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ABSTRACT

Extrachromosomal mobile genetic elements
(eMGEs), including phages and plasmids, that
can move across different microbes, play impor-
tant roles in genome evolution and shaping the
structure of microbial communities. However, we
still know very little about eMGEs, especially their
abundances, distributions and putative functions in
microbiomes. Thus, a comprehensive description of
eMGEs is of great utility. Here we present mMGE, a
comprehensive catalog of 517 251 non-redundant
eMGEs, including 92 492 plasmids and 424 759
phages, derived from diverse body sites of 66 425
human metagenomic samples. About half the eMGEs
could be further grouped into 70 074 clusters using
relaxed criteria (referred as to eMGE clusters below).
We provide extensive annotations of the identified
eMGEs including sequence characteristics, taxon-
omy affiliation, gene contents and their prokaryotic
hosts. We also calculate the prevalence, both within
and across samples for each eMGE and eMGE clus-
ter, enabling users to see putative associations of
eMGEs with human phenotypes or their distribution
preferences. All eMGE records can be browsed or
queried in multiple ways, such as eMGE clusters,
metagenomic samples and associated hosts. The
mMGE is equipped with a user-friendly interface and
a BLAST server, facilitating easy access/queries to
all its contents easily. mMGE is freely available for
academic use at: https://mgedb.comp-sysbio.org.

INTRODUCTION

Extrachromosomal mobile genetic elements (eMGEs), such
as plasmids and bacteriophages, play critical roles in hori-
zontal gene transfer (HGT) and microbial evolution within
the microbial community by mediating intra- or intercellu-
lar DNA trafficking (1–4). Due to their high mobility and
accessory genes related to antibiotic resistance (5–7), viru-
lence factors (8,9) and auxiliary metabolic pathways (10–
12), the eMGEs are essential for host fitness and the dis-
semination of drug resistance, which in turn shape micro-
bial community structures. Furthermore, given that eMGEs
frequently carry genes that encode toxins or other viru-
lence factors, the prokaryotic hosts acquiring these genes
have the potential to become deadly pathogens (13,14).
Recently, disease-specific alterations of eMGEs have also
been observed in several diseases (15–18), but the roles the
eMGEs play in pathophysiology is still unclear, especially
in a metagenomic setting.

With advances in sequencing technology, the accumula-
tion of metagenomic data provides an unprecedented op-
portunity for detecting novel eMGEs (19). Recently, great
progress has been made in identifying phages from
metagenomic samples. For example, the human Gut Vi-
rome Database (GVD) (19) and the Integrated Microbial
Genome/Virus (IMG/VR) database (20) detected phage
genomes (and fragments) from assembled metagenomes.
The Microbe Versus Phage (MVP) database established in-
teractions between phages and prokaryotes based on a lit-
erature collection and a re-analysis of genomic and metage-
nomic sequences (21). Although those valuable resources
significantly extend our knowledge of eMGEs, they focus
only on phages from certain body sites, e.g. the gut, whereas
plasmids were generally ignored (especially those derived
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Figure 1. The overall workflow of mMGE. (A) Data pre-processing. A total of 66 425 human metagenomic samples and associated meta-data were
collected, followed by pre-processing and assembly of raw sequencing reads. (B) eMGE identification. State-of-art toolsets were used to identify eMGEs.
(C) eMGE annotation. Comprehensive annotations were provided for the eMGEs, including putative protein function and host information, etc; (D)
Abundance calculation. Abundances and prevalence of the eMGEs across samples were also determined. See ‘Materials and Methods’ section for more
details.

from metagenomes). The existing plasmid databases, in-
cluding PlasmID, for plasmid clone information and dis-
tribution (22), Plasmid ATLAS, for plasmid visual ana-
lytics and identification (23), and PLSDB, for complete
bacterial plasmids (24), collected information of existing
plasmids without exploring the emerging large number of
metagenomes. While the ACLAME database (25) provides
mobile genetic elements, including phages, plasmids and
prophages, it has not been updated in the ten years prior
to this publication. Thus, a comprehensive eMGE database,
including both phages and plasmids, as well as detailed sam-
ple metadata and their host information, will be of great
use in understanding the diversity and putative functions of
eMGEs in humans.

We have thus constructed mMGE, a database of hu-
man metagenomic extrachromosomal mobile genetic el-
ements. Currently mMGE contains a total of 517 251
non-redundant eMGEs, including 92 492 plasmids and
424 759 phages, that we identified from 66 425 human
metagenomic samples. In addition to basic information (in-

cluding sequence characteristics, interactions with prokary-
otic hosts, gene contents and taxonomic annotations), the
extensive metadata of the samples, the abundances and
distributions of the eMGEs across samples, phenotypes
and populations are also available, allowing users to ex-
plore their biological functions, biogeographical patterns
and habitat preferences. In addition, users can browse or
query eMGE records in multiple ways, including eMGE
clusters, metagenomic samples and putative hosts. mMGE
is equipped with a user-friendly interface and a BLAST
server, facilitating users to access and query all its contents
easily.

DATABASE CONSTRUCTION

Figure 1 illustrates the overall workflow of mMGE. In brief,
66 425 metagenomic human samples were collected, fol-
lowed by data preprocessing, eMGE identification, abun-
dance calculation and eMGE annotation. Below we provide
more details of materials and methods used in this study.
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Table 1. The distribution of metagenomic samples included in mMGE
across diverse human body sites

Body site #samples #projects
#associated
phenotypes

#associated
countries

Gut 41 841 233 63 42
Oral cavity 11 313 41 9 9
Skin 5384 30 7 7
Blood 2976 20 26 8
Nasopharyngeal 1930 16 9 6
Vagina 1028 6 1 3
Sputum 379 4 1 6
Eye 229 10 1 2
Urethra 123 5 3 3
Tooth 106 3 4 3
Reproductive system 76 1 0 1
Milk 60 2 0 2
Trachea 33 1 2 1
Lung 25 2 2 1
Liver 20 2 2 2
Circulatory system 12 1 1 0
Lymphatic system 11 3 3 2
Excretory system 1 1 1 1

Data collection and processing of metagenomic sequencing
reads

Raw sequencing reads of 80 889 human metagenomic sam-
ples, from 370 datasets, were downloaded from the NCBI
SRA (Sequencing Read Archive, https://www.ncbi.nlm.nih.
gov/sra; Supplementary Table S1) database. Meta-data, in-
cluding experimental conditions, dates of sampling and hu-
man host information, were also retrieved from correspond-
ing publications and/or the NCBI SRA database. Pheno-
types associated with samples were organized according to
MeSH (Medical Subject Headings) (26), a hierarchically or-
ganized controlled vocabulary for biomedical information,
while the metagenomic samples were organized according
to the Genome Online Database classification system (27).

The FastQC (v0.11.8, http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was used to check the
overall quality of the downloaded sequences, followed
by the use of Bowtie2 (28) to remove host-derived reads
through mapping to the human reference genome (hg38).
To trim sequence and remove low-quality bases, fastp
(29) was utilized with the following parameters:’-l 50 -x
-q 20 -u 5 -M 20 -W 4′. The samples containing less than
10 000 reads were removed from the subsequent analysis
to ensure quality of the data. Then MEGAHIT (v1.2.8)
(30) was used to assemble the high-quality clean reads per
sample. After assembling, contigs that were less than 1.5 kb
were discarded and the redundancy was removed with a
threshold of 95% identity over 75% of their length.

In total, after quality control, we collected 66 425 hu-
man metagenomic samples associated with 110 phenotypes
across 18 body sites from 49 countries. Table 1 summarizes
the statistics of the samples we have collected.

eMGE identification, dereplication and clustering

After assembling and removing redundancy, all contigs
were then piped through VirSorter (31), VirFinder (32) and
PPR-Meta (33) for phage identification while went through
PlasmidFinder (34) and MOB-suite (35) for plasmid iden-

tification. The phage sequences were identified by follow-
ing the procedures described in (36) but with more strin-
gent criteria. Firstly, the assemblies that met at least two of
the following criteria were kept as putative phage contigs:
(i) VirSorter positive (categories 1–2); (ii) PPR-Meta phage
score > 0.7; (iii) VirFinder score > 0.6 and P-value < 0.05;
(iv) Be circular; (v) Hit a phage genome from RefSeq with
>50% identity and >90% coverage of contig length accord-
ing to BLASTn (37). Subsequently, the candidate phage
contigs obtained above were decontaminated using CheckV
(38); those met the following criteria were discarded as de-
scribed previously (36,39): (1) having more than three hits
against ribosomal protein sets in COG (40) database or
(2) having at least one ribosomal protein, VirSorter neg-
ative and non-circular and having less than three Hidden
Markov Model (HMM) hits to the prokaryotic viral orthol-
ogous groups (pVOGs, E-value < 1e-5) (41) per 10 kb. For
the detection of plasmid sequences, the contigs satisfying at
least one of the following criteria were selected as putative
plasmid contigs: (i) Predicted by PlasmidFinder as positive;
(ii) Predicted by MOB-suite as positive; (iii) Hit a plasmid
genome from RefSeq with >50% identity and >90% cover-
age of contig length according to BLASTn.

All the above identified eMGE contigs were dereplicated
at the population level if they shared >95% nucleotide iden-
tity across >70% coverage according to Lincluster (42), re-
sulting in 517 251 non-redundant eMGE populations (92
492 plasmids and 424 759 phages). Then, a sequence-based
classification framework was adopted to group closely re-
lated eMGE genomes into clusters (43). As a result, a to-
tal of 70 074 eMGE clusters containing 316 926 eMGE
fragments (ranging from 2 to 384 members per cluster)
were obtained, with most clusters (46.96%) having only
two members. In addition, the quality and completeness of
each phage contig were evaluated with CheckV (38) and
the ‘Minimum Information about an Uncultivated Virus
Genome’(MIUViG) framework (44) was utilized to classify
phage contigs as ‘Genome fragment’ or ‘High-quality draft
genome’. Consequently, 23 738 high-quality genomes were
obtained and 14 990 of them were complete.

Annotation of eMGE contigs

The open reading frames (ORFs) for each eMGE con-
tig were predicted using prodigal (v2.6.3) (45). With the
predicted proteins were subjected to all-vs-all Blastp with
thresholds of E-value < 1e-5 and bit score > 50, the proteins
were clustered into families by using a Markov Clustering
Algorithm (MCL) with log-transformed E-value as similar-
ity score and two for MCL inflation (46). The HMM profile
for each protein family (protein family is also the protein
cluster) was built with MAFFT (47) and hmmbuild (48).
The functional annotations of all proteins were achieved
by querying against PFAM (49), VOGdb (http://vogdb.org/)
and eggNOG (50) databases. Consequently, about 40.86%
of all predicted proteins had hits to at least one of the pub-
lic databases, leaving the majority of the eMGE proteins
as having unknown functions. For each protein family, its
functional annotation was the one where >75% of its mem-
bers were annotated with the functions (51), while those that
could not be annotated in the previous way were queried

https://www.ncbi.nlm.nih.gov/sra
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://vogdb.org/
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Figure 2. The distribution of identified eMGE-hosts. (A) The number of eMGE populations associated with their corresponding bacterial and archaeal
host phyla; The inset with blue background provides resolution for the low frequency bacteria host phyla and each letter on the y-axis corresponds to the
first letter of host phyla’s name. (B) The number of eMGE clusters distributed across different host range levels.

against proteins from RefSeq with hmmsearch (52) (thresh-
old of 1e-5 for E-value and 50 for bit score).

For each eMGE contig, taxonomy annotations were
achieved through the following three steps. Firstly, 21 hall-
mark POGs recognized as taxon-specific signatures were
used to assign a taxonomic lineage to eMGEs at different
levels (order, family, subfamily and genus). Secondly, the
eMGEs that clustered with genomes from RefSeq were able
to be assigned to known taxonomic genera (53). Finally, for
those contigs that could not be assigned to a specific tax-
onomy with above two steps, we tried to annotate them us-
ing a majority-rule approach. The proteins predicted in the
contig were aligned against the proteins deposited in the
UniProt database (54), and the taxonomy level was deter-
mined to a taxon if more than 75% of the proteins hit the
same taxon (51).

eMGE-host identification

For each eMGE contig, its microbial hosts were deter-
mined by following the approaches described previously
(19). Firstly, the eMGE fragments were aligned against
NCBI RefSeq with BLASTn, and RefSeq genomes with
>95% identity across more than 2500 bp were consid-
ered as putative hosts of eMGEs. Secondly, the bacterial
genomes from NCBI RefSeq and metagenomic assemblies
>1500 bp were used to build CRISPR-Cas spacer database.
The CRISPR spacers in microbial genomes and assemblies
were predicted using MinCED (55) with default parame-
ters (4 110 100 spacers were obtained). The detected spacers
were then aligned against phage fragments using BLASTn
with the following options: -task blastn-short -word size 5,
E-value < 1e-5, bit score > 45, identity > 95% of full length,
and a maximum of two mismatches was allowed. Finally,

tRNAscan-SE (56) was separately used to identify tRNA
genes from phage sequences and bacterial genomes, and
bacterial genomes with tRNA genes matching phage tRNA
genes at 95% identity across 100% of the length were consid-
ered as the corresponding host. The host of eMGE contigs
can be determined in either of the three ways.

In total, we identified 2 032 843 eMGE-host associations,
with the hosts spanning across 20 bacterial and archaeal
phyla (Figure 2A). For each eMGE sequence and/or eMGE
cluster in mMGE, its host range was determined by follow-
ing the way described previously (21). Briefly, for eMGEs
with only one host, the host range was assigned as the tax-
onomic rank of the host in the NCBI taxonomy database,
while the host range was defined as the taxonomic rank of
the Last Common Ancestor of all its hosts if an eMGE frag-
ment infects multiple hosts. mMGE provides host informa-
tion for 115 072 eMGE fragments (22.24% of all the eMGE
fragments or genomes), and approximately 50% of eMGE
clusters have host range at ‘species’ or ‘genus’ level (Figure
2B).

Abundance and prevalence of eMGEs across samples

To calculate the relative abundance of different eMGE frag-
ments, the quality-filtered reads were mapped to eMGE
contigs using BWA mem (57), where the reads mapped with
<95% identity or paired-reads mapped to different loca-
tions were removed. The Bedtools (58) genomecov was then
used to calculate the coverage over contigs and only the
eMGE contigs with >75% of length covered by reads were
considered to be present in that sample (59). Then the num-
ber of mapped reads to a contig were normalized by the to-
tal number of clean reads per metagenomic sample, which
was used as the approximate relative abundance for that
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Figure 3. Contents of mMGE and comparisons with public databases. (A) The completeness and quality of phage contigs estimated by CheckV for
mMGE, IMG/VR and GVD, where high denotes high quality and the same for medium and low; (B) and (C) The venn diagram of plasmids and phages
from different sources, where all contigs were dereplicated at population level and decontaminated with CheckV and only phage populations from human
samples were considered; (D–F) The percentage of mapped reads for phages or plasmids from HMP dataset (D and E) and Virome dataset (F), where the
HMP dataset includes 20 samples from PRJNA48479 and the Virome dataset contains viral enriched samples that came from PRJNA588313.

eMGE fragment. The relative abundance of each eMGE
cluster was calculated by summing the percentage of reads
mapped to members belonging to that cluster.

DATABASE OVERVIEW AND FUNCTIONALITY

Overview of mMGE

The current version of the mMGE database contains 517
251 unique/non-redundant eMGEs (92 492 plasmids and
424 759 phages) identified from 66 425 metagenomic sam-
ples. Figure 3 shows the comparison of mMGE against mul-
tiple public databases, including IMG/VR (20), GVD (19)
and plasmid RefSeq. Figure 3A shows the completeness of
phage contigs from IMG/VR, GVD and mMGE estimated
with CheckV, from which we can see that mMGE (Com-
plete: 7.46%, high-quality: 4.36%, medium-quality: 20.32%,
low-quality: 61.40%) has the highest percentage of com-
plete genomes while has comparable quality compared with
IMG/VR (Complete: 5.16%, high-quality: 2.45%, medium-
quality: 23.11%, low-quality: 64.41%) and GVD (Com-
plete: 7.10%, high-quality: 6.02%, medium-quality: 15.85%,
low-quality: 65.97%). Compared with RefSeq, GVD and

IMG/VR, mMGE significantly extends the number of
phages and plasmids as shown in Figure 3B and C, and
mMGE can successfully recover half of the phages de-
tected by GVD or IMG/VR (56.67% in GVD and 47.01%
in IMG/VR recovered by mMGE separately) which is
much better compared with the overlap between GVD and
IMG/VR (6.70 and 3.25% shared by GVD and IMG/VR
separately).

Moreover, we evaluated the identification sensitivity of
plasmids and phages from different databases by com-
paring their percentage of mapped reads. For this pur-
pose, three datasets were used for a fair comparison, in-
cluding 20 human gut metagenomic samples from PR-
JNA48419 (60) (HMP dataset), the viral enriched sam-
ples from PRJNA588313 (Virome dataset) and a plasmid
dataset containing 131 plasmid contigs assembled from hu-
man metagenomes with metaplasmidSPAdes (61) (Meta-
plasmid data). Figure 3D–F separately shows the percent-
ages of mapped reads for HMP and Virome datasets, from
which we can clearly see that mMGE has the best identifi-
cation sensitivity. For the Metaplasmid dataset, 63 of 131
plasmid contigs can be successfully recovered by mMGE
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Figure 4. The user-friendly web interface of mMGE. (A) The ‘eMGE’ page shows the basic information of eMGEs; (B) The ‘eMGE cluster’ page shows
the information about eMGE clusters; (C) The ‘Interaction’ page presents the interactions between eMGEs and their hosts; (D) The ‘Data’ page shows
the information about each sample and project; (E) The ‘Proteins’ page presents the protein content of each eMGE. Those pages can be cross searched to
provide more detailed information of eMGEs or eMGE clusters.

while RefSeq plasmid covers only 29 of them. From the re-
sults shown in Figure 3, we can see that mMGE significantly
extends the number of eMGEs with comparable quality but
much higher identification sensitivity compared with exist-
ing databases.

Web interface

mMGE provides a user-friendly and interactive portal for
browsing and querying all eMGEs and their associated in-
formation as shown in Figure 4. In the ‘eMGE’ page, the
information of all eMGE fragments or genomes as well as
their associated information can be easily browsed (Figure
4A). The detailed information page for a specific eMGE can
be available by clicking on the eMGE ID of interest. With
the relative abundance of eMGEs across samples, mMGE
enables the users to investigate the distribution patterns of
eMGEs across countries and human phenotypes. The de-
tailed information of its hosts and the meta-data of metage-
nomic samples in which this eMGE can be detected is also
available. All eMGE records can be browsed via eMGE

clusters (Figure 4B), eMGE-host interactions (Figure 4C)
and metagenomic samples (Figure 4D). In the ‘eMGE clus-
ter’ page, mMGE enables users to browse the most rele-
vant information of eMGE clusters, including the number
of members in the cluster (‘eMGE members’), the number
of samples in which they are present (‘Sample count’), the
number of identified putative hosts (‘Total hosts’), the num-
ber of protein families they contain (‘Protein members’) and
the predicted host-range (Figure 4B). All identified eMGE-
host interactions are listed in the ‘Interactions’ page, where
the interactive visualization of the eMGE-host interaction
network is also provided. The ‘Data’ page provides man-
ually curated meta-data of the metagenomic samples used
whenever possible (Figure 4D). The metagenomic samples
can be viewed according to the collection sites, body sites or
phenotypes. To facilitate researchers to download the raw
sequencing data, additional links to samples and projects
from NCBI were also provided. For each metagenomic sam-
ple or project, we also summarized the total number of asso-
ciated eMGEs and the associated eMGE sequences of each
metagenomic sample can be obtained. In addition, mMGE
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Figure 5. The example matrix view of protein clusters within the eMGE cluster ‘MC 62’. The columns correspond to the protein clusters while the rows
represent eMGE members within this cluster. The protein clusters were colored according to their functional annotations.

provides comprehensive annotations for protein families as-
sociated with eMGEs in the ‘Proteins’ page (Figure 4E).

Protein clusters evolutionarily conserved within eMGE clus-
ters

Despite the diverse gene contents across different plasmids
and phages, it has been found that conserved genetic mod-
ules maybe shared between related eMGE genomes (62). To
facilitate users to explore the evolutionary relationships be-
tween eMGEs within eMGE clusters, the visualization of
the matrix of protein clusters across eMGEs was also pro-
vided (Figure 4B). For example, Figure 5 shows an example
of a matrix view of protein clusters within the eMGE cluster
‘MC 62′, where the functions associated with each protein
cluster are provided. We can see that the protein clusters
shared by all members in ‘MC 62′ are involved in assembly
(‘head’, ’capsid’ and ’neck’), DNA packaging (‘terminase’),
infection (‘tail’, ’baseplate’ and ’virion’, ’portal’) and lysis
(‘lysozyme’ and ’lysin’), indicating the essential functional
roles of these proteins.

Querying eMGE with BLAST

To facilitate users to query mMGE with their own se-
quences, we provided a BLAST server for the users to align
their sequences against the eMGEs deposited in the mMGE
database (63). In this way, users may easily check what
phages or plasmids their sequences are based on hits to
the eMGEs from mMGE. The BLAST search could be ac-
cessed at: https://mgedb.comp-sysbio.org/#/submitBlast.

FUTURE DIRECTIONS

Since eMGEs are a major source of antimicrobial resis-
tance genes, virulence and pathogenicity related genes, in-
sertion sequences and other transposable elements, an an-
notation and discovery pipeline will be provided in a future
version. In addition to collecting eMGEs detected in hu-
man metagenomes, the future version will complement the
data with eMGEs derived from other source such as ani-
mals or ocean. We note that there is much room to improve
mMGE in the following directions: (i) Including a binning
method, such as MetaBat (64), which can be used to merge
contigs derived from the same population and extend as-
sembly completeness; (ii) Improving the discovery pipeline
so it can detect more eMGEs with higher quality; (iii) Incor-
porating Long-read metagenomic datasets, which can then
be used to improve the assembly and identify more eMGEs
(4).

CONCLUSION

Due to the high mobility of eMGEs and their complex
interactions with microbial hosts, the analysis of eMGEs
is essential for characterization of microbial communities
and exploring their potential roles in regulating microbial
communities. Here we have introduced mMGE, an inte-
grative resource for environmental uncultivated eMGEs de-
rived from diverse human body sites coupled with exten-
sive annotations. With 66 425 samples collected from 18
body sites, 110 human phenotypes and 49 countries, we
manually curated meta-data of all samples and applied

https://mgedb.comp-sysbio.org/#/submitBlast
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stringent criteria to keep only high-confidence eMGE se-
quences. In total, 517 251 unique eMGEs were obtained,
including 424 759 phages and 92 492 plasmids. Extensive
comparisons with existing database indicated that mMGE
contains more eMGEs with higher quality. To facilitate
users to perform downstream analysis, mMGE provides
precomputed relative abundance of eMGEs, their preva-
lence within and across samples as well as putative asso-
ciations with phenotypes. Comprehensive annotations of
each eMGE record including sequence characteristics, pro-
tein content, taxonomy affiliation and host-eMGE interac-
tions are also available at the website. The web server al-
lows users to browse the included eMGE records in multiple
ways and uploaded nucleotide sequences can be searched
in the database. mMGE provides a modern, interactive and
user-friendly interface, enabling users to easily access and
query all its contents. As metagenomic datasets continue to
expand, we will continue developing mMGE in the near fu-
ture by including eMGEs detected from more samples and
more comprehensive annotations.
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