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Abstract: Natural polysaccharides have shown promising effects on the regulation of immunity in
animals. In this study, we examined the immune stimulatory effect of intranasally administered
Codium fragile polysaccharides (CFPs) in mice. Intranasal administration of CFPs in C57BL/6 mice
induced the upregulation of surface activation marker expression in macrophages and dendritic cells
(DCs) in the mediastinal lymph node (mLN) and the production of interleukin-6 (IL-6), IL-12p70,
and tumor necrosis factor-α in bronchoalveolar lavage fluid. Moreover, the number of conventional
DCs (cDCs) was increased in the mLNs by the upregulation of C-C motif chemokine receptor 7
expression, and subsets of cDCs were also activated following the intranasal administration of CFP.
In addition, the intranasal administration of CFPs promoted the activation of natural killer (NK) and
T cells in the mLNs, which produce pro-inflammatory cytokines and cytotoxic mediators. Finally,
daily administration of CFPs inhibited the infiltration of Lewis lung carcinoma cells into the lungs,
and the preventive effect of CFPs on tumor growth required NK and CD8 T cells. Furthermore,
CFPs combined with anti-programmed cell death-ligand 1 (PD-L1) antibody (Ab) improved the
therapeutic effect of anti-PD-L1 Ab against lung cancer. Therefore, these data demonstrated that the
intranasal administration of CFP induced mucosal immunity against lung cancer.

Keywords: Codium fragile polysaccharide; mucosal adjuvant; immunotherapy; Lewis lung carcinoma;
anti-cancer

1. Introduction

Cancer is the main disease that threatens humankind [1]. Among the various types,
lung cancer is characterized by a poor prognosis and difficult diagnosis [2,3]. Most patients
with lung cancer are diagnosed at an advanced stage of the disease because there are few
symptoms [2–4]. For late-stage lung cancer, surgery is not effective, and chemotherapy is as-
sociated with undesirable side effects [5,6]. Based on the overexpression of oncoproteins in
patients, targeted therapy, such as epidermal growth factor or anaplastic lymphoma kinase,
is helpful; however, only a small subgroup of patients are targetable [7]. Recently, various
new cancer treatment methods have been developed and applied to lung cancer [7–9].

Immunotherapy is a therapeutic method that can selectively kill only the cancer
cells by utilizing the toxicity of immune cells, and it is attracting attention because it has
fewer side effects and enables efficient cancer treatment [9–12]. The recent success of
therapeutic targeting of the immune checkpoint molecules, especially of programmed cell
death 1 (PD-1) and programmed cell death ligand 1 (PD-L1), has changed the paradigm of
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treatment for several types of cancer [10,12–14]. A blockade with PD-1/PD-L1 antibodies
(Abs) has thus become a standard-of-care therapeutic option for patients with lung cancer;
however, less than 30% of patients respond to the treatment of immune checkpoint blockade
therapy [15,16].

For the desired anticancer immunity, cytotoxic immune cell activation is required. Cy-
totoxic T lymphocytes (CTLs) are immune cell types that mainly contribute to killing cancer
cells [17,18]. The induction of CTL activation is mediated by dendritic cells (DCs) [18,19].
DCs are the most potent antigen-presenting cells (APCs), which are activated in response
to antigens (Ag) or stimuli [18]. In humans and mice, conventional DCs (cDCs) contain two
main populations: cDC1 and cDC2 [20]. cDC1 presents cytosolic Ags to CD8 T cells, which
promote Ag-specific CTL activation, whereas cDC2 presents extracellular Ags to CD4 T
cells, which express high levels of cytokines for the induction of immune modulation
as helper cells [21]. Although the cDCs are functionally divided into two main subsets,
activation of both cDC1 and cDC2 is required for eliciting anti-cancer immunity because
CTLs cannot be fully activated without helper T cells [20–22].

Natural killer (NK) cells are another type of immune cell that can contribute to anti-
cancer immunity through their cytotoxicity [23]. NK cells that are activated by stimuli
upregulate the Fas ligand and tumor necrosis factor (TNF)-related apoptosis-inducing
ligand (TRAIL). NK cells expressing these molecules are key effectors for the inhibition of
tumor initiation, growth, and metastasis. In addition, NK cells release cytotoxic mediators
such as granzyme B and perforin, which induce the apoptosis of cancer cells [24–26]. The
activation of NK cells is mediated by the stimulation of pattern recognition receptors
(PRRs) and interaction with other immune cells, such as DCs and macrophages [27]. The
interactions between immune cells are manifested by over-expressed surface proteins and
secreted cytokines in the responses to Ags. The interaction with DCs and macrophages in
NK cell activation has been extensively studied. In particular, activated cDCs have been
shown to induce the production of interferon-gamma (IFN-γ) in NK cells [28]. In addition,
DC produces interleukin-12 (IL-12), and interferons (IFNs) elicit the activation of NK cells,
which contributes to anticancer immunity [26,29,30].

The immunomodulatory effects of natural polysaccharides have been demonstrated
in humans and animals [31,32]. Among them, natural marine polysaccharides, such as
fucoidans, are well studied for their ability to induce immune activation and anti-cancer
immunity. Polysaccharides from Codium fragile (CFPs) also show biological activities,
including antioxidant, antidiabetic, anti-obesity, and anticancer effects in mice [27,33–35].
Moreover, CFPs exhibit an immune-stimulatory effect in humans and mice, which is
stronger than that induced by fucoidan. Although the immune stimulatory effect of CFPs
has been studied [36–38], the effect of CFPs on mucosal immune-cell activation following
intranasal administration in mice is yet to be investigated. In this study, we hypothesized
that intranasal administration of CFPs can induce mucosal immune cell activation and
immunity against lung cancer, and examined the effect of CFPs in mice.

2. Results
2.1. CFP Induces Activation of DCs and Macrophages in Mediastinal Lymph Nodes (mLNs)

C57BL/6 mice were intranasally (i.n.) injected with CFPs to evaluate their mucosal
immune-stimulatory effect, and the mediastinal lymph nodes (mLNs) and BAL fluid were
collected (Figure 1A). As shown in Figure S1, the DCs and macrophages were identified in
mLNs, and the expression levels of activation markers were measured. Treatment with
CFPs dramatically upregulated the expression levels of CD40, 80, 86, and MHC class I and
II in both DCs and macrophages, in a dose-dependent manner (Figures 1B and S2A). Six
hours after the administration of CFPs, the maximum expression levels of the activation
markers gradually decreased (Figures 1C and S2B). In addition, IL-6, IL-12p70, and tumor
necrosis factor-alpha (TNF-α) levels in BAL fluid increased dose-dependently 6 h after
CFP administration in mice (Figure 1D). The efficacy of CFPs in activating DCs and
macrophages was similar to that of lipopolysaccharide (LPS), a positive control, but the
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cytokine production levels in BAL fluid were much lower in CFP-administered mice
compared to those following treatment with LPS (Figure 1). Therefore, these data indicate
that the intranasal administration of CFPs induces the activation of DCs and macrophages.

Figure 1. Activation of macrophages and dendritic cells (DCs) in the mediastinal lymph nodes
(mLNs) by Codium fragile polysaccharides (CFPs). (A) C57BL/6 mice were intranasally treated with
CFPs and mLN, and bronchoalveolar lavage (BAL) fluid was collected. (B) The dose-dependent
effect of CFPs on CD40, CD80, and CD86 expression in macrophages and DCs, as analyzed by flow
cytometry (n = 6 mice, two-way ANOVA, *, p < 0.05 vs. 0 mg/kg in DCs; **, p < 0.01 vs. 0 mg/kg in
DCs; ##, p < 0.01 vs. 0 mg/kg in Macrophages). (C) The time-dependent effect of CFPs (50 mg/kg) on
the expression of costimulatory molecules in macrophages and DCs is shown. (n = 6 mice, two-way
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ANOVA *, p < 0.05 vs. 0 h in DCs; **, p < 0.01 vs. 0 h in DCs; #, p < 0.05 vs. 0 h in Macrophages:
##, p < 0.01 vs. 0 h in Macrophages). (D) The concentration of interleukin (IL)-6, IL-12p70, and
tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage (BAL) fluid, as analyzed by ELISA.
(n = 6 mice, two-way ANOVA, *, p < 0.05 vs. 0 mg/kg; **, p < 0.01 vs. 0 mg/kg).

2.2. Subsets of cDCs in mLNs Are Activated by CFPs

Since CTL activation is controlled by cDC1, we next examined whether CFPs can
induce the activation of cDC1 and cDC2. CFPs (50 mg/kg) were i.n. administered into
C57BL/6 mice. Six hours after treatment, the mLNs were harvested, and the subsets of
DCs were analyzed. The frequency of cDCs in mLNs was considerably increased by CFP
treatment compared to that in the PBS controls (Figure 2A). Consequently, the number of
cDCs in the mLNs was significantly increased by CFPs, compared to that in PBS-treated
mice (Figure 2B). As is consistent with the increased numbers of cDCs in mLNs, C-C
motif chemokine receptor 7 (CCR7) expression levels and the migration factor of activated
DCs to lymph nodes were also dramatically upregulated by CFPs (Figure 2C). Compared
to PBS-treated control mice, CFP treatment considerably increased the population and
frequency of cDC1 in the mLNs (Figure 2D). In addition, both cDC1 and cDC2 upregulated
the expression of surface activation markers in response to the intranasal administration of
CFPs (Figure 2E). These data indicate that CFPs can induce the activation of both cDC1
and cDC2 in the mLNs.

Figure 2. CFPs induce the activation of DC subsets in mLNs. C57BL/6 mice were intranasally administered with 50 mg/kg
CFPs. (A) Population and frequency of cDCs in the mLNs, analyzed 6 h after treatment. Red circles indicated population of
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cDCs. (B) Absolute numbers of cDCs are shown (n = 6 mice, two-way ANOVA, **, p < 0.01 vs. PBS treatment). (C) Surface
expression levels of CCR7 in cDCs were analyzed (left panel). The mean fluorescence intensity (MFI) of CCR7 is shown
(right panel, n = 6 mice, two-way ANOVA, ** p < 0.01). (D) Subsets of cDCs, as analyzed by flow cytometry. Red circles
indicated population of cDCs. (E) MFI of costimulatory and MHC molecules analyzed in the subset of cDCs in the mLNs,
6 h after CFP treatment (n = 6 mice, two-way ANOVA, **, p < 0.01 vs. PBS treatment).

2.3. NK Cells in the mLNs Are Activated by CFPs

Next, we examined the activation of NK cells by CFPs. C57BL/6 mice were injected
intranasally with 50 mg/kg of CFPs. Eighteen hours after injection, mLNs were harvested,
and NK cells were identified as shown in Figure 3A. The injection of CFPs promoted
an increase in the number of NK cells in the mLNs compared to PBS-treated control
(Figure 3B). The surface activation markers in NK cells, including CD69, Fas ligand, and
TRAIL, were substantially elevated by CFPs (Figure 3C,D). In addition, intracellular levels
of IFN-γ and cytotoxic mediators were also significantly upregulated in mLN NK cells by
treatment with CFPs compared to PBS treatment (Figure 3E,F). As shown in Figure S3, the
activation markers of NK cells were time-dependently elevated, and rapidly decreased 18
h after treatment with CFPs. Thus, these data suggest that intranasal treatment with CFPs
promotes NK cell activation in the mLNs.

Figure 3. NK cells in the mLNs are activated by CFPs. Eighteen hours after the intranasal administra-
tion of 50 mg/kg CFPs, the C57BL/6 mice were sacrificed and the mLNs were harvested. (A) The
population of NK cells in the mLN is shown. (B) The number of NK cells in the mLNs was analyzed
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(n = 6 mice, two-way ANOVA, * p < 0.05). (C) Surface expression levels of CD69, Fas ligand and tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL), measured in mLN NK cells. (D) MFI of the
indicated molecules is shown (right panel, n = 6 mice, two-way ANOVA, ** p < 0.01). (E) Intracellular
levels of IFN-γ, perforin and granzyme B in mLN NK cells, as analyzed. (F) The mean positive cells
of indicated molecules in NK cells are shown (n = 6 mice, two-way ANOVA, * p < 0.05, ** p < 0.01).

2.4. CFPs Promoted Production of IFN-γ and TNF-α in T Cells

Our finding that CFPs induce the activation of DCs and macrophages in the mLNs
prompted us to examine the effect of CFPs on the induction of T cell differentiation in
the mLNs. CFPs were i.n. administered to mice twice at three-day intervals. Three
days after the last injection, the mice were sacrificed, and the mLNs were harvested. The
intracellular IFN-γ and TNF-α levels of CD4 and CD8 T cells were analyzed. CFP treatment
remarkably increased the intracellular levels of IFN-γ and TNF-α in both CD4 and CD8 T
cells (Figure 4A,B). Although the levels of IFN-γ and TNF-α were significantly increased
by CFPs compared to those in the PBS-treated control, these levels were much lower than
those in mice following LPS treatment (Figure 4). The levels of intracellular IFN-γ and
TNF-α were also increased in a time-dependent manner and reached the maximum on
the third day after treatment with CFPs (Figure S4). Thus, these data suggest that CFP
treatment through intranasal administration can elicit T cell activation in the mLNs.

Figure 4. CFPs promote differentiation of T helper 1 and cytotoxic T 1 (Tc1) cells in the mLNs. CFP (50 mg/kg) was
intranasally administered to C57BL/6 mice twice at a three days interval. (A) The intracellular levels of TNF-α and IFN-γ
in CD4 and CD8 T cells in the mLNs. (B) Mean percentages of IFN-γ-producing (left panel) and TNF-α-producing (right
panel) CD4 and CD8 T cells (n = 6, two-way ANOVA, * p < 0.05, ** p < 0.01).

2.5. Intranasal Administration of CFPs Elicits Immunity against Lewis Lung Carcinoma (LLC) in Mice

Because intranasal administration of CFPs promoted the activation of immune cells
in the mLNs, we next examined whether CFPs can elicit immunity against LLC in mice.
C57BL/6 mice were injected intravenously (i.v.) with LLC cells. Seven days after cell
injection, the mice received PBS, 50 mg/kg of CFP, 10 mg/kg of anti-PD-L1 Abs, or a
combination of CFPs and anti-PD-L1 Abs. Compared to PBS-treated mice, CFP treatment
delayed the death of mice from LLC, a protective effect that was even stronger than that
of the anti-PD-L1 Abs (Figure 5A). On day 15 post-tumor injection, LLC cells infiltrated
the lungs of PBS-treated mice, whereas CFP administration almost completely prevented
LLC cell infiltration in the lungs (Figure 5B,C). Histological analysis indicated that tumor
cells were not present in the lungs of mice treated with CFPs, whereas PBS-treated mice
showed a large tumor mass in the lungs (Figure 5D). As is consistent with the survival rate
data, anti-PD-L1 Ab treatment did not effectively prevent LLC cell infiltration compared to
CFPs (Figure 5B–D). Importantly, CFPs when combined with anti-PD-L1 Abs enhanced
the protective effect in mice (Figure 5A–D). To evaluate the contribution of CFP-induced
immune cells to the anti-cancer effect, NK or CD8 cells were depleted during the treatment
of mice. CFP treatment failed to protect against the development of cancer in mice depleted
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of NK or CD8 cells (Figure 5E), indicating that NK and CD8 cells are required in mice for
CFP-mediated protection against LLC. Thus, these data demonstrate that the intranasal
administration of CFP elicits anti-cancer immunity and prevents LLC tumor growth in
the lungs.

Figure 5. Intranasal administration of CFPs prevents Lewis lung carcinoma (LLC) tumor growth in
the lungs. C57BL/6 mice were intravenously (i.v.) administered with LLC-iRFP (0.5 × 106) cells. On
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day 7 post-tumor injection, the mice were treated with PBS, 50 mg/kg CFP, 10 mg/kg anti-PD-L1
Abs, or a combination of anti-PD-L1 Abs and CFPs. CFPs were intranasally and anti-PD-L1 Abs were
intraperitoneally administered to mice every 3 days from day 7 after the tumor injection. (A) Survival
rates of mice (n = 10). (B) Lungs, harvested 15 days after the tumor injection. (C) Fluorescence image
of iRFP, as analyzed. (D) LLC cell infiltration in the lungs, analyzed by H&E staining. (E) CD8 and
NK cells, depleted during treatment with CFPs. The survival rates of mice are shown (n = 10).

3. Discussion

Natural polysaccharides have diverse biochemical and biological properties [13,36,37,39,40].
While many reports have demonstrated the immunosuppressive function of polysaccha-
rides [41,42], only a number of studies have been published on the immune activation
function of polysaccharides following in vivo administration [13,33,36,37,39,40]. Moreover,
the systemic administration of natural polysaccharides showed limited toxicity in the
animal [26,36,43,44]. The nasal administration of drugs is the most effective method for
treating lung diseases. In this study, the effect of intranasal administration of CFPs on the
activation of immune cells in the lungs and mLNs was examined. Intranasal administration
of CFPs induced the activation of DCs, macrophages, T cells, and NK cells in the mLNs,
which contributed to anti-cancer responses against LLC cancer growth in the lung. In
addition, CTLs and NK cells were demonstrated to be essential for anti-cancer immunity
induced by CFPs. Thus, these data demonstrate that the intranasal administration of CFPs
elicits immunity against lung cancer in mice.

Immunotherapeutic approaches for cancer treatment are receiving attention because
they can minimize undesirable side effects [9,15]. Activated immune cells secrete cytotoxic
substances to kill pathogens, such as bacteria, viruses, and cancer cells [45]. The activation
of immune cells that are capable of responding specifically to pathogens is the ultimate
direction of immunotherapy [18,46]. To this end, various types of immune stimulators
have been developed [11,12,14,47]. In the case of lung cancer, side effects can be minimized
by selectively killing only cancer cells in the lungs [2,3,6]. In this regard, it will be desirable
to treat lung cancer by administering substances through the nasal cavity [3,6,8]. In this
study, we found a novel mucosal immune stimulator, CFP, that promotes the activation of
immune cells in the lungs and mLNs. In addition, CFP treatment enhanced the anti-cancer
activity of anti-PD-L1 Abs against LLC cells. Therefore, CFPs may be used as a mucosal
immune stimulator and adjuvant for immune checkpoint-mediated lung cancer therapy.

In immunotherapy for cancer, the activation of cytotoxic immune cells is required [9,17,46].
Among the cytotoxic immune cells, CTLs are the most potent immune cells for anti-cancer
immunity; they can find cancer cells and directly kill them. The activation of CTLs is
controlled by DCs. CD8α expressing cDC1 mainly present Ags through MHC class I and
induce CTL activation [9,46]. For the testing of cDC1 activity, cells in the spleen or lymph
nodes of the mouse must be analyzed [20,22,48–50]. The in vitro differentiated DCs from
the bone marrow or monocytes cannot define their subtypes; therefore, the activation of
cDC1 cannot be analyzed [48,49]. In this study, we directly analyzed the activation of
cDC1 and cDC2 in the mLNs after the administration of CFPs through the nasal cavity. In
addition, CFP treatment promoted the accumulation of DCs in the mLNs by overexpressing
CCR7. CCR7 is an activation marker and chemokine receptor for homing DCs to the T cell
zone in the lymphoid organ [51]. Moreover, the injection of CFPs elicited the release of pro-
inflammatory cytokines in the BAL fluid. Taken together, these data demonstrate that the
intranasal administration of CFPs induces the maturation of DCs and their differentiation
into cDC1 and cDC2 in the mLNs.

Immune cells interact with and induce the activation of other immune cells [52].
Because innate immune cells highly express PRRs, these cells are preferentially exposed and
recognize Ags as well as immune stimulators [53]. DCs and macrophages are phagocytic
and Ag-presenting cells, which promote the activation of other cells by the presentation of
Ags and by secreting cytokines [53]. In response to immune-stimulatory molecules, DC-
and macrophage-secreted cytokines contribute to the differentiation of T cells [54]. It has
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been shown that these cells produce IL-12, which is the main cytokine that induces the
differentiation of naïve T cells into Th1 and Tc1 cells [55,56]. In this study, we found that
the IL-12 concentration in the BAL fluid was elevated by the intranasal administration of
CFPs, which consequently promoted Th1 and Tc1 differentiation. Tc1 cells are known to be
the most important cells for anticancer immunity [18], and the anticancer effect of CFPs
was eliminated in mice with CD8 cell depletion. Therefore, these data demonstrate that the
intranasal administration of CFPs elicits CTL-mediated immunity against lung cancer.

NK cells are immune cells that exhibit cytotoxicity against cancer cells [25]. Activated
NK cells overexpress CD69, Fas ligand, and TRAIL on their surface, and secrete perforin
and granzyme B to kill cancer cells [24,25]. NK cells are activated directly, not only by
other stimuli but also through interactions with other immune cells, such as DCs [25]. In
a previous study, we demonstrated that the intraperitoneal administration of CFPs can
induce NK cell activity [37]. Based on previous data reporting that CFPs can induce the
activation of isolated NK cells, it was demonstrated that CFPs can directly activate NK
cells [37]. However, as IL-12 can induce NK cell activation, it is suspected that nasally
administered CFPs can induce NK cell activity either directly or indirectly [57,58]. Because
CFPs induce the production of IL-12, further detailed studies on its direct or indirect action
on NK cell activity are needed.

It has been shown that nicotine-mediated tumor progression is developed through
the activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit
(α7nAChR) [59–61]. The α7nAChRs activate the signaling pathways involved in the
proliferation, angiogenesis and metastasis for developing lung cancer [60,62,63]. Therefore,
targeting α7nAChR is one of the potential mechanisms that are inevitably the foundation
of designing novel anticancer drugs in lung cancer. However, the activation of α7nAChR
leads to an anti-inflammatory effect [64], which may contribute to exacerbating the progress
of a tumor. Since CFP induces immune cell activation, including DCs, macrophages, T cells
and NK cells, it may be possible to elicit immune activation during therapeutic trials by
α7nAChR targeting. In the future, we plan to conduct a study on the therapeutic efficacy
of CFP and a drug that blocks α7nAChR activity in lung cancer.

4. Materials and Methods
4.1. Mice

Six- to eight-week-old female C57BL/6 mice were purchased from Hyochang Science
(Daegu, Korea) and the Shanghai Public Health Clinical Center (SPHCC, Shanghai, China).
Mice were housed under specific-pathogen-free conditions at the Laboratory Animal Center
of Yeungnam University or SPHCC. All experiments were according to animal-based
ethical principles and were conducted according to the IACUC regulations of Yeungnam
University (#2021-030) and SPHCC (#2018-A049-01).

4.2. Cancer Cell Line

LLC cell-iRFP-puro (LLC-iRFP-puro) cells were purchased from Imanis life sciences
(Rochester, MN, USA). The cells were cultured in RPMI-1640 (Merck KGaA, Darmstadt,
Germany) containing 1% penicillin–streptomycin (Thermo Fisher Scientific, Waltham, MA,
USA), 2 µg/mL of puromycin (Sigma-Aldrich, St. Louis, MO, USA), and 10% fetal bovine
serum (FBS, Sigma-Aldrich, St. Louis, MO, USA) under 5% CO2 at 37 ◦C.

4.3. Preparation of CFPs

As shown in previous studies, CFPs were extracted from C. fragile [38,65]. Briefly, C.
fragile was incubated with 90% ethanol at 20 ◦C for 24 h. After the evaporation of ethanol,
65 ◦C distilled water was added to the samples and incubated for 2 h. The water-soluble
sample was harvested, and ethanol was added for filtration. The free proteins in the
precipitated samples were removed using the Sevag method after dissolution in distilled
water. Using a DEAE Sepharose Fast Flow column (17-0709-01, GE Healthcare Bio-Science
AB, Uppsala, Sweden), three fractions (F1, F2, and F3) were separated, and F2 was used as
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the CFPs. As previously reported [37], the CFPs were mainly composed of carbohydrates
(67.4%), proteins (14.7%) and sulfates (10.3%), with a minor amount of uronic acid (2.4%),
revealing a purity of over 94.8%.

4.4. Reagents and Antibodies

LPS (O111:B4) was obtained from Sigma-Aldrich. Isotype controls and Fc receptor-
blocking Abs were obtained from BioLegend (San Diego, CA, USA). FITC-CD3 (17A2, 1:40
dilution with PBS), PerCP5.5-CD4 (GK1.5, 1:50 dilution with PBS), APC/Cyanine7-CD8
(53-5.8, 1:40 dilution with PBS), PerCP/Cyanine5.5-CD11b (M1/70, 1:40 dilution with
PBS), ACP/Cyanine7-CD11c (N418, 1:25 dilution with PBS), FITC-CD40 (HM40-3, 1:50
dilution with PBS), ACP/Cyanine7-CD69 (H1.2F3, 1:40 dilution with PBS), Brilliant Violet
605-CD80 (16-10A1, 1:25 dilution with PBS), PE/Cyanine7-CD86 (GL-1, 1:50 dilution with
PBS), Alexa Fluor 647-CD197 (C-C chemokine receptor 7;CCR7, 4B12, 1:40 dilution with
PBS) PerCP/Cyanine5.5-CD253 (tumor necrosis factor-related apoptosis-inducing ligand;
TRAIL, N2B2, 1:25 dilution with PBS), Alexa Flour 647-granzyme B (GB11), PE/Cyanine7-
IFN-γ (XMG1.2), PerCP/Cyanine5.5-major histocompatibility complex (MHC) class I
(AF6-88.5, 1:40 dilution with PBS), PE-MHC class II (M5/114.15.2, 1:40 dilution with PBS),
Brilliant Violet 510-NK1.1 (PK136, 1:40 dilution with PBS), PE-perforin (S16009A) and FITC-
TNF-α (MP6-XT22) were also purchased from BioLegend. Anti-PD-L1 Abs were purchased
from BioXcell (Lebanon, NH, USA). For the depletion assay of CD8 (YTS169.4) and NK1.1
(PK136)-positive cells, anti-CD8 and anti-NK.1 Abs were obtained from BioXcell.

4.5. Preparation of a Single Cell Suspension of the mLNs

The mLNs were harvested from mice and ground with a glass slide. Aggregated
cells and fat were removed using a 100 nm nylon mesh and washed with PBS. The pellets
were suspended in 3 mL of histopaque-1077 (Sigma-Aldrich, St. Louis, MO, USA) and the
upper layer in 3 mL of fresh histopaque. FBS (1 mL) was top-layered in the cells and the
subsequent density by centrifugation at 2000 × g for 10 min without breakage. Leukocytes
were harvested after washing with PBS.

4.6. Flow Cytometry Analysis

Cells were incubated with Fc receptor-blocking Abs and unlabeled isotype controls
at 4 ◦C for 15 min. The cells were then stained with fluorescence-conjugated Abs on
ice for 30 min. After washing with PBS, the cells were resuspended in 4′,6-diamidino-2-
phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA) containing PBS. Multi-color
microbeads were prepared as the compensation controls for the analysis of flow cytometry.
Auto compensation was used for 9-color staining (NovoExpress, ACEA Biosciences Inc.,
San Diego, CA, USA). DAPI-negative cells were analyzed using a NovoCyte flow cytometer
(ACEA Biosciences Inc., Santa Clara, USA) as live cells.

4.7. Analysis of mLN DCs and Macrophages

The mLN cells were stained with anti-CD11b-PE and anti-CD11c-APC/Cyanine7.
CD11c+CD11binter cells and CD11cinterCD11b+ cells were defined as DCs and macrophages,
respectively, in the mLNs. The mLN DCs and macrophages were further analyzed for
expression levels of CD40, CD80, CD86, and MHC class I and II.

4.8. Analysis of DC Subsets in the mLNs

As described previously [13], the DC subsets in mLN cells were analyzed by flow cytom-
etry. The surface of mLN cells was stained with 9 different color-conjugated Abs. The cells
were stained with FITC-conjugated lineage Abs and APC/Cyanine7-conjugated CD11c Abs.
The FITC-conjugated lineage Abs included anti-B220, anti-CD3, anti-CD49b, anti-CD90.1,
anti-Gr-1, and anti-TER-119. cDC1 and cDC2 were defined as CD8α+CD11c+lineage− and
CD8α−CD11c+lineage− cells among live leukocytes, respectively. The surface expression
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levels of CD40, CD80, CD86, MHC class I, and MHC class II in cDC1 and cDC2 were
analyzed after intranasal treatment with CFPs.

4.9. NK Cell Analysis

mLNs were harvested from mice after treatment with CFPs or LPS. The mLN cells
were stained with fluorescence-conjugated anti-CD3, anti-CD69, anti-Fas ligand, anti-
NK1.1, and anti-TRAIL Abs. After staining with DAPI solution (Sigma-Aldrich, St. Louis,
MO, USA), CD69, Fas ligand, and TRAIL expression levels in CD3−NK1.1+DAPI- mLN
cells were analyzed to determine NK cell activation. The cells were analyzed using a flow
cytometer (ACEA Biosciences Inc., Santa Clara, CA, USA).

4.10. Analysis of the Production of Intracellular Cytokines and Cytotoxic Mediators

After treatment with CFP or LPS, the mLNs from C57BL/6 mice were harvested. The
mLN cells were further incubated at 37 ◦C with Golgistop™ (2 µM monensin solution;
BioLegend) for 2 h in vitro. After washing with PBS, the cells were stained using the
Zombie Violet Fixable Viability Kit (BioLegend, San Diego, CA, USA) and fixed with
fixation buffer (BioLegend, San Diego, CA, USA) at 4 ◦C for 20 min after staining with
surface Abs. The cells were permeabilized using permeabilization wash buffer (BioLegend,
San Diego, CA, USA) and intracellular proteins were stained with Abs at 25 ◦C for 30 min.
After washing, the cells were re-suspended in PBS and analyzed using a flow cytometer
(ACEA Biosciences Inc., Santa Clara, CA, USA).

4.11. Enzyme-Linked Immunosorbent Assay (ELISA)

Eighteen hours after CFP administration to C57BL/6 mice, bronchoalveolar lavage
(BAL) fluid was harvested, and the levels of IFN-γ, IL-6, IL-12p70, and TNF-α were
measured using ELISA kits (BioLegend, San Diego, CA, USA). The concentrations of these
cytokines were quantified in triplicate.

4.12. Mouse LLC Cancer Model and CFP Treatment

C57BL/6 mice were intravenously administered with LLC-iRFP (0.5 × 106) cells.
The tumor-injected mice were randomly divided into PBS, anti-PD-L1 Abs, CFPs, and
a combination of anti-PD-L1 Abs and CFPs groups. CFP (50 mg/kg) was intranasally,
and anti-PD-L1 Abs (10 mg/kg) was intraperitoneally, administered every 3 days from
day 7 after tumor injection. The survival of mice was monitored until day 30 after tumor
injection.

4.13. In Vivo Fluorescence Imaging

Metastatic LLC-iRFP cancer in the lungs was imaged using the fluorescence in vivo
imaging system, FOBI (Cellgentek, Cheongju, Republic of Korea) on day 15 after the tumor
cell challenge of C57BL/6 mice.

4.14. Histological Analysis

On day 15 after the tumor challenge, 4% paraformaldehyde (1 mL) was infused into
the lungs, then they were harvested. The lungs were then fixed with 4% paraformaldehyde
for 24 h and embedded in paraffin. The lungs were sectioned into 5 µm thick slices. After
de-paraffinization and rehydration, the lung sections were stained with hematoxylin and
eosin (Sigma-Aldrich, St. Louis, MO, USA).

4.15. NK1.1 and CD8-Positive Cell Depletion

NK1.1 or CD8 cells were depleted by the injection of 50 µg anti-NK1.1 (PK136) or
anti-CD8α (2.43) Abs (BioXcell, Lebanon, NH, USA) every two days in C57BL/6 mice from
day 6 post-tumor injection. The depletion efficacy of NK or CD8 cells was >95%.
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4.16. Statistical Analysis

Experiments were performed in triplicates with two samples. Data are presented as
the mean ± standard error of the mean (SEM). Statistical analysis was performed using
ANOVA, followed by Dunnett’s test. Statistical significance was set at p < 0.05.

5. Conclusions

In conclusion, we found that the intranasal administration of CFPs can elicit immunity
against lung cancer in mice. CFPs promoted the activation of macrophages and DC subsets
in the mLNs, which further induced the activation of cytotoxic immune cells, including
CTLs and NK cells. CFP-induced CTL and NK cell activation prevented LLC tumor
growth in the lungs. Moreover, CFPs enhanced the anti-cancer effects of the immune
checkpoint blockade. Therefore, it may be possible to induce effective treatment in lung
cancer patients whose responses to immune checkpoint inhibitors are insufficient, by
concurrently administering the CFP intranasally with immune checkpoint inhibitors. This
combination administration method is considered to be a novel lung cancer treatment
strategy using CFP.
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