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Background and Aim: Diabetes mellitus (DM) is a chronic disorder with diabetic
retinopathy (DR) as one of its main microvascular outcomes, being a prime cause of
vision loss. Dysregulation of microRNAs (miRNAs) has been associated with some diabetic
microvascular complications such as diabetic retinopathy. This hypothesised changes in
the serum of miR-93 and miR-152 in diabetes and diabetic retinopathy.

Methods: The study cohort consisted of 80 healthy volunteers, 80 type 2 diabetic
patients, and 80 diabetic retinopathy patients, of whom 40 had proliferative (PDR) and
40 non-proliferative retinopathy (NPDR). Serum fasting and 2-hour postprandial glucose
(2hPP), glycated haemoglobin (HbA1c), fasting insulin, and HOMA-IR were evaluated by
routine methods, miR-93 and miR-152 expression by quantitative real-time PCR.

Results: FBG, 2hPP, fasting insulin, HOMA-IR, and miR-152 showed an increasing trend
across groups while miR-93 showed a decreasing trend (all p < 0.001). Binary logistic
regression analysis for prediction of DR found that the most significant were miR-152 (OR
1.37, 95% CI: 1.18–1.58, <0.001), BMI (1.13, [1.07–1.31], p � 0.004), duration of disease
(1.29 [1.04–1.6] p � 0.018), and miR-152 (0.01, [0.0–0.47] p � 0.019). The most significant
predictors of PDR were miR-152 (OR � 1.47, 95% CI: 1.12–1.92, p � 0.005), HOMA-IR
(2.66 [1.30–5.45] p � 0.007), and miR-93 (0.25 [0.07–0.86] p � 0.028).

Conclusion:MiR-93 and miR-152 can differentiate patients with diabetes and those with
DR. BothmiRNAsmight be potential biomarkers for diabetes and diabetic retinopathy, and
specifically for proliferative diabetic retinopathy.
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INTRODUCTION

Diabetes mellitus is a disorder of the endocrine system that is expanding in prevalence worldwide,
particularly in developing countries (1). Though it can be managed and its complications reduced
with nutritional therapy, physical activity, and drugs, its outcomes still have widespread prevalence
(2). The main complications of diabetes are cardiac disease, neuropathy, nephropathy, and
ophthalmic complications (i.e., cataracts, retinopathy, and macular edema) (3). Diabetic
retinopathy is a prime cause of blindness and affects about 80% of those who have diabetes for
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20 years or more (4). The pathogenesis of diabetic retinopathy
involves retinal microvascular dysfunction and its clinical
features are mainly due to basement membrane thickening,
abnormal endothelial proliferation, and angiogenesis (5).

MicroRNAs (miRNAs) are short non-coding single-stranded
RNAs, 18–24 nucleotides in length, concerned with moderating
gene expression, and reputed to affect the expression of one-third
of all genes (6). Dysregulation of miRNAs has been associated
with some diabetic microvascular complications as diabetic
nephropathy and related to disease progression (7). Also,
various miRNAs have been linked with different types of
diabetes, as miRNA-223 is linked with the pathogenesis of
gestational diabetes (8). Additionally, Kovacs et al. (9), showed
that the miRNAs expression profile has changed during diabetic
retinopathy. They play an important regulatory role in the
process of visual function via involvement in the regulation of
the physiological processes such as apoptosis of retinal cells and
neovascularization (5).

MiRNA-93 is coded by intron 13 ofMCM7 on chromosome 7
and is metabolically controlled (10). Elevated glucose has
reportedly influenced miRNA-93 expression. Additionally,
miRNA has been found to control vascular endothelial growth
factor (VEGF) level which is associated with the pathogenesis of
inflammatory diseases and microvascular diabetic
complications (11).

MiR-152 is a member of the miR-148/152 family coded for at
17q21.32 (12). MiR-152 plasma levels are linked to plasma
osmolality in diabetes and as such may be involved in the
pathophysiology (13). Moreover, pancreatic islets of diabetic
patients expressed higher levels of miR-152 and may affect
insulin release (14). We hypothesised changes in miR-93 and
miR-152 in diabetes and its ocular complications i.e. proliferative
and non-proliferative retinopathy.

SUBJECTS AND METHODS

This research was fulfilled with the assistance of the Medical
Biochemistry department, Endocrinology Unit, at the Internal
Medicine department and Ophthalmology Department, Faculty
of Medicine, Menoufia University. We tested out the hypothesis
in 80 healthy volunteers, 80 patients diagnosed with type 2
diabetes mellitus (T2DM), and 80 diabetic patients
complicated with retinopathy. The latter were further
subdivided into 40 with proliferative diabetic retinopathy and
40 with non-proliferative diabetic retinopathy. Diagnosis was as
per the 2018 Standards of The American Diabetes Association
(ADA) (15), these being the presence of any of the following
measures: 8-h fasting plasma glucose level of ≥7 mmol/L, a 2-h
plasma glucose level of ≥11.1 mmol/L after a 75-g oral glucose
tolerance test (OGTT), or a random plasma glucose of
≥11.1 mmol/L, the typical presentation of hyperglycemia
(i.e., polyuria, polydipsia, hyperphagia, loss of weight) or
hyperglycemic crisis, and a haemoglobin A1c (HbA1c) level of
≥6.5%. The inclusion criterion for diabetic retinopathy group was
with different stages of diabetic retinopathy with poor vision (not
corrected by refraction). Exclusion criteria were patients with

epiretinal membrane and traction at the macula apparent
clinically by VOLK (90D), any ocular surgery, media opacity,
glaucoma, and any retinal diseases apart from diabetic
retinopathy. History taken included the duration of diabetes.
Ophthalmic examination was corrected Snellen’s visual acuity,
converted to log MAR acuity (Minimal Angle of Resolution) for
(statistical analysis, slit lamp examination, fundus biomicroscopy
by Volk (90D) and intraocular pressure measurement, clinical
examination with anthropometric assessment. Calculation of
body mass index (BMI) was completed by dividing body
weight expressed in kilograms by height expressed in square
meters (16). Investigations include colour fundus photography
and Fluorescein angiography (FA). A digital retinal camera
system (TOPOCON) was used for FA examination after
pupillary dilation with (tropicamide 1%). Regarding FA
features, the Degree of diabetic retinopathy was classified
according to ETDRS study (17) as follows:—Non-proliferative
diabetic retinopathy (Mild: at least one microaneurysm.
Moderate: more than just microaneurysms. Severe:
haemorrhage and exudates in all four quadrants, venous
beading in two or more quadrants, or IRMA in at least one
quadrant. Very severe: any patient with two or more of the
characteristics of severe non-proliferative diabetic
retinopathy).—Proliferative diabetic retinopathy:
neovascularization in the retina and or the optic disc, vitreous
and or preretinal haemorrhage. Prior to sample collection,
written approval agreed by the Human Rights Committee in
Research at Menoufia University was obtained from all studied
cases and controls.

After 8 h of fasting, 10 ml of venous blood was taken from
every subject by sterile vein-puncture for routine insulin, glucose,
and HbA1c. Insulin resistance was calculated by the homeostatic
model assessment (HOMA) (18). HOMA-IR equals fasting
glucose (mg/dl) multiplied by fasting insulin (μIU/ml) then
divided by a constant of 405.

Assessment of miR-93 and miR-152 Expression by Real-time
PCR: MiRNA was purified from 100 µl of fresh serum samples;
total RNA with miRNAs was extracted utilizing a miRNeasy kit
(QIAGEN, United States). The quantity and quality of the RNA
in our samples were evaluated by NanoDrop instrument (Thermo
Scientific, United States). Isolated RNA was kept at −80°C.
Furthermore, cDNA was obtained by reverse transcription via
miScript II RT kit (QIAGEN, United States). The reaction was
fulfilled on ice in a total reaction volume of 20 μl, consisting of:
4 μl of miScript HiSpec RT buffer, 2 μl of miScript Nucleics Mix,
2 μl of miScript™ reverse transcriptases, 2 μl of nuclease-free
H2O, and 10 μl of purified miRNA. Reaction was preceded in a
2720 Applied Bio-systems thermal cycler (Singapore) for one
cycle of 37°C for 60 min followed by 95°C for 5 min to inhibit the
reverse transcriptase enzyme. The formed cDNA was kept at
−20°C until the real-time PCR stage. Real-time PCR was carried
out utilizing a miScript SYBR Green PCR kit (QIAGEN, United
States). Before reaction processing, cDNA was diluted with
nuclease-free H2O at a ratio of 1:5, and a net volume of 25 μl
was used (12.5 μl of SYBR Green Master Mix, 3.5 μl of nuclease-
free water, 4 μl of diluted cDNA, 2.5 μl of miScript universal
primer, and 2.5 μl of miScript primer assay). MiRNA-16 was co-
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amplified for normalization as a reference gene. The following
primers were used: mature miRNA-93, CAAAGUGCUGUU
CGUGCAGGUAG; mature miRNA-152, AGGUUCUGUGAU
ACACUCCGACU; andmature miRNA-16, UAGCAGCACGUA
AAUAUUGGCG as a reference gene (miScript primer assay kit,
QIAGEN, USA). Samples were analyzed by an ABI 7500 real-
time PCR instrument (software V.2.0.1, ABI7500) with cycling
settings as: first initiation stage for 15 min at 95°C, then three
stages of 40 cycles for 15 s at 94°C, 30 s at 55°C, and 30 s at 70 °C.
The expression levels of miRNA-93 and miRNA-152 were
standardized to these of miRNA-16 and determined via the
2−ΔΔCt method.

Results were analyzed by SPSS version 22 (SPSS Inc.,
Chicago, IL, United States). Tests of normality were
performed. Chi-Squared (χ2) and Monte Carlo tests were
used for qualitative variables. As the four groups represent
a disease spectrum, linear trend analysis using the Jonckheere-
Terpstra test was applied to detect whether there was an
increasing or decreasing trend across the ordered groups.
The Mann-Kendall test was used to detect the presence of
linear or non-linear trends [steadily increasing/decreasing or
unchanging] in a series of data by estimating the effect size
following Jonckheere-Terpstra testing. A Spearman
correlation test was used for detecting the strength and
direction of association between variables. Binary logistic
regression analysis was performed to detect the independent
predictors for diabetic retinopathy. Multiple regression
analysis using pathway analysis was applied to identify the
predictors between our variables. Multiple comparisons were
tested using Holm-Bonferroni Sequential Correction. p-values
are statistically significant after this correction. Sensitivity,

specificity, positive and negative predictive values, and
receiver operating characteristic (ROC) areas under the
curve (AUC) were calculated.

RESULTS

The four groups were matched for age and sex, and as expected,
numerous metabolic and clinical indices increased across the
disease (Table 1). It was found miR-93 fell sequentially with the
disease spectrum, whilst miR-152 increased. There were
significant negative/positive correlations between miR-93 or
miR-152 and five major metabolic indices, except fasting
insulin in proliferative diabetic retinopathy (Table 2).
Sensitivity, specificity, positive and negative predictive values,
and ROC AUC curves are shown in Table 3. The highest miR-93
ROC/AUC for predicting different groups was for non-
proliferative retinopathy from diabetes, whilst the highest
ROC/AUC for mir-152 was in differentiating proliferative
retinopathy from diabetes.

Table 4 shows binary logistic regression analyses for the
prediction of retinopathy. The most significant predictors of
any retinopathy were miR-152 and BMI, for proliferative
diabetic retinopathy, the most significant predictors were
miRNA-152 and HOMA-IR. Figure 1 summarises the linear
regression analysis using a path analysis diagram, showing that
miRNA-93 is a significant predictor of fasting and 2-h glucose,
fasting insulin, HOMA-IR in all groups, while miRNA-152 is a
significant predictor of fasting and 2-h glucose and HOMA-IR
in all groups except fasting insulin among the
proliferative group.

TABLE 1 | Characteristics and laboratory investigations.

Controls (n =
80)

Patients Trend
analysis

test

Effect size
(95% CI)

p-value

Diabetes
mellitus
(n = 80)

Non-proliferative
diabetic

retinopathy
(n = 40)

Proliferative
diabetic

retinopathy
(n = 40)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Age (y) 57.5 ± 8.6 57.3 ± 9.1 57.3 ± 9.1 56.5 ± 9.4 — — 0.945
Sex: male/female 48/32 52/28 24/16 20/20 — — 0.457
Family history of
diabetes

— 76 (95%) 36 (90%) 36 (90%) — — 0.574

Disease duration (years) — 4.0 (2.3–8.8) 9.5 (6–16.8) 15.5 (13–17) 7.99 0.50 [0.42–0.58] <0.001
BMI (kg/m2) 22.1 ± 2.6 26.3 ± 2.3 28.0 ± 2.3 28.7 ± 1.9 12.03 0.59 [0.53–0.65] <0.001
FBG (mmol) 4.8 ± 0.5 11.7 ± 2.8 14.9 ± 4.3 17.9 ± 2.1 15.07 0.74 [0.70–0.77] <0.001
2hPP (mmol) 4.9 ± 0.5 13.4 ± 3.2 16.9 ± 4.4 19.3 ± 2.3 14.68 0.72 [0.68–0.75] <0.001
HbA1C (%) 5.3 ± 0.8 9.6 ± 1.1 10.9 ± 1.3 12.1 ± 1.6 14.85 0.73 [0.68–0.77] <0.001
Fasting insulin 4.1 ± 0.5 21.4 ± 3.1 22.6 ± 4.2 28.1 ± 2.2 14.28 0.71 [0.66–0.76] <0.001
HOMA.IR 0.9 (0.8–0.9) 10.5 (8.2–13.5) 13.1 (9.9–21.9) 21.7 (21.4–24.5) 14.89 0.73 [0.69–0.77] <0.001
MiR-93 (fold difference) 1.0

(0.32–1.67)
0.62 (0.41–0.95) 0.19 (0.17–0.31) 0.07 (0.04–0.12) 12.45 -0.61 [-0.69]-[-0.53] <0.001

MiR-152 (fold
difference)

1.0
(0.80–1.63)

5.30 (1.56–9.22) 13.0 (7.7–15.7) 37.1 (18.28–47.50) 14.53 0.71 [0.67–0.76] <0.001

IQR: interquartile range, Data are expressed as no, %, Mean ± SD or Median [Interquartile range] Chi-square test (χ2) or Monte Carlo was applied for qualitative variables. Linear trend
analysis using the Jonckheere-Terpstra test was applied to detect whether there was an increasing or decreasing trend across the ordered groups. Effect size was estimated using the
Mann-Kendall test to detect the presence of linear or non-linear trends [steadily increasing/decreasing or unchanging] in a series of data following a Jonckheere-Terpstra Test. CI,
confidence interval.
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DISCUSSION

Diabetic retinopathy is one of the main microvascular
complications, and proliferative diabetic retinopathy is the
most progressive phase and a serious vision-threatening
condition (19, 20). Various studies have investigated roles for
miRNAs in a variety of diseases such as diabetic retinopathy (21,
22). We hypothesised differences in the expression of miR-93 and
miR-152 in type 2 diabetes and one of its main complications;
diabetic retinopathy. Our results revealed a trend to decrease

levels of miR-93 across patients with diabetes, non-proliferative
diabetic retinopathy, then proliferative diabetic retinopathy
compared to controls, while the expression level of miR-152
showed a gradual increase in these groups. Additionally, both
miRNAs were independent predictors of diabetic retinopathy and
had good sensitivity and specificity for the diagnosis of diabetes
and diabetic retinopathy and its subtypes.

Previously, circulating miR-93 expression was found to be
decreased in patients with diabetes versus healthy controls (11,
23). Long et al., (24) in an animal model of type 2 diabetes,

TABLE 2 | Correlation between MicroRNA-93 and MicroRNA-152 and laboratory investigations.

MicroRNA-93 MicroRNA-152

Diabetes mellitus Non-proliferative
diabetic

retinopathy

Proliferative
diabetic

retinopathy

Diabetes mellitus Non-
proliferative
diabetic

retinopathy

Proliferative
diabetic

retinopathy

rs p rs p rs p rs p rs p rs p

Fasting glucose −0.81 <0.001 −0.66 <0.001 −0.45 0.003 0.89 <0.001 0.71 <0.001 0.61 <0.001
2hPP glucose −0.68 <0.001 −0.60 <0.001 −0.54 <0.001 0.72 <0.001 0.65 <0.001 0.70 <0.001
HbA1C −0.64 <0.001 −0.61 <0.001 −0.60 <0.001 0.76 <0.001 0.56 <0.001 0.64 <0.001
Fasting insulin −0.47 <0.001 −0.65 <0.001 −0.23 0.179 0.67 <0.001 0.72 <0.001 0.23 0.147
HOMA.IR −0.79 <0.001 −0.68 <0.001 −0.45 0.004 −0.88 <0.001 0.72 <0.001 0.59 <0.001

TABLE 3 | Sensitivity and specificity of MicroRNA-93 and MicroRNA-152 expression in diagnosis of the studied patients’ groups.

MicroRNA-93 MicroRNA-152

Non-
proliferative
diabetic

retinopathya

Proliferative
diabetic

retinopathya

Non-proliferative
vs. proliferative

diabetic
retinopathy

Diabetic
retinopathya

Non-
proliferative
diabetic

retinopathya

Proliferative
diabetic

retinopathya

Non-proliferative
vs. proliferative

diabetic
retinopathy

Diabetic
retinopathya

AUC 0.99 (0.97–1.0) 0.88
(0.78–0.93)

0.79 (0.69–0.88) 0.92
(0.88–0.97)

0.81
(0.73–0.90)

0.97 (0.91–1.0) 0.88 (0.81–0.96) 0.89
(0.84–0.94)

Cutoff
point

≤0.22 ≤0.13 ≤0.15 ≤0.32 ≥6.70 ≥12.55 ≥15.75 ≥8.75

Sensitivity
%

97% 95% 85% 85% 82% 93% 85% 85%

Specificity
%

95% 100% 63% 86% 67% 91% 80% 72%

PPV% 91% 100% 69% 86% 56% 84% 81% 76%
NPV% 99% 98% 81% 85% 88% 96% 84% 83%
Accuracy 96% 98% 74% 86% 72% 92% 82% 79%

aVs. Diabetes mellitus group.

TABLE 4 | Logistic regression for Predictors of diabetic retinopathy and proliferative diabetic retinopathy.

Diabetic retinopathy Proliferative diabetic retinopathy

OR [95% CI] p Value OR [95% CI] p Value

MiR-152 1.37 [1.18–1.58] <0.001 1.47 [1.12–1.92] 0.005
BMI 1.49 [1.13–1.96] 0.004 1.39 [0.84–2.31] 0.194
Disease duration 1.29 [1.04–1.60] 0.018 1.08 [0.90–1.29] 0.377
MiR-93 0.01 [0.0–0.47] 0.019 0.25 [0.07–0.86] 0.028
2hPP glucose 0.99 [0.96–1.01] 0.359 0.01 [0.0–3.34] 0.278
HbA1c 1.15 [0.55–2.42] 0.700 0.91 [0.84–1.07] 0.100
HOMA.IR 1.01 [0.83–1.24] 0.861 2.66 [1.30–5.45] 0.007

British Journal of Biomedical Science | Published by Frontiers January 2022 | Volume 79 | Article 101924

Saleh et al. MiRNA-93 and MiRNA-152 in Diabetic Retinopathy

https://www.frontiersin.org/journals/british-journal-of-biomedical-science
https://www.frontiersin.org/journals/british-journal-of-biomedical-science#articles


showed that hyperglycaemia causes downregulation of miR-93,
which our data of decreased miRNA-93 in the diabetic group as
compared to controls and its negative correlation with glucose
and HbA1C levels in different patients groups supports. Our data
adds to that of others who reported overexpression of miR-152 in
diabetes with a positive association with HbA1c levels (25), miR-
152 upregulation in the islets of a type 2 diabetic model (26), and
miR-152 overexpression in type 1 diabetes (27).

Various factors, such as VEGF and transforming growth factor-
β (TGFβ) may participate in, and increase the risk of, proliferative
retinopathy, and induce epithelial to mesenchymal transition
(EMT) (28, 29). Fuchs et al. (30) reported the ability of
miRNA-93 to suppress TGFβ-induced VEGFA secretion from
retinal pigment epithelium cell lines and to convert TGFβ-
induced mesenchymal retinal epithelial cells back to the
epithelial-like status, which part-explains our finding of a
gradual decrease in miRNA-93 expression across patient groups,
with the lowest expression level in patients with proliferative
diabetic retinopathy. Similarly, miR-93 expression was reduced
in acute ocular hypertension retinae compared to controls and
miR-93 upregulation suppressed microglial proliferation,
inflammation, and cytokine secretion (31). Moreover, miR-93
was also investigated in diabetic renal vascular complications
suggesting its antiangiogenic and antifibrotic properties and
showed decreased expression in renal tissue of patients with
diabetic nephropathy (32), and in a diabetic kidney model was
speculated to affect nucleosome remodeling (10). Others reported
an inverse relationship between the expression level of miR-93 and
VEGF in patients with endometriosis (33).

MiR-152 has been investigated in other diabetic complications,
such as increased expression in diabetic nephropathy, with more
marked increases in progressive disease (25). In diabetic foot ulcers,
another diabetic complication, miR-152-3p expression was elevated
in ulcer tissues as compared to normal foot tissues (34). The authors
showed that miR-152 targets and decreases the expression of
phosphatase and tensin homolog (PTEN) in diabetic foot ulcers.

PTEN is identified to control cellular apoptosis and proliferation
(34). This relation with PTEN and cellular proliferation was
analyzed in another study in nasopharyngeal carcinoma,
which revealed that elevated miR-152 expression suppresses
apoptosis and enhances invasion and proliferation of
malignant cells, which might be via downregulation of
PTEN (35). These data indicate a relationship between miR-
152 and cell proliferation, which might explain our finding of
its overexpression in our patients, specifically those with
proliferative diabetic retinopathy.

Despite the above, some studies on both miRNAs have provided
conflicting results. For example, miR-93 has been reported as up-
regulated in diabetic retinopathy (36), and miR-152 downregulation
in retinal cells in hyperglycemia (37). Furthermore, the effect of these
miRNAs in cancer cell proliferation is also unclear. miRNA-93 was
revealed to inhibit malignant cell migration and EMT in breast
cancer cells (38), whilst miRNA-93was overexpressed in glioma cells
and related to progressive stages (39). This lack of consensus may be
due to the multiplicity of genetic mechanisms involved in cellular
proliferation and angiogenesis with the need for more investigations
on both blood and tissue samples to clarify any effects.

The current study revealed good diagnostic performances of
both miR-93 (downregulation) and miR-152 (upregulation) in
diabetes and diabetic retinopathy with a significant correlation
with different diabetic biomarkers. We speculate that these
miRNAs may be therapeutic targets in the management of
diabetic retinopathy. Additionally, both miRNAs are an
independent risk factor for diabetic retinopathy. From our
results of decreased miR-93 and increased miR-152 across
patients with diabetes, non-proliferative diabetic retinopathy
then proliferative diabetic retinopathy, we suggest their value
as potential biomarkers in diabetes and diabetic retinopathy,
specifically, in proliferative diabetic retinopathy. Our data
represent an advance in biomedical science in that they show
that miR-93 and miR-152 have potential in the assessment and
management of the progression of diabetes to retinopathy.

FIGURE 1 | Path analysis diagram of the model used for individual patients’ groups.
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SUMMARY TABLE

What is Known About This Subject?
• Diabetic retinopathy is one of the main microvascular
outcomes of diabetes, considered a major source of vision loss.

• Dysregulation of microRNAs (miRNAs) has been associated
with some diabetic microvascular complications such as
diabetic retinopathy.

What Does This Study Add?
• MiR-93 and miR-152 can distinguish patients with diabetes
from healthy controls, and change in a linear trend with the
spectrum of disease severity.

• Both miRNAs might be served as potential biomarkers for
diabetes and diabetic retinopathy specifically, proliferative
diabetic retinopathy.
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