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Abstract

Background: Mapping biomedical data to functional knowledge is an essential task in bioinformatics and can be achieved
by querying identifiers (e.g., gene sets) in pathway knowledge bases. However, the isoform and posttranslational
modification states of proteins are lost when converting input and pathways into gene-centric lists. Findings: Based on the
Reactome knowledge base, we built a network of protein-protein interactions accounting for the documented isoform and
modification statuses of proteins. We then implemented a command line application called PathwayMatcher
(github.com/PathwayAnalysisPlatform/PathwayMatcher) to query this network. PathwayMatcher supports multiple types of
omics data as input and outputs the possibly affected biochemical reactions, subnetworks, and pathways. Conclusions:
PathwayMatcher enables refining the network representation of pathways by including proteoforms defined as protein
isoforms with posttranslational modifications. The specificity of pathway analyses is hence adapted to different levels of
granularity, and it becomes possible to distinguish interactions between different forms of the same protein.
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Findings

In biomedicine, molecular pathways are used to infer the mech-
anisms underlying disease conditions and identify potential
drug targets. Pathways are composed of series of biochemical
reactions, of which the main participants are proteins, that to-
gether form a complex biological network. Proteins can be found
in various forms, referred to as proteoforms [1]. The different
proteoforms that can be obtained from the same gene/protein
depend on the individual genetic profiles, on sequence cleavage
and folding, and on posttranslational modification (PTM) states
[2]. Proteoforms can carry PTMs at specific sites, conferring each
proteoform unique structure and properties [2]. Notably, many
pathway reactions can only occur if all or some of the proteins
involved are in specific posttranslational states.

However, when analyzing omics data, both input and path-
ways are summarized in a gene- or protein-centric manner,
meaning that the different proteoforms and their reactions are
grouped by gene name or protein accession number, and the
fine-grained structure of the pathways is lost. One can there-
fore anticipate that proteoform-centric networks provide a rich
new paradigm to study biological systems. But while gene net-
works have proven their ability to identify genes associated with
diseases [3], networks of finer granularity remain largely unex-
plored.

Here, we present PathwayMatcher, an open-source stan-
dalone application that considers the isoform and PTM status
when building protein networks and mapping omics data to
pathways from the Reactome database. Reactome [4] is an open-
source curated knowledge base consolidating documented bio-
chemical reactions categorized in hierarchical pathways and no-
tably includes isoform and PTM information for the proteins par-
ticipating in reactions and pathways.

As an example of the complexity of hierarchical pathway
information, we provide a graph representation of Signaling by
NOTCH2 from Reactome (Fig. 1). This pathway is a subpathway
of the pathways Signaling by NOTCH and Signal Transduction. It
is composed of two subpathways (NOTCH2 Intracellular Domain
Regulates Transcription and NOTCH2 Activation and Transmission
of Signal to the Nucleus), comprising 32 and 54 reactions, yield-
ing 28 and 141 edges, respectively. The 31 participants of the
Signaling by NOTCH2 pathway are also involved in reactions in
other pathways, between themselves and with 2,055 other pro-
teins, resulting in 6,525 external edges. Note that in this path-
way, Cyclic AMP-responsive element-binding protein 1 (coded
by CREB1) is phosphorylated at position 46 (labeled as CERB1 P
in Fig. 1) and Neurogenic locus notch homolog protein 2 (coded
by NOTCH2) is found in 3 forms (unmodified and with two combi-
nations of glycosylation, labeled as NOTCH2, NOTCH2 Gly1, and
NOTCH2 Gly2, respectively).

The amount of information available on reactions involving
modified proteins has dramatically increased during the past
two decades (Fig. 2), with 3,947 and 5,631 publications indexed
in Reactome (version 64 at time of writing) describing at least
one reaction between modified proteins or between a modi-
fied and an unmodified protein, respectively. To harness this
vast amount of knowledge, we built a network representation
of pathways that we refer to as proteoform-centric, where protein
isoforms with different sets of PTMs are represented with differ-
ent nodes, in contrast to gene-centric networks, where one node
is used per gene name or protein accession. In this representa-
tion, two proteoforms are connected if they participate in the

same reaction. Note that proteoforms can participate in reac-
tions both individually and as part of a set or complex. Further-
more, they can have four different roles: input, output, catalyst,
or regulator.

The fundamental difference between gene- and proteoform-
centric networks is illustrated in Fig. 3, showing the graph rep-
resentation of interactions with the protein cellular tumor anti-
gen p53 (P04637) from the TP53 gene. In a gene-centric paradigm
(Fig. 3A), 221 nodes are connected to a single node, making 220
connections; while in a proteoform-centric network (Fig. 3B), 227
proteoforms connect to 23 proteoforms coded by TP53, mak-
ing 414 connections. Note that the proteoforms coded by TP53
are themselves involved in reactions, making 24 TP53-TP53 con-
nections. In this example, the proteoform-centric network thus
presents more nodes and connections than the gene-centric
network, with visible structural differences in the network orga-
nization. We hypothesize that the proteoform-centric network
paradigm depicted in Fig. 3B provides a rich map that will en-
able navigating biomedical knowledge to a higher level of detail,
to better assess the effect of perturbations and identify drug tar-
gets more specifically.

PathwayMatcher allows the user to tune the granularity of
the network representation of pathways by representing nodes
as (i) gene names, (ii) protein accession numbers, or (iii) prote-
oforms and supports the mapping of multiple types of omics
data: (i) genetic variants, (ii) genes, (iii) proteins, (iv) peptides,
and (v) proteoforms. Genetic variants are mapped to proteins
using the Ensembl Variant Effect Predictor [5], gene names are
mapped to proteins using the UniProt identifier mapping [6],
and peptides are mapped to proteins using PeptideMapper [7].
If a peptide maps to different proteins, all possible proteins are
considered for the search and protein inference must be con-
ducted a posteriori [8]. If peptides are modified, they are mapped
to the proteoforms presenting compatible PTM sets. Proteins are
mapped to the pathway network using their accession, while
proteoforms are mapped by comparing their protein accession,
isoform number, and PTM set. A schematic representation of
the PathwayMatcher matching procedure is shown in Fig. 4.
More details on the mapping procedure, formats, and settings
can be found in the Methods section and in the online doc-
umentation (github.com/PathwayAnalysisPlatform/PathwayMa
tcher/wiki). For more information on how the pathway repre-
sentation is constructed from the different external resources,
please consult the Methods section and the online documenta-
tion (github.com/pathwayanalysisplatform/pathwaymatcher/tr
ee/master/src/main/java/extractor).

PathwayMatcher produces three types of output: (i) the re-
sult of the matching, listing all possible reactions and pathways
linked to the input; (ii) the results of an overrepresentation anal-
ysis; and (iii) networks in relationship with the input. The over-
representation analysis is performed on the pathways matching
and follows the first generation of pathway analysis methods
[9], i.e., a P-value for each pathway in the reference database is
calculated using a binomial distribution followed by Benjamini-
Hochberg correction [10] (in a similar way as performed by the
Reactome online analysis tool [4]). If the input can be mapped to
proteoforms, the overrepresentation analysis is conducted using
a proteoform-centric representation of pathways, using proteins
otherwise. The exported networks represent the internal and ex-
ternal connections that can be drawn from the input, where in-
ternal connections connect two nodes from the input list, and
external connections connect one node from the input list to any
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Figure 1. Graph representation of the Signaling by NOTCH2 pathway as extracted from the Reactome database. Participating proteins are displayed as large dark red

dots labeled with their canonical gene name. Posttranslational modifications (PTMs) are indicated with suffixes in the label. A connection between two dots indicates
a documented interaction between the two proteins in the given pathway. Connections belonging to the subpathways NOTCH2 intracellular domain regulate transcription

and NOTCH2 activation and transmission of signal to the nucleus are displayed in orange and yellow, respectively. The interactions involving these proteins in other
pathways are displayed with light gray connections in the background.

Figure 2. The cumulative number of publications indexed in Reactome documenting at least one reaction between two proteins with PTMs (solid dark green line),
between one protein with PTMs and one without (dashed light green line), and two proteins without PTMs (dotted blue line), counting all publications with a year
earlier than or equal to the x-axis value. The number of publications in each category at time of writing is indicated to the right.

node not in the input. The user can select to export these net-
works using nodes defined as genes, proteins, or proteoforms.
Connections between nodes in the network are annotated with
information on whether they participate as complex or set and
their role in the reaction.

As displayed in Fig. 5A, 68% of the pathways present at least
one proteoform-specific participant, i.e., with isoform or PTM
annotation. The number of pathways containing a given gene
product or proteoform is displayed in Fig. 5B, showing how using
proteoforms allows distinguishing pathways more specifically
than genes, with a median of 4 pathways matched per proteo-
form compared to 11 pathways per gene. When the input can be

mapped to proteoforms, PathwayMatcher can restrict the search
for reactions and pathways to those that specifically involve pro-
teins in the desired form, hence reducing the number of possi-
ble connections for a given node in the resulting network. Con-
versely, the proteoform-centric network representation allows
identifying interactions between multiple proteoforms originat-
ing from the same gene or protein, resulting in new connections
compared to a gene-centric representation.

Figure 5C shows that the number of connections per proteo-
form is lower than the number of connections for the respective
gene for most proteoforms, varying from a 300-fold decrease to
a 10-fold increase. Interestingly, plotting the number of connec-
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Figure 3. Gene-centric versus proteoform-centric representation. (A) Graph representation of the genes involved in reactions (through their corresponding proteins)
with (the corresponding proteins of) TP53, with a single node per gene. TP53 is represented with a red label at the center and genes coding proteins involved in reactions

with TP53 are represented with smaller blue dots at the periphery connected to the TP53 gene with blue lines. (B) Graph representation of the proteins involved in a
reaction with gene products of TP53, distinguishing isoforms and posttranslationally modified proteins as different proteoforms. The proteoforms coded by TP53 and
the proteoforms involved in a reaction with them are represented with large red and small green dots, respectively. The proteoforms coded by TP53 are numbered
according to Table 1. The connections between proteoforms coded by TP53 are displayed with thick red lines and connections with other proteoforms with thin green

lines.

tions of a proteoform in gene-centric or proteoform-centric net-
works shows that the largest gene-centric hubs, corresponding
to 5 genes, decompose into 127 proteoforms that do not outlie
the distribution of the number of connections in the proteoform
network (Fig. 5D). Conversely, a group of 484 densely connected
outliers emerges from 44 genes.

In order to fully benefit from the gain in specificity of the
proteoform-representation of pathways, it is necessary to ex-
actly match the representation of proteoforms in Reactome. Any
mismatch between the input data and the database would re-
sult in a loss of sensitivity. In practice, such mismatches can
result from an incomplete proteoform representation in Reac-
tome, where only the minimal set of modifications necessary
to perform a reaction is annotated. Conversely, input data can
present unresolved isoform, missing modifications, or inaccu-
rate localization, especially in the case of bottom-up proteomics
[11]. Since the size of the proteoform network is unknown to
date, the effect of missing annotations in the database is not
directly quantifiable.

To estimate the sensitivity of the matching, we mapped
the phosphoproteome from Ochoa et al. [12] to Reactome us-
ing PathwayMatcher: among the 10,588 accessions representing
phosphoproteins, 5,519 (52%) could be matched to an accession
in Reactome, while among the 116,258 phosphosites reported,
only 654 (<1%) could be matched exactly in Reactome. Acces-
sion matching is equivalent in terms of sensitivity and speci-
ficity to a gene-centric representation of pathways, while strict
proteoform matching, requiring exact isoform and modification
set, maximizes specificity at the cost of sensitivity.

In order to mitigate the sensitivity loss while maintaining
specificity, we implemented multiple types of matching that
present different levels of stringency, as detailed in the meth-
ods: (i) One, (ii) One without PTM types, (iii) Superset, (iv) Superset
without PTM types, (v) Subset, (vi) Subset without PTM types, and
(vii) Strict. Table 2 lists the share of phosphosites that can be

matched to a proteoform in Reactome when querying the ac-
cession with a phosphorylation at the given site, and only at this
site, with a tolerance of 5 amino acids. There, one can see that
increasing the stringency of the matching dramatically reduces
the sensitivity. Since both Reactome and the list of phosphosites
represent a minimal set of modifications, the Strict matching is
overly selective, while Accession and Superset include reactions
where the proteins are not modified.

Subset and One represent the coverage of the input by Reac-
tome. Here, Subset and One are equivalent because the input con-
sists of single phosphosites. In a data set containing combina-
tions of phosphosites, Subset would match proteoforms taking
phosphosite combinations into account, while One would rep-
resent any proteoform with at least one matching phosphosite.
The increased number of matches without PTM type can be im-
puted to mismatching PTM identifiers or the presence of other
PTMs at the input sites or at neighboring positions.

To illustrate the difference induced by each matching type
on the proteoform matching, we calculated the percentage of
proteoforms matched with selected example proteoforms. In
Fig. 6, we present two example proteoforms, one from insulin
(P01308) and one from mitogen-activated protein kinase kinase
kinase 7 (MAP3K7). Insulin and MAP3K7 have five and seven dif-
ferent proteoforms annotated in Reactome, four and six of them
with PTM annotation, respectively. By design, the Strict matching
type matches only the original proteoform while the accession
matching matches all proteoforms. The other matching types al-
low balancing between the two stringencies and display varying
levels of specificity for those proteoforms. The results show that
relaxing the stringency of the matching rapidly induces a loss in
specificity due to the similarity of the different proteoforms of a
given gene or protein.

Furthermore, we randomly selected proteoforms in Reac-
tome and altered them by changing the type and localization
of the PTMs to simulate mismatching or missing information,
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Figure 4. Schematic representation of the PathwayMatcher matching procedure. Input of various types is modelized as sets of proteins or proteoforms based on the
annotation of isoforms and PTMs. Proteins and proteoforms are then mapped to Reactome based on user settings. Matched reactions and pathways, the results of an

overrepresentation analysis, and subnetworks generated from the input are exported as text files.

and the altered proteoforms were matched to Reactome; see de-
tails in the Methods section. In this setup, the share of altered
proteoforms that can be recovered using the different match-
ing types, referred to as Original matches, provides an estimate
of the matching sensitivity in case of incomplete or mismatch-
ing proteoform definition. Conversely, the share of other prote-
oforms matching despite not being originally selected, referred
to as Other matches, provides an estimate of the error rate, the
complement of specificity.

Fig. 7shows the percentage of proteoforms that matched
at least one proteoform in the database separated on match-
ing type. As expected, accession matching displays the high-
est sensitivity at the lowest specificity, while the Strict and Sub-
set matching display the highest specificity at the lowest sensi-
tivity. The Superset matching presented low sensitivity and low
specificity, while the One matching presented a balance between
specificity and sensitivity. Finally, the matching with no types
presented similar trends but with almost maximum sensitivity
and lower specificity. Together, these results show how relaxing
the matching stringency allows balancing between sensitivity
and specificity, and they demonstrate the importance of accu-
rate proteoform definition in both the input and the reference
knowledge base.

Through its paradigm shift, PathwayMatcher hence pro-
vides a fine-grained representation of pathways for the anal-
ysis of omics data. However, this comes at the cost of in-
creased complexity: gene-centric networks comprise a limited

number of nodes, approximately 20,000 for humans, whereas
in a proteoform-centric paradigm, the human network is ex-
pected to have several million nodes [13]. With the current ver-
sion of Reactome, building the gene- and proteoform-centric
networks results in 9,759 and 12,775 nodes with 443,229 and
672,047 connections, respectively. We classified the nodes into
two categories, canonical or specific gene products, depend-
ing on whether or not they represent the unmodified canoni-
cal isoform of a protein according to UniProt. Within the prote-
oform network, 432,169 connections between 9,694 nodes link
two canonical gene products, 95,539 connections between 7,734
nodes involved one canonical and one specific gene product, and
2,806 nodes with 144,339 connections involved two specific gene
products. More summary statistics on the underlying network
can be found in the wiki of the PathwayMatcher repository.

In addition to the increased size of the underlying network,
matching proteoforms requires comparing isoforms and sets
of modifications, possibly with tolerance and wildcards for the
modification definition and localization, which is computation-
ally much more intensive than simply comparing identifiers.
Fig. 8 shows the performance of PathwayMatcher benchmarked
against public data sets of (A) genetic variants, (B) proteins, (C)
peptides, and (D) proteoforms.

For the proteins and proteoforms, the processing time in-
creased linearly related to the query size with a small slope,
making it possible to search all available proteins within a few
seconds. As expected, protein identifiers provided the fastest re-
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Figure 5. Prevalence of proteoforms in pathways. (A) The share of proteoform-specific participants in a pathway (i.e., proteins that are annotated with isoform and/or

PTM information) is plotted against the cumulative share of pathways, going from the highest share of proteoforms to the lowest. The cumulative share of pathways
is displayed with a solid green line. The share of proteoform-specific participants in each pathway is plotted with a green dot with a jitter on the x-axis between zero
and the solid line. (B) For all proteoform-specific participants, the number of pathways mapped using the proteoform versus gene is plotted in black. The density of the

number of pathways mapped is indicated at the top (blue) and right (green) for gene and proteoform matching, respectively. The median number of pathways mapped
is indicated with dashed lines. (C) The violin and box plots of the degree, i.e., number of connections, for the proteoform-specific participants in a gene-centric or
proteoform-centric network are plotted to the left (blue) and right (green), respectively. (D) The ratio of degrees, proteoform over gene, is plotted with a blue-gray-green
gradient with the box plot overlaid in black. (E) The degree of the proteoform-specific participants in the proteoform-centric network is plotted against the degree

in the gene-centric network. Dots are colored with a blue-gray-green gradient corresponding to the ratio in D. Outliers of high degree in the gene-centric but not in
the proteoform-centric network are indicated with blue dashes to the right. Outliers of high degree in the proteoform-centric but not in the gene-centric network are
indicated with green dashes to the top. Note that base 10 logarithmic scales are used for the axes in B, C, D, and E.

sponse time, while proteoforms were the second fastest. Map-
ping peptides took approximately 30 seconds more, correspond-
ing to the indexing time of the protein sequences database by

PeptideMapper [7], after which the time increased linearly in a
similar fashion as for proteins. For the genetic variants, an ex-
tra mapping step is required to map possibly affected proteins,
adding additional computing time. The overall mapping time for
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Table 1. Proteoforms of Figure 3B

# Isoform Modifications

1 Canonical None
2 Canonical pS15
3 Canonical pS15 pS20 aceK120 aceK382
4 Canonical pS15 pS20 aceK382
5 Canonical pS15 pS20 aceK120
6 Canonical pS15 pS20
7 Canonical pS15 pS20 dimethR335 dimethR337

methR333
8 Canonical pS15 pS20 ubiK
9 Canonical pS15 pS33 pS46
10 Canonical pS15 pS20 pS269 pT284
11 Canonical pS15 pS20 methK370
12 Canonical pS15 pS20 methK372
13 Canonical pS15 pS20 methK382
14 Canonical ubiK
15 Canonical pS315
16 Canonical pT55
17 Canonical pS15 pS392
18 Canonical pS37
19 Canonical dimethK373
20 Canonical sumoK386
21 Canonical pS15 pS20 pS46
22 Canonical pS15 pS20 pS392
23 Canonical dimethK370 dimethK382

Only the canonical isoforms are annotated to date, as indicated in the sec-

ond column. The posttranslational modification status is indicated in the
third column with modification short name and modification site when an-
notated. Abbreviations: aceK, N6-acetyl-L-lysine; dimethK, N6, N6-dimethyl-L-
lysine; dimethR, symmetric dimethyl-L-arginine; methK, N6-methyl-L-lysine;

methR, omega-N-methyl-L-arginine; pS, O-phospho-L-serine; pT, O-phospho-L-
threonine; ubiK, ubiquitinylated lysine; sumoK, sumoylated lysine.

Table 2. Share of the phosphosites from Ochoa et al. [12] matching to
Reactome using different matching types

Matching Type
Share of Phosphosites

Matched

Accession 57.44%
Superset without PTM types 56.38%
Superset 56.33%
One without PTM types 6.01%
Subset without PTM types 6.01%
One 1.27%
Subset 1.27%
Strict 0.15%

Proteoforms were constructed by adding a phosphorylation at the given site, and
only at this site, and were queried against Reactome. The percentage of proteo-

forms matched is provided in the second column. A tolerance of 5 amino acids
was used on the modification site. More details on this analysis can be found in
the Methods section.

a million single-nucleotide polymorphisms (SNPs) was less than
a minute, which is acceptable compared to the other steps of
a variant analysis pipeline. Note that the processing time was
very reproducible across runs, where minor variation is only no-
ticeable using genetic variants, resulting in very thin ribbons in
Fig. 8B-D.

In conclusion, PathwayMatcher is a versatile application en-
abling the mapping of several types of omics data to pathways
in reasonable time and can readily be included in bioinformatic
workflows. It is important to underline that PathwayMatcher
maps experimental data to pathways in a systematic and unbi-

ased fashion, i.e., it collects all pathways containing at least one
of the participant proteins or proteoforms of the input data and
does not perform any filtering or biological inference. Through
this process, it attempts at minimizing the prevalence of false
negatives by considering all the possible pathways annotated in
the reference database. It can, however, not control for missing
annotation, i.e., what is not annotated in the knowledge base is
not considered.

Furthermore, although PathwayMatcher implements an
overrepresentation analysis module, we recommend that users
rather interpret the results of the matching and the resulting
networks using the systems biology method that best suits the
experiment and biomedical context. Based on generic pathways,
PathwayMatcher is not developed as a mechanism inference or
validation tool, but as a hypothesis generation tool, helping to
navigate large data sets and guide experiments to uncover bio-
logical processes relevant to specific research questions.

Thanks to the fine-grained information available in Reac-
tome, PathwayMatcher supports refining the pathway represen-
tation to the level of proteoforms. To date, only a fraction of the
several million expected proteoforms [13] has annotated inter-
actions, but as the understanding of protein interactions contin-
ues to increase and the ability to identify and characterize them
in samples progresses, proteoform-centric networks will surely
become of prime importance in biomedical studies. Notably, the
effect of genetic variation on genes, transcripts, and proteins is
currently only partially resolved for a fraction of the genome.
The rapid development of this field will make it possible to iden-
tify biological functions affected by variants within the human
network. Refining its representation to the level of proteoforms
will allow pinpointing more precisely reactions and pathways,
and hence increase our ability to understand biological mecha-
nisms and potentially identify druggable targets.

Methods
Implementation

PathwayMatcher is implemented in Java 8.0.

Availability

PathwayMatcher is freely available at github.com/PathwayAnal
ysisPlatform/PathwayMatcher under the permissive Apache 2.0
license. It is also possible to use PathwayMatcher as a Docker im-
age: hub.docker.com/r/lfhs/pathwaymatcher. PathwayMatcher
can be obtained from the Bioconda channel of the Conda [14]
package manager at bioconda.github.io/recipes/pathwaymatc
her/README.html. Finally, PathwayMatcher is available as a
Galaxy [15] tool in the Galaxy ToolShed [16] at toolshed.g2.bx.psu
.edu/view/galaxyp/reactome pathwaymatcher, where it can be
readily integrated into analysis workflows. PathwayMatcher has
also been installed into the public European Galaxy instance,
usegalaxy.eu, making it possible to use the application without
requiring any local configuration and just providing valid input
files and options. The complete URL for the online tool is listed
in reference [17].

Upon installation, PathwayMatcher can be used from the
command line to query Reactome using various types of omics
data. Either the “.jar” file is run directly using Java or the Docker
image is instantiated to a container. Detailed information on im-
plementation, installation, usage, and format specifications is
available in the online documentation at github.com/Pathway
AnalysisPlatform/PathwayMatcher/wiki.
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Figure 6. Two examples of proteoforms showing the proteoform matching results for each matching type. (A) Proteoform P01308;

MOD:00087:53;MOD:00798:31;MOD:00798:43, from insulin (P01308), is matched against all modified proteoforms of insulin in Reactome. (B) Proteoform
O43318;MOD:00047:184;MOD:00047:187, from “mitogen-activated protein kinase kinase kinase 7” (MAP3K7), is matched against all modified proteoforms of
MAP3K7 in Reactome.

Figure 7. Percentage of proteoforms with at least one proteoform match in the database with each matching criterion. The total candidate proteoforms available are
separated in two categories, Original and Others. Original is the proteoform in the database that was modified for the sampling, while Others are the proteoforms that

share the same protein accession.

Input and output

Detailed and updated documentation of the input and output
can be found in the online documentation at github.com/Pathw
ayAnalysisPlatform/PathwayMatcher/wiki.

As schematized in Fig. 9, a simple representation is used for
proteoforms: (i) the UniProt protein accession and (ii) the set of
PTMs separated by a semicolon “;”. The protein accession can
include the isoform number specified with a dash “-”. The PTM
set contains each PTM separated by a comma “,”. Each PTM is
specified using a modification identifier and a site, separated by
a colon “:”.

Note that the order of PTMs does not affect the search. The
PTM identifier is a 5-digit identifier from the PSI-MOD Protein
Modification [18]. The site is an integer specifying the 1-based

index of the modified amino acid on the sequence as defined by
UniProt. The modification site field is mandatory, and ? or null
indicates that the position is not known.

It is common to write the identifiers for the PTM types with
the prefix “MOD:” before the 5 digits of the ontology term. Path-
wayMatcher also allows the user to write the identifier without
the prefix. PathwayMatcher also allows querying all proteoforms
modified at a given site using the “00000” wildcard for modifica-
tion type combined with a matching type that does not consider
the modification types such as One without types or Subset with-
out types. For more details, see the Proteoform Matching subsec-
tion.
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Figure 8. Performance of PathwayMatcher using (A) genetic variants as single-nucleotide polymorphisms (SNPs), (B) proteins, (C) peptides, and (D) proteoforms. Time
in minutes is plotted against input size. The mean is displayed as a solid line and the 95% range as a ribbon (only visible in (A) due to the high reproducibility in other
cases).

Figure 9. Example of proteoform notation, composed of a protein accession, an

isoform number, and a set of PTMs.

Posttranslational modifications in the Reactome data
model

The Reactome object model specifies physical entities (e.g., com-
plexes, proteins, and small molecules) and proteins are anno-
tated using unique identifiers. These entities participate in re-
actions in specific cellular compartments. They can also be con-
nected to multiple instances of Translational Modification objects,
which contain a specific coordinate on the protein sequence and
an identifier following the PSI-MOD ontology [18]. The portion of
physical entities referring to proteins is associated with another
class of objects as reference entities, which contain protein an-
notations in external databases such as UniProt [19]. Therefore,

a proteoform is represented as a physical entity associated with
a set of modifications for specific processes at a specific subcel-
lular location. Each modification has a PSI-MOD ontology identi-
fier as type and an integer coordinate for the site in the peptide
sequence where the modification occurs. The coordinate can be
? or null when the site is not known. Reactome annotates 127
different protein modifications for humans, of which Fig.10 Ref-
erence source not found. displays the most frequent.

Proteoform matching

Searching pathways using gene names or protein accessions
solely requires mapping a string of characters between the in-
put and the knowledge base. In order to map the proteoforms to
reactions and pathways, it is necessary to decide if the proteo-
forms in the input are equivalent to the proteoforms annotated
in the reference database, Reactome, taking into account the
protein accession, isoform information, and the set of PTMs. Two
proteoforms can have all, some, or none of these elements in
common. We defined a set of criteria to match two proteoforms,
one from the input and another from the reference database.
First, identical protein accession and isoform numbers are re-
quired for a match: either both proteoforms are from the canon-
ical isoform (e.g., P31749) or from the same isoform (e.g., P31749–
3). Then, the PTMs carried by each proteoform are compared us-
ing the modification type and the modification site on the pro-
tein sequence. For 2 PTMs to match, their modification type as
defined by the PSI-MOD ontology [18] needs to be identical and
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Figure 10. Prevalence of the different PTM annotations in Reactome. PTM labels are extracted from the Reactome database and the number of proteins annotated with
the PTM is displayed for each label. If a protein is carrying multiple instances of the PTM, the PTM is counted only once.

Table 3. Posttranslational modification coordinates criteria for comparison

Input Reference Margin Matched Comment

17 17 0 Yes Equal
16 17 0 No Out of margin
7 13 5 No Out of margin
8 13 5 Yes In margin
19 13 5 No Out of margin
0 2 5 No Input in margin, but 0 is not a valid

coordinate
-1 2 5 No Input in margin but negative
?, empty, null c k Yes Input is less specific
c ?, empty, null, -1 k Yes Input is more specific
?, empty, null ?, empty, null, -1 k Yes Equally unspecific
Negative int, zero Any k No Negative or zero input are invalid

This table compares the value of a PTM coordinate of an input Proteoform with the value of a PTM coordinate in a reference proteoform. The letter k represents any
positive integer.

the distance between their sites must be below a user-provided
margin, as detailed in Table 3.

PTM
Different matching types are implemented in Pathway-

Matcher for the PTM sets:

� Strict: the input and reference proteoforms have the same
number of PTMs and every PTM of the input proteoform
matches a PTM in the reference proteoform.

� Superset: every PTM of the reference proteoform matches a
PTM of the input proteoform, but some PTMs in the input

proteoform may not match PTMs in the reference proteo-
form.

� Subset: every PTM of the input proteoform matches a PTM of
the reference proteoform, but some PTMs of the reference
proteoform may not match PTMs in the input proteoform.

� One: at least one PTM of the input proteoform matches a PTM
of the reference proteoform.

In addition, Superset without PTM types, Subset without PTM
types, and One without PTM types are identical to Superset, Subset,
and One, respectively, but do not account for modification type
in PTM matching. Finally, note that for the Strict matching, the
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Figure 11. PathwayMatcher general overview. The program takes the user input in the form of omics data files and the reference pathways from the database as input.
It then executes the search and analysis algorithm to create a resulting list of output files.

PTMs match when their sites are exactly identical and no mar-
gin is allowed: either both are the same positive integer or both
are null or ?.

For details and examples to run PathwayMatcher with
the different matching criteria, see the online documen-
tation (github.com/PathwayAnalysisPlatform/PathwayMatcher/
wiki/Proteoform-matching).

Additional considerations:

� Negative, zero, or floating-point values are invalid as se-
quence coordinates in the input.

� The margin to compare the coordinates must be a positive
integer.

Sensitivity analysis

In order to estimate the prevalence of missing annotation in
Reactome, we evaluated the matching power of each matching
type of PathwayMatcher using a reference list of 116,258 phos-
phosites obtained from Ochoa et al. [12]. Each phosphosite was
transformed into a proteoform, which had the same protein ac-
cession and a single PTM at the given site. The PTM accession
number 00046, 00047, or 00048 was used if the phosphorylated
amino acid reported was a serine, a threonine, or a tyrosine,
respectively. Each of the proteoforms with a single phosphory-
lation was matched against all proteoforms available in Reac-
tome using PathwayMatcher. The share of phosphosites yielding
a match for each matching type is available in Table 2.

Subsequently, we evaluated the robustness of each matching
type by selecting sets of proteoforms from Reactome, altering
them, and matching them back.

First, we selected the proteins that had multiple proteo-
forms with at least one PTM (1,364 proteins). Then, we gathered
all those posttranslationally modified proteoforms and altered
them: (1) for the proteoforms with one or more PTMs, the type
of the first PTM was replaced by “00000” and modification sites
were increased by 5 positions; (2) for the proteoforms with two
or more PTMs, the site of the second PTM was moved as well.

Then, we took ten samples of 300 altered proteoforms and
matched them to proteoforms in Reactome using Pathway-
Matcher. For each matching type, we calculated the percentage

proteoforms in the sample that matched any proteoform in the
database.

The results for all ten samples are shown in Fig. 7, where we
split the matching of the original sample proteoforms and other
candidate proteoforms.

Mapping omics data to pathways

The input is mapped to proteins or proteoforms to find the reac-
tions where the input entities are participants (Fig.11). The input
is mapped to proteins when data types without PTMs or specific
translation products are specified; otherwise, a mapping to pro-
teoforms is used. When one type of data yields multiple results
due to ambiguity (e.g., a SNP or peptide mapping multiple pro-
teins), all the possibilities are included in the search entities.

When a list of SNPs is provided, mapping from the Ensembl
Variant Effect Predictor [5] is used to find the possibly affected
proteins. When peptides are provided, their sequence is mapped
to UniProt protein identifiers [6] using PeptideMapper [7] and
possible proteoforms are constructed. When proteins or prote-
oforms are available, PathwayMatcher maps them to reactions
and pathways using data structures embedded in the Pathway-
Matcher jar file. These data structures are extracted from the
Reactome Neo4j graph database [19] and serialized. All mapping
files are available in a dedicated repository: github.com/Pathw
ayAnalysisPlatform/MappingFiles.

In addition, we made it possible for the user to generate
new mapping files as detailed in the PathwayMatcher reposi-
tory (github.com/PathwayAnalysisPlatform/PathwayMatcher/tr
ee/master/src/main/java/extractor). PathwayMatcher can then
be executed with the new set of mapping files as provided by
the user.

Overrepresentation analysis

The matching of each entity to a given pathway is modeled as
a Bernoulli trial with two possible outcomes: success or failure,
depending on whether the protein or proteoform is a participant
of a reaction in the pathway. Trials are considered independent
from each other, meaning that the outcome of previous trials
does not affect the next. Finally, the probability of success is cal-
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culated by the proportion of choosing a protein in a pathway over
the total number of possible proteins, and therefore the proba-
bility is constant over all trials.

First, we search all the input entities (proteins or proteo-
forms) across all the pathways and count how many of them
were found in each pathway. The number of entities found in a
pathway is taken as the number of successful trials. Then, with
the binomial probability distribution, we calculate how likely it
would be to get a result equal to or more extreme than the cur-
rent result (the same number or more proteins or proteoforms
in the pathway), given that the input (proteins or proteoforms)
was randomly selected [9].

This is done using the cumulative distribution function for
the binomial distribution, which calculates the probability of
getting at most k successes out of n trials, with a probability p
∈ [0,1], where X is a random variable following the binomial dis-
tribution, as detailed in Equation 1.

F (k, n, p) = Pr (X ≤ k) =
k∑

i = 0

(
n
i

)
pi (1 − p)n−i (1)

For each pathway, p is set to the ratio between the number
of total proteins or proteoforms in the pathway and the total
possible entities in the database, n is the number of proteins or
proteoforms in the input sample, k is the number of proteins
successfully mapped in the pathway, and X is the number of en-
tities found in the current pathway after the search.

Finally, given that the P-value requires the calculation of the
probability of an equal or more extreme result, we use the com-
plement of Equation 1 to calculate the probability of getting at
least k successful trials out of n, as stated in Equation 2.

Pr (X ≥ k) = 1 − Pr (X ≤ k − 1) (2)

The calculations for proteins or proteoforms are similar but
are performed separately depending on the input. If the input
consists of protein accessions, the number of participants is cal-
culated by only considering proteins. On the other hand, for the
proteoform input, the number of entities in the pathways and
the database are the participant proteoforms.

Performance benchmark

The performance of PathwayMatcher was evaluated using data
sets of different sizes obtained from sampling publicly available
resources:

� Proteins: human complement of the UniProtKB/Swiss-Prot
database (release 2017 10)

� Peptides: ProteomeTools [20] as available in PRIDE [21], data
set PXD004732, release date January 23, 2017

� Genetic variants: variants from the human assembly
GRCh37.p13

� Proteoforms: annotated proteoforms in Reactome Graph
database version 62

Performance testing was done using a standard desktop
computer (Intel R© CoreTM i7–6600U CPU @ 2.60 GHz with 2 cores
using 64-bit Windows 10 with Java SE 1.8.0 144 on SSD). Details
and code are available at github.com/PathwayAnalysisPlatform
/PathwayMatcher/wiki/Performance.

Metrics and figures

The metrics presented in this article were obtained by querying
the Reactome graph database directly [22]. The queries used can
be found in the online documentation at github.com/Pathway
AnalysisPlatform/PathwayMatcher/wiki/queries.

The figures in this article were built in R version 3.4.1 (2017–
06-30)—“Single Candle” (r-project.org) using the following pack-
ages: ggplot2, ggrepel, igraph, scico, grid, purr, dplyr, graphlay-
outs, and gtable. The R scripts used to build the figures are avail-
able in the tool repository at github.com/PathwayAnalysisPlatfo
rm/PathwayMatcher Publication/tree/master/R.

Availability of supporting source code and
requirements

Project name: PathwayMatcher
Project home page: github.com/PathwayAnalysisPlatform/Pat
hwayMatcher
Operating system(s): Platform independent
Programming language: Java
Other requirements:
License: Apache 2.0
RRID: SCR 01 6759

Availability of Supporting Data

Snapshots of our code and other supporting data are available
in the GigaScience repository, GigaDB [23].
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