlier
attempts to use the Kramers–Moyal average for modelling without accounting for finite-time
effects [43].
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Table 1. True parameters for the pitchfork normal form forced by coloured noise alongwith those estimated fromdata.Without
the adjoint Fokker–Planck corrections for finite sampling rates, the true coefficients are underestimated by a factor of 2. On the
other hand, Langevin regression with full adjoint-based optimization identifies a statistically consistent model driven by white
noise forcing, where the drift coefficients are a close match to the true system.

model λ μ σ

true system (coloured noise) 1.0 1.0 –
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stochastic SINDy (no adjoint) 0.43 0.43 0.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Langevin regression (white noise) 0.96 0.96 0.49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Langevin regression accounts for these distortions with the adjoint Fokker–Planck operator,
recovering a one-dimensional model nearly identical to equation (4.1a), but forced by additive
white noise. The identified coefficients (given in table 1) differ from the true values by around
5%, but the model closely matches both the observed finite-time conditional moments and
the empirical probability distribution (figure 6, bottom row). This suggests that the proposed
subsample-and-correct approach is capable of identifying statistically consistent Langevin
models, even in the presence of correlated noise. This result depends fundamentally on the dual
scale separation principle of figure 2; the success of this approach may be limited when these
timescales cannot be clearly separated with the coarse sampling rate.

(b) Double-well potential
In many cases, Langevin-type stochastic models are intended to be reduced-order approximations
of the large-scale dynamics of a complex system, rather than faithful representations of first-
principles physics. The ‘microscopic’ degrees of freedom in these systems generally have finite
correlation times, as with the coloured noise in the previous example. Eliminating these variables
from the model leads to explicit memory effects in the Langevin equations [39], unless the scale
separation principle can be employed to identify a memory-free reduced-order stochastic model
from data. Low-order polynomial dynamics, such as normal forms, can arise naturally in this
context as a way to describe the macroscopic behaviour, even when the underlying physical
description appears completely different [65].

For example, the one-dimensional motion of a particle of unit mass in a general potential U(x)
subject to thermal fluctuations is given by

ẍ + γ ẋ + U′(x) =
√

2γ kBTw(t), (4.2)

where γ is the damping ratio, kB is Boltzmann’s constant, T is the temperature, and w(t) is a white
noise process [3]. We consider the double-well potential

U(x) = −α

2
x2 + β

4
x4. (4.3)

An example trajectory of this system is shown in figure 7, displaying both small oscillations within
each well and random large jumps between wells.

The equation of motion generated by this potential can be non-dimensionalized to the form

d
dt

[
x
ẋ

]
=

[
0 1

ε − x2 −2

] [
x
ẋ

]
+

[
0
σ

]
w. (4.4)

The drift undergoes a supercritical pitchfork bifurcation at ε = 0, where the origin loses stability
to the pair of fixed points x = ±√

ε. For small ε, an invariant manifold approximation (see
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Figure 7. Particle in a one-dimensional double-well potential. Even when the system is far from the pitchfork bifurcation
(ε = 20), the dynamics are dominated by bistable switching behaviour (top). Langevin regression identified a reduced-order
approximation to this system (middle), which is consistent with both the state probability distribution (bottom left) and the
distribution of metastable dwell times (bottom right). (Online version in colour.)

appendix C) gives a first-order model based on the pitchfork bifurcation normal form:

ẋ = λ(ε)x − μ(ε)x3 + σ̃w(t). (4.5)

As figure 7 shows for ε = 20, even far from the bifurcation the bistability still dominates the
dynamics, although the invariant manifold approximation used to reduce the order of the normal
form model no longer holds. A first-order equation of the form of equation (4.5) can capture
this bistability at the cost of ignoring the small oscillations within each potential well. In other
words, the goal is to coarse-grain the dynamics while preserving the statistical properties of
the system.

Constructing a first-order Langevin model for the position x is made difficult by the fact that
the time series is smoothed by integration of the thermal fluctuations forcing ẋ in equation (4.4).
The neglected degree of freedom introduces non-Markovian behaviour and confounds the
Kramers–Moyal average, which tends towards zero with fast sampling rates (figure 8). However,
by choosing a coarse enough sampling rate so the subsampled dynamics appear Markovian and
correcting for the finite-time effects, Langevin regression is able to identify a first-order model
that captures both the probability distribution p(x) and the distribution of residence times in each
metastable well.

As shown in figure 9, the Langevin regression model has similar fidelity to the analytic normal
form close to the bifurcation, but the data-driven model maintains statistical accuracy well beyond
the region where the normal form is valid. Also shown are results for the same model structure,
but with parameters estimated by regression to the empirical PDF (appendix Ba). At each value
of the bifurcation parameter ε, the second-order dynamics are driven by noise σ = (

√
ε + ε)/2

so that the mean dwell time maintains a similar order of magnitude throughout the range
of comparison.
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(c) Turbulent axisymmetric wake
Turbulence is a notoriously challenging problem that exemplifies many of the difficulties of
stochastic modelling. A turbulent fluid flow is deterministic in principle, but the large and
continuous range of spatio-temporal scales often necessitates statistical analysis. However,
unlike Brownian motion, turbulence is far enough from equilibrium that it does not obey the
principle of detailed balance; the machinery of statistical mechanics cannot easily be applied
to turbulence [11]. Nevertheless, many turbulent flows are dominated by large-scale coherent
structures whose regular evolution is suggestive of low-dimensional dynamics, despite the
unpredictability introduced by strong coupling to the smaller scales in the flow. In particular, high
Reynolds number flows are characterized by a wide separation between the slow macroscopic
dynamics and the faster turbulent fluctuations [13].

In this context, Langevin regression is a natural extension of the data-driven modelling
methods that have proven successful at identifying low-dimensional dynamics in laminar
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Figure 10. Experimental configuration for the axisymmetric wake. The bluff body is mounted from the wind tunnel ceiling (a)
and the base pressure distribution is measured from 64 pressure taps (b). The symmetry-breaking instability of the laminar
flow persists in the fully turbulentwake, although the centre of pressure appears towander randomly, as seen in the probability
distribution p(x, y) (c). (Online version in colour.)

flows [57–59,66]. Just as these methods are capable of generalizing the near-bifurcation results of
weakly nonlinear analyses [64,67] and POD-Galerkin models [68], here we aim to further extend
this philosophy to turbulent flows by modelling all but the most important degrees of freedom as
stochastic forcing.

We demonstrate stochastic model identification on the experimentally measured pressure
distribution on an axisymmetric bluff body, visualized in figure 10 and described in detail in
[63]. The Reynolds number based on the body diameter is � ∼ 2 × 105. This flow is a stereotypical
configuration that exhibits several features important to drag reduction applications.

The low Reynolds number laminar wake behind an axisymmetric bluff body is symmetric,
but undergoes a supercritical pitchfork bifurcation at � ∼ 102 so that the centre of pressure is
offset at a non-zero radial amplitude [64]. Since the unstable symmetric wake has lower drag
than the asymmetric configuration, stabilizing the symmetric state is a major goal of flow control
studies [35,69]. Simple low-dimensional models that accurately represent process noise, energy
transfers and frequency dynamics could significantly improve closed-loop control schemes. The
symmetry-breaking instability continues to dominate the wake dynamics in the turbulent regime,
although the location of the centre of pressure tends to wander randomly [34,63,70].

As a macroscopic proxy for the amplitude of the symmetry-breaking, we model the evolution
of the centre of pressure, or the centroid of the pressure distribution on the back of the body.
The base pressure distribution is measured using 64 evenly spaced taps, as shown in figure 10.
Since the centre of pressure is a global integral quantity, we expect that fluctuations will be
roughly Gaussian, based on the central limit theorem, although time correlations in the forcing
still necessitates the use of subsampling and finite-time corrections.

A simple dynamical model that captures the symmetry-breaking behaviour is the normal form
of the pitchfork bifurcation forced by Gaussian white noise [34]. The radial component of the
Langevin equation for a symmetric two-dimensional pitchfork bifurcation forced by additive
white noise is

ṙ = λr − μr3 + σ 2

2r
+ σw(t), (4.6)

where the 1/r term appears as a consequence of Itô’s lemma for a change of variables in stochastic
systems. In one dimension, the steady-state Fokker–Planck equation can be solved analytically
for this model and the free parameters can be identified based on a fit to the empirical probability
distribution and mean-square displacement, as described in appendix Ba.

As shown in figure 11, this model agrees reasonably well with the observed statistics for the
centre of pressure, suggesting that the stochastic modelling approach is a promising description
for the leading global degrees of freedom. However, it is difficult to extend this modelling
methodology to more complex systems. Even in one dimension, the drift and diffusion do not
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Figure 11. Statistical evaluation of the axisymmetric wake models. The Langevin regression model (blue) better matches both
the power spectral density (PSD) (a) and tails of the PDF (b) compared with the pitchfork normal form (4.6) with coefficients
estimated by PDF fitting, as in [34]. Themodels are similar, but Langevin regression identifies a quadratic state-dependent noise
(figure 12). The power spectrum is premultiplied by Strouhal number St= fU/D, a dimensionless frequency. The large peak at
St≈ 0.2 corresponds to vortex shedding, which is essentially indistinguishable from the symmetry-breaking instability in the
base pressure distribution [35]. (Online version in colour.)

appear independently in the analytic steady-state PDF; additive noise can be estimated from
the mean-square displacement, but this poses a challenge for multiplicative noise. In higher
dimensions, the Fokker–Planck equation does not have an analytic solution for general drift
and diffusion, although model parameters might be estimated by optimizing the solution of a
numerical solver. This approach cannot resolve oscillatory behaviour such as vortex shedding,
since temporal information is lost in the steady-state distribution.

Since we do not have a known form of the model in this case, besides the intuition for the
pitchfork normal form, we apply the stochastic SINDy procedure described in §3b. Based on
symmetry considerations, we include only odd polynomials in the library of drift functions. The
1/r term in the drift, due to the representation in polar coordinates, is also accounted for in the
optimization routine. The model selection criteria shown in figure 12 show a clear Pareto-optimal
model of the form

ṙ = λr − μr3 + σ 2

2r
+ (σ0 + σ1r2)w(t). (4.7)

Figure 12 also shows that the finite-time Kramers–Moyal coefficients predicted by this model
closely match those estimated by the finite-time conditional average.

The identified model is similar to that proposed by Rigas et al. [34], with the addition
of quadratic multiplicative noise. This modification better matches the tails of the probability
distribution, as shown in figure 11. Monte Carlo simulation of the Langevin models also shows
that the multiplicative noise leads to a more accurate power spectral density than the model
based on fitting the PDF. Quadratic multiplicative noise was previously proposed as an important
modification for a spatial Langevin model of turbulence [43]. Multiplicative terms may be a result
of neglecting degrees of freedom with bilinear coupling to the macroscopic variables [50].

This model for the symmetry-breaking instability does not resolve the peak in the power
spectrum near St ≈ 0.2, which is related to vortex shedding in the wake [63,71]. Analysis of the
corresponding laminar flow indicates that a more complete model of the wake might include three
complex amplitudes to capture this periodic component and its interactions with the symmetry-
breaking mode [64]. However, the vortex shedding is only weakly observable from base pressure
sensors, since it mainly takes place downstream from the body [35]; for the same reason it is less
important aerodynamically than the symmetry-breaking.

Langevin regression is therefore able to clearly identify a simple low-dimensional model
from experimental measurements of turbulence. The sparse stochastic model is consistent with
both known flow physics and empirical statistics, suggesting that approximating the evolution
of global variables with nonlinear Langevin dynamics may be a promising direction in the
low-dimensional modelling of turbulent flows.
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Figure 12. Model selection and Kramers–Moyal coefficients for the axisymmetric wake. The reverse-greedy sparse stepwise
regression identifies a hierarchy of candidate models with varying tradeoffs between accuracy and complexity. The optimal
model has the fewest terms before the cost function begins to climb, indicating the remaining terms are essential. In this
case, the optimal model is a pitchfork bifurcation normal form forced by quadratic multiplicative noise (a). The model to the
right of the optimal model includes only additive noise and corresponds to the model proposed in [34], while additional terms
leads to a higher-order Stuart–Landau equation. The selectedmodel closelymatches the empirical finite-time Kramers–Moyal
coefficients (b), the state PDF, and the power spectral density (figure 11). (Online version in colour.)

5. Discussion
There is a long history in the physical sciences of approximating complex multiscale systems
with reduced-order models driven by stochastic forcing. However, as this approach has spread
in popularity, it is not always clear that the assumptions underpinning the rigorous treatment
of non-equilibrium statistical mechanics continue to hold. For example, the subscale degrees of
freedom in systems like turbulent fluid flows often do not decorrelate fast enough to appear
as delta-correlated white noise. Nevertheless, experience suggests that simple stochastic models
are often good approximations to systems that violate some of these assumptions. Data-driven
modelling has gained significant attention in this context for its ability to construct consistent
empirical models without the restrictions of classical analytic approaches.

In this work, we have integrated and generalized three previously disparate approaches
to data-driven stochastic modelling, combining sparse model selection based on the Kramers–
Moyal average [17] with finite sampling-rate corrections [18,44] and steady-state PDF fitting [34].
The proposed modelling framework is designed to identify nonlinear Langevin-type dynamics
from noisy experimental data, optimizing parameter estimates with both the forward and
adjoint Fokker–Planck equations. Critically, the finite-time corrections allow the method to model
systems driven by correlated noise, or fast deterministic degrees of freedom, while sparse
stepwise regression can be used to discover the structure of the model when it is unknown a priori.
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We have demonstrated the flexibility and generality of Langevin regression on three examples.
First, the method reconstructs a noisy Stuart–Landau oscillator from partial observations,
illustrating the capability to model higher-dimensional systems. Second, we investigated
reducing the second-order dynamics of a particle in a one-dimensional double-well potential to
the corresponding first-order normal form. The data-driven model closely matches the statistical
behaviour of the system far from the bifurcation, well beyond the region where the analytic
normal form is valid. Finally, we apply Langevin regression to experimental measurements of a
turbulent bluff body wake, identifying a model for the evolution of the base centre of pressure. In
this case the SSR model selection procedure identifies a model consistent with previous work [34],
but modified with a quadratic, state-dependent noise term that better approximates the power
spectrum and the long tails of the PDF.

These results indicate that the proposed method is capable of accurately modelling a broad
range of systems from limited experimental observations. However, we recognize two limitations
of the method as presented here. First, we can currently only construct first-order models.
In principle, higher-order dynamics can be recast as a system of the first-order equations,
provided generalized coordinates and velocities can be measured, but this is often not the
case in practice. It may, therefore, be easiest to model systems with stereotypical macroscopic
dynamics reminiscent of a normal form or amplitude equation. Second, although the theory
generalizes naturally to higher dimensions (and we have demonstrated a two-dimensional
system), the practical limitation lies in constructing n-dimensional histograms for Kramers–Moyal
coefficients and in solving the Fokker–Planck equations on the resulting grid. This challenge
might be addressed either with more efficient Fokker–Planck solvers or with recently-proposed
methods that avoid the need for histograms at the price of enforcing consistency with the
PDF [36–38].

Despite these limitations, the proposed method can still be readily applied to a broad range
of systems; nonlinear stochastic systems with one or two degrees of freedom have been used to
model the global behaviour of systems ranging from neuroscience [72] to molecular dynamics [73]
and aerodynamics [34]. The success of simple heuristics combined with stochastic models for
feedback control (e.g. [35]) also suggests that these data-driven models could be integrated in
a control scheme, although this will require modelling the effects of actuation on the system in
addition to the homogeneous behaviour.

Another goal of modelling is to uncover the latent low-dimensional structure of macroscopic
dynamics. In fluid dynamics, for instance, this is often conceptualized as a small set of global
modes whose amplitudes evolve according to low-dimensional nonlinear dynamics [74]. Moving
beyond integral quantities such as the centre of pressure, Langevin regression could be used to
identify a data-driven, stochastic counterpart to Galerkin-type reduced-order models and resolve
important nonlinear interactions between the large-scale structures of the flow.

In a broader context, the ability to identify reduced-order stochastic models from noisy
experimental measurements of multiscale nonlinear dynamics will unlock a powerful set of
tools for a much wider range of systems. Data-driven methods allow for the treatment of not
only systems which break the strict assumptions of classical stochastic modelling, but also data
from ecology, epidemiology, and neuroscience for which first-principles governing equations are
unavailable. Tools such as the Kramers–Moyal average already have a history of success in a
variety of fields. It is our hope that the proposed method will build on this legacy and extend
these successes to an even more extensive class of complex systems.
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Appendix A. Determination of sampling rate
As discussed above, the choice of sampling rate for the Kramers–Moyal average is critical, and
the experimental sampling frequency is not necessarily the best choice. For systems driven by
Gaussian white noise, the fastest sampling rate possible yields the best approximation to the true
zero-time Kramers–Moyal coefficients. However, sampling multiscale systems with broadband
spectral content too quickly can lead to significantly underestimating the conditional moments
due to time correlations in the ‘noise’. A rigorous condition for the optimal sampling rate in
general is still unknown; however, this appendix surveys several complementary diagnostic tools.
These methods are discussed for scalar variables x(t), but similar conclusions hold for high-
dimensional systems. Figure 13 illustrates the sampling rate determination for the turbulent wake
data.

(a) Autocorrelation time
In the view of the dual scale separation principle illustrated in figure 2, the determination of
sampling rate is essentially a question of the dominant time scales in the data. One of the simplest
and most revealing statistics is the autocorrelation function, defined as

C(τ ) = 〈x(t + τ )x(t)〉t

〈x(t)2〉 . (A 1)

By construction, C(0) = 1, and for most complex systems C(τ ) approaches zero on some
characteristic time scale. However, this time scale is generally related to the macroscopic
dynamics; it is not desirable to sample the system once the macroscopic dynamics have
completely decorrelated. On the other hand, if the data is sampled while C(τ ) ∼ 1, the correlations
will tend to eclipse the effects of the unresolved scales (figure 8 top, open circles). Intermediate
values of the autocorrelation function (e.g. 0.2–0.8) indicate time scales where the fast scales
introduce significant fluctuations, but the macroscopic dynamics have not yet fully decorrelated.

Similar intuition can be gained from the empirical power spectral density, which is related
to the autocorrelation function according to the Wiener–Khinchin theorem. Peaks in the power
spectrum are typically related to the macroscopic dynamics; the Nyquist frequency then indicates
an upper bound on the sampling rate.

(b) Markov test
A more rigorous procedure for determining sampling intervals was introduced in [53] based
on testing the Markov property of the system at different sampling rates. Markovian dynamics
depend only on the state of the system at the current time. This implies that the conditional PDF
for the evolution of the system does not depend on any earlier times:

p(x3, t + τ |x2, t; x1, t − τ ) = p(x3, t + τ |x2, t). (A 2)

In fact, this assumption is central to the derivation of the Fokker–Planck equation [3].
Using the definition of conditional probability, the Markov property implies that

p(x3, t + τ ; x2, t; x1, t − τ ) = p(x3, t + τ |x2, t)p(x2, t; x1, t − τ ). (A 3)

This can be directly tested by forming the left and right sides and comparing them for equality
for various sampling rates τ . Earlier work has used a least-squares comparison of the PDFs, but
we instead evaluate the KL divergence DKL(τ ) between the three-time joint PDF and the Markov
approximation for consistency with the KL divergence in the optimization problem.
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Figure 13. Diagnostic statistics for finite-time sampling rate. The coarse sampling rate allows the fast fluctuations todecorrelate
while still resolving the macroscopic dynamics. For a good choice of sampling rate, the autocorrelation function will take on an
intermediate value and the KL divergence between the three-time PDF and its Markov approximation will be near a minimum.
As seen for the turbulent wake data, an appropriate value may need to balance these two requirements.

At short times, ignoring the fast time scales leads to non-Markovian effects in the macroscopic
variables. Eventually, if τ is large enough that the fluctuations can decorrelate, the KL divergence
reaches a minimum. In practice, we seek to balance this condition with considerations of
the autocorrelation function. We therefore choose a sampling rate for which C(τ ) takes on
intermediate values and DKL(τ ) is at or approaching its minimum.

Appendix B. Steady-state Fokker–Planck solvers
This section describes three numerical solvers for the steady-state Fokker–Planck equation. The
forward Fokker–Planck equation governs the time evolution of the PDF p(x), where in general
x may be a d-dimensional state vector. We assume the state evolves according to a Langevin
equation

ẋi = fi(x, t) + σi(x, t)wi(t), (B 1)

where each wi(t) is an independent Gaussian white noise (Wiener) process.
If the drift and diffusion functions do not depend on time, i.e. fi(x, t) = fi(x) and σi(x, t) = σi(x),

the PDF p(x) is a solution to the steady-state Fokker–Planck equation

0 = − ∂

∂xi
fi(x)p(x) + ∂2

∂xi∂xj
aij(x)p(x), (B 2)

where aij(x) = 1
2 σi(x)σj(x) is the diffusion tensor. For the sake of simplicity, we will restrict the

discussion to the common case of diagonal diffusion, so that aij = 0 when i �= j.
The steady-state PDF p(x) is subject to the normalization condition

1 =
∫
Rd

p(x) dx. (B 3)
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(a) Exact solution in one dimension
In one dimension, the steady-state Fokker–Planck equation (B 2) can be integrated explicitly to a
potential-like form:

p(x) = C
a(x)

exp
[∫

f (x)
a(x)

dx
]

. (B 4)

The ‘potential’ and normalization integrals can be evaluated numerically for given drift and
diffusion functions.

In principle, this solution can be used to fit model parameters against the empirical PDF.
However, only the ratio f (x)/a(x) appears in the solution, so that an independent estimate of
the noise amplitude σ is necessary. For constant diffusion, this can be estimated from the mean-
square displacement of the radial coordinate, which is predicted to grow as 〈(
x(τ ))2〉 = σ 2τ for
short times.

This method, labelled as ‘PDF fit’ in figure 11 works well for simple scalar Langevin equations
with additive white noise, but does not generalize to more complicated models. A numerical
approximation to the analytic solution (B 4) can still be used in the Langevin regression
optimization problem to enforce consistency with the steady-state PDF.

(b) Fourier–Galerkin solver for steady-state Fokker–Planck equation
This section describes a steady-state solver based on [75] where we approximate the PDF with a
Fourier series and then Galerkin project the equation onto the Fourier modes.

For x ∈ R
d, the steady-state Fokker–Planck equation is

0 = − ∂

∂xn
fn(x)p(x) + ∂2

xnxm
anm(x)p(x), (B 5)

where the indices imply summation.
We use the Fourier representation of the PDF:

p(x) = 1
2π

∫∞

−∞
p̂(k) eikx dk, p̂(k) =

∫∞

−∞
p(x) e−ikx dx. (B 6)

The normalization condition implies p̂(0) = 1.
In practice, the Fourier representation will be truncated at a finite number of modes. After

substituting the approximate representation of p(x) we find the residual

R = 1
2π

∫
p̂(k) dk

[
− ∂

∂x

(
f (x) eikx

)
+ ∂2

∂x

(
a(x) eikx

)]
. (B 7)

Minimizing the residual requires that it is orthogonal to the subspace spanned by the Fourier
modes. Project onto an arbitrary wavenumber k′ and simplifying

0 =
∫

p̂(k) dk
[
−ik′ f̂ (k′ − k) − k′2â(k′ − k)

]
. (B 8)

This equation must be true for all k′. Practically, the FFT is used, so the integral is a sum over
wavenumbers. Similar to the Hermite representation, we can use the normalization condition to
obtain an inhomogeneous linear equation:

b(k′) = ik′
nf̂n(k′) + k′

nk′
mânm(k′), (B 9a)

A(k′, k) = −ik′
nf̂n(k′ − k) − k′

nk′
mânm(k′ − k) (B 9b)

and b(k′) =
∑

k �= 0

A(k′, k)p̂(k). (B 9c)
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Appendix C. Normal form approximation to the second-order dynamics
We model a particle of unit mass in a symmetric double-well potential subject to thermal
fluctuations with the second-order Langevin dynamics

ẍ + 2γ ẋ = αx − βx3 +
√

2γ kBTw(t). (C 1)

Non-dimensionalizing with the relaxation timescale γ −1 and the length scale
√

γ 2/β given by the
nonlinear term, the dynamics are

ẍ + 2ẋ = εx − x3 + σxw(t), (C 2)

where ε = α/γ 2 and σ 2
x /2 is the dimensionless energy of the thermal fluctuations.

The system linearized at the origin has eigenvalues λ1,2 = 1 ± √
1 + ε, indicating the system

undergoes a supercritical pitchfork bifurcation at εc = 0. The state of the system is given by[
x
ẋ

]
= v1φ1(t) + v2φ2(t), (C 3)

where v1,2 are the corresponding eigenvectors. Close to the bifurcation, we assume the following:

(i) Invariant manifold reduction: The dynamics are restricted to the one-dimensional subspace
spanned by the unstable eigenvector v1. Since the eigenvectors are not orthogonal, the
amplitude of the stable eigenvector is an algebraic function of φ1(t) on restriction to this
subspace. To leading order, φ2 = hφ1.

(ii) Normal form: The drift dynamics in this subspace are given by the normal form for the
pitchfork bifurcation with unknown parameter μ:

φ̇1 = λ1(ε)φ1 − μ(ε)φ3
1 + σφw(t). (C 4)

(iii) Dynamical consistency: The reduced-order dynamics preserve the fixed points of the drift
function of the full system. That is, ẍ = ẋ = 0 at x = 0, ±√

ε.

These assumptions imply that h = −λ1/λ2 and μ = (1 + h)2λ1/ε. Furthermore, under the similarity
transform and Itô’s lemma for a change of variables [3] the diffusion coefficient becomes σφ =
σx/2

√
1 + ε. Inverting the transformation, x ≈ (1 + h)φ1, which can be used to recast the

eigenvector dynamics into the form of equation (4.5).
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