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Abstract: Withania somnifera (L.) Dunal (Solanaceae), known as Indian ginseng or ashwagandha,
has been used in Indian Ayurveda for the treatment of a variety of disorders, such as diabetes and
reproductive and nervous system disorders. It is particularly used as a general health tonic, analgesic,
and sedative. As part of continuing projects to discover unique bioactive natural products from
medicinal plants, phytochemical investigation of the roots of W. somnifera combined with a liquid
chromatography–mass spectrometry (LC/MS)-based analysis has led to the isolation of two novel
phenylpropanoid esters, Withaninsams A (1) and B (2), as an inseparable mixture, along with three
known phenolic compounds (3, 4, and 6) and a pyrazole alkaloid (5). The structures of the new
compounds were elucidated using a combination of spectroscopic methods, including one-dimensional
(1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution electrospray
ionization mass spectroscopy (HR-ESIMS). Withaninsams A (1) and B (2) are phenylpropanoid
esters that contain a side chain, 4-methyl-1,4-pentanediol unit. To the best of our knowledge, the
present study is the first to report on phenylpropanoid esters with 4-methyl-1,4-pentanediol unit.
The anti-inflammatory activity of the isolated compounds (1–6) was evaluated by determining their
inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7
macrophages, where compound 3 inhibited LPS-induced NO production (IC50 = 33.3 µM) and
TNF-α production, a pro-inflammatory cytokine (IC50 = 40.9 µM). The anti-inflammatory mechanism
through the inhibition of transcriptional iNOS protein expression was confirmed by western blotting
experiments for the active compound 3, which showed decreased iNOS protein expression.

Keywords: Withania somnifera; phenylpropanoid esters; Withaninsams A and B; nitric oxide; inducible
nitric oxide synthase

1. Introduction

Withania somnifera (L.) Dunal (Solanaceae), commonly known as Indian ginseng or ashwagandha,
is a perennial shrub distributed in India, Morocco, Egypt, Israel, Jordan, South Africa, and the
Mediterranean region. Currently, it is cultivated on a small scale in South Korea as well [1–3]. This
plant has been used in Indian Ayurveda for over 3000 years for the treatment of a variety of disorders,
such as diabetes and nervous and reproductive disorders. It is particularly used as a general health
tonic, analgesic, and sedative [4]. The name, Indian ginseng is botanically not related to Korean ginseng
(Panax ginseng). The similarity in the name arises from its similar bioactivity [5]. Roots of W. somnifera
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have recently gained popularity as a functional food that promotes longevity through delaying aging,
increasing immunity against extrinsic factors, and strengthening the body [1,6]. In practice, extracts of
the roots are consumed in several forms, such as powder, liquid, tablets, and capsules. Moreover, roots
are consumed as a dietary supplement.

Previous pharmacological studies on W. somnifera have revealed that extracts of W. somnifera
exhibit a protective role against bromobenzene-induced oxidative damage in the rat liver [7], as
well as increase the exercise performance [8]. Similarly, a recent study on W. somnifera extracts
reported its therapeutic role in stroke repair through its anti-apoptotic and anti-oxidant properties [9].
Chemically, it is a rich source of withanolides, which possess diverse pharmacological properties,
including anti-inflammatory, anti-microbial, anti-tumor, hepatoprotective, and immunosuppressive
effects [10–16]. In addition, alkaloids, steroidal saponins, lignanamides [17], and phenolics [18] have
also been reported, and some of them were found to have anti-tumor activities [19].

As part of a continuing program to determine structurally and/or biologically novel natural
products from medicinal plants [20–23], we conducted a chemical investigation of the methanol
(MeOH) extract of roots of W. somnifera. In our recent study, chemical analysis of the MeOH extract,
combined with a liquid chromatography/mass spectroscopy (LC/MS)-based analysis, we identified six
new withanolides, namely withasilolides A to F, and seven known withanolides [3], some of which
exhibited cytotoxicity against several human cancer cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15).
In the present study, we focused on other constituents of W. somnifera rather than withanolides.
The phytochemical analysis of the MeOH extract led to the isolation of two new phenylpropanoid
esters (1 and 2) as an inseparable mixture, along with four known compounds (3–6) (Figure 1). The
structures of the new compounds (1 and 2) were elucidated using a combination of one-dimensional
(1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy and high-resolution
electrospray ionization mass spectroscopy (HR-ESIMS) data. Further, we evaluated the inhibitory
effects of the isolates on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW
264.7 macrophages. In the present study, we describe the isolation and structural characterization
of isolated compounds, as well as the evaluation of their NO inhibitory effects on LPS-activated
RAW264.7 macrophages.
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2. Results and Discussion

2.1. Isolation of Compounds

The dried roots of W. somnifera were extracted with 80% MeOH under reflux to yield the methanol
extract, which was sequentially applied to solvent-partitioning with hexane, dichloromethane, ethyl
acetate, and n-butanol to obtain each solvent fraction. Chemical analysis of hexane-soluble and
dichloromethane-soluble fractions was performed using repeated column chromatography and
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high-performance liquid chromatography (HPLC) along with LC/MS-based analysis. These techniques
were combined with our house-built UV library to determine other types of minor constituents, rather
than withanolides. The analysis led to the isolation of two new phenylpropanoid esters (1 and 2) as an
inseparable mixture, along with three known phenolic compounds (3, 4, and 6) and a pyrazole alkaloid
(5) (Figure 1). The novel compounds resulted in only one peak in HPLC performed using Phenomenex
Luna C18 column (MeOH/H2O, 7:3 to 1:0).

2.2. Structure Elucidation of Compounds

Compounds 1 and 2 were obtained as a trans/cis inseparable mixture in the ratio of approximately
5:4 (as calculated from the 1H NMR integral). They were isolated as an amorphous powder, and
their HR-ESIMS (Figure S1) showed the molecular ion peak [M + Na]+ at m/z 317.1375 (calculated for
C16H22O5Na, 317.1365) in the positive mode, compatible with the molecular formula of C16H22O5. The
IR spectrum exhibited characteristic absorptions of hydroxy (3305 cm−1) and ester groups (1755 cm−1).
The 1H NMR spectrum (Table 1, Figure S2) showed complicated aromatic proton signals in the
narrow region between δH 6.77 and 7.08. Most of the 13C NMR signals, which were assigned by
1H-1H correlation spectroscopy (COSY) (Figure S3), heteronuclear single quantum coherence (HSQC)
(Figure S4), and heteronuclear multiple bond correlation (HMBC) (Figure S5) experiments, were
split into pairs of narrowly separated signals (Table 1). Based on the assigned molecular formula
(C16H22O5) by HR-ESIMS, we deduced that the two compounds could be a mixture of two closely
related compounds, 1 and 2. The detailed inspection of the 1H NMR spectrum (Table 1) revealed the
presence of two sets of 1,3,4-trisubstituted aromatic protons, one at δH 6.89 (1H, d, J = 8.0 Hz), 7.01
(1H, d, J = 1.5 Hz), and 7.05 (1H, dd, J = 8.0, 1.5 Hz) and another at δH 6.86 (1H, d, J = 8.0 Hz), 7.08
(1H, dd, J = 8.0, 2.0 Hz), and 7.74 (1H, d, J = 2.0 Hz), as well as two methoxy groups at δH 3.91 (6H,
s). Interpretation of the 1H NMR and 1H-1H COSY spectra (Figure S3) led to the following structural
units: C-5 to C-6 and C-7 to C-8 (Figure 2). Connectivities of the partial structure of phenylpropanoid
were established on the HMBC cross-peaks of H-2/C-4, C-6, H-5/C-1, C-3, H-6/C-2, C-4, H-7/C-2, C-6,
C-9, and H-8/C-1, C-9 (Figure 2). The HMBC correlation of the methoxy group (δH 3.91)/C-3 provided
evidence of the presence of the methoxy group at C-3. The presence of 4-methyl-1,4-pentanediol was
established on the HMBC cross-peaks of H-1’/C-3’, H-3’/C-1’, C-5’, C-6’, H-5’/C-3’, C-6’, and H-6’/C-3’,
C-5’, together with 1H-1H COSY correlations from H-1’ to H-3’ (Figure 2). The linkage between the
phenylpropanoid and 4-methyl-1,4-pentanediol unit was established using the HMBC correlation from
H-1’ to C-9 (Figure 2).Plants 2019, 8, 527  4 of 9 
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The geometry of the di-substituted olefin ∆7/8 in compounds 1 and 2 was determined on the basis
of the vicinal 1H coupling constant (J7,8 = 16.0 Hz in 1; J7,8 = 13.0 Hz in 2) [24], which indicated that
compound 1 had trans-conformation, whereas compound 2 had cis-conformation. Moreover, this
assignment is supported by the typical NMR chemical shifts exhibiting δH6.27 (H-8) and δH7.58 (H-7)
in compound 1 (trans) and δH5.79 (H-8) and δH6.77 (H-7) in compound 2 (cis) [24]. Therefore, structures
of compounds 1 and 2 were determined as shown in Figure 1, with their trivial names designated as
Withaninsams A (1) and B (2), respectively. Withaninsams A (1) and B (2) are phenylpropanoid esters
containing a side chain, 4-methyl-1,4-pentanediol unit, which is a rare example of a natural product.
Although phenylpropanoid esters with similar side chains, such as tert-butyl trans-ferulate and tert-butyl
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(2E)-3-(3,4-dimethoxyphenyl)-2-propenoate, have been reported [25,26], to the best of our knowledge,
the present study is the first to report on phenylpropanoid esters with 4-methyl-1,4-pentanediol unit.
Finally, we attempted to separate the mixture of 1 and 2 using the chiral HPLC column, Phenomenex
Lux Cellulose-1; however, we failed to resolve the mixture into a pair of pure enantiomers under
different conditions.

Table 1. 1H and 13C NMR data of compounds 1 and 2 in CD3OD (δ in ppm, 800 MHz for 1H and
200 MHz for 13C) a.

Position 1 2

δH δC δH δC

1 127.0 127.3
2 7.01 d (1.5) 109.2 7.74 d (2.0) 112.6
3 146.5 145.9
4 147.9 147.0
5 6.89 d (8.0) 114.6 6.86 d (8.0) 113.7
6 7.05 dd (1.5, 8.0) 123.1 7.08 dd (2.0, 8.0) 125.5
7 7.58 d (16.0) 114.6 6.77 d (13.0) 143.7
8 6.27 d (16.0) 115.6 5.79 d (13.0) 116.8
9 167.3 166.7
1′ 4.16 t (7.0) 64.4 4.09 t (7.0) 64.4
2′ 1.37 m 28.6 1.30 m 28.5
3′ 1.67 m 25.9 1.62 m 25.8
4′ n.d.b n.d. b

5′ 1.23 s 29.5 1.23 s 29.5
6′ 1.23 s 29.5 1.23 s 29.5

–OCH3 3.91 s 55.6 3.91 s 55.6
a J values are in parentheses and reported in Hz; 13C NMR assignments are based on 1H-1H COSY, HSQC, and
HMBC experiments; b not detected.

The known compounds were identified as N-trans-feruloyl methoxytyramine (3) [27],
N-trans-feruloyltyramine (4) [28], withasomnine (5) [29], and acetosyringone (6) [30] by comparing
their NMR spectroscopic data with reported values as well as using the LC/MS analysis results.

2.3. Inhibitory Effects of Compounds 1–6 on LPS-Induced NO Production in RAW 264.7 Cells

To determine whether the isolated compounds 1 to 6 had anti-inflammatory properties, we
performed NO assay using supernatants from LPS-stimulated RAW 264.7 cells. All compounds tested
exhibited no cytotoxicity up to each highest concentration (Figure 3A). Of these, compound 3 exhibited
an inhibitory effect on NO production in LPS-stimulated RAW 264.7 cells (IC50 = 33.3 µM) (Figure 3B).
The effect of compound 3 on the LPS-induced TNF-α production showed similar patterns to those
of NO production (IC50 = 40.9 µM) (Figure 3C). To confirm whether NO inhibitory effect of 3 was
related to reduced expression of nitric oxide synthase (iNOS), enzyme involved in the synthesis of NO,
we evaluated the effect of compound 3 on iNOS expression. Similar to the results of NO production,
compound 3 reduced iNOS expression in LPS-stimulated RAW 264.7 cells (Figure 4). These results
indicated that compound 3 exerted anti-inflammatory effect on macrophages by reducing LPS-induced
NO production through transcriptional inhibition of iNOS.
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in macrophages. RAW 264.7 cells were treated with compounds 1–6 in the absence or presence of
lipopolysaccharide (LPS) and then (A) cell viability, (B) nitric oxide (NO) production, and (C) TNF-α
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3. Materials and Methods

3.1. Plant Material

The roots of W. somnifera were purchased from Seonggeosan Farm, Cheonan, Korea, in October
2016, and the plant was identified by one of the authors (K.H.K.). A voucher specimen of the material
(IDG-2016) was deposited in the herbarium of the School of Pharmacy, Sungkyunkwan University,
Suwon, Republic of Korea.
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3.2. Extraction and Isolation

Dried roots of W. somnifera (1.3 kg) were extracted with 80% aqueous MeOH (each 3.0 L × 3 days)
under reflux and filtered. The filtrate was combined and concentrated under vacuum using a rotary
evaporator to obtain a MeOH extract (189.6 g). The extract was suspended in distilled water (700 mL)
and successively solvent-partitioned using hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc),
and n-butanol (n-BuOH). Four fractions with increasing polarity were obtained: hexane-soluble (3.4 g),
CH2Cl2-soluble (4.5 g), EtOAc-soluble (2.0 g), and n-BuOH-soluble (18.6 g). The hexane-soluble fraction
(3.2 g) was fractionated using silica gel column chromatography with a gradient solvent system of
hexane/EtOAc (20:1 to 1:1). The column was washed with CH2Cl2/MeOH (1:1) to obtain seven hexane
fractions (H1–H7). Fraction H6 (300.1 mg) was separated by preparative reversed-phase HPLC using
an Agilent Eclipse C18 column with gradient solvent system MeOH/H2O (7:3 to 1:0) to obtain seven
subfractions (H6a–H6g). Subfraction H6c (134.6 mg) was purified by semi-preparative HPLC (38%
MeCN) on Phenomenex Luna C18 column to yield compound 5 (24.3 mg). Subfraction H6g (22.9 mg)
was purified by semi-preparative HPLC with gradient solvent system MeOH/H2O (7:3 to 1:0) on
Phenomenex Luna C18 column to yield a mixture of compounds 1 and 2 (1.1 mg). The CH2Cl2-soluble
fraction (4.5 g) was fractionated using silica gel column chromatography with gradient solvent system
of CH2Cl2/MeOH (50:1 to 1:1) to obtain seven fractions (C1–C7). Fraction C1 (73.6 mg) was separated
by preparative reversed-phase HPLC on an Agilent Eclipse C18 column with gradient solvent system
MeOH/H2O (3:7 to 1:0) to obtain five subfractions (C1a–C1e). Subfraction C1c (11.8 mg) was purified
using semi-preparative HPLC (33% MeOH) on Phenomenex Luna C18 column to yield compound 6
(7.2 mg). Fraction C3 (401.6 mg) was fractionated using preparative reversed-phase HPLC on Agilent
Eclipse C18 column with gradient solvent system MeOH/H2O (3:7 to 1:0) to obtain six subfractions
(C3a–C3f). Subfraction C3d (33.8 mg) was purified using semi-preparative HPLC on Phenomenex
Luna C18 column (47% MeOH) to yield compound 3 (2.4 mg). Fraction C4 (166.0 mg) was separated by
reversed-phase preparative HPLC using an Agilent Eclipse C18 column with gradient solvent system
MeOH/H2O (4:6 to 9:1) to obtain six subfractions (C4a–C4f). Subfraction C4c (19.2 mg) was purified by
semi-preparative HPLC (40% MeOH) on Phenomenex Luna C18 column to yield compound 4 (3.3 mg).

Withaninsams A (1) and B (2)

White, amorphous powder; ESIMS (positive mode) m/z:317 [M + Na]+; HRESIMS (positive mode)
m/z:317.1375 [M + Na]+, calcd for C16H22O5Na, 317.1365; UV (MeOH) λmax nm (log ε): 220 (2.29),
240 (2.10), 290 (2.54), 325 (3.42); IR (KBr) νmax cm−1: 3305, 3126, 1755, 1585, 1492, 1042; 1H (CD3OD,
800 MHz) and 13C (CD3OD, 200 MHz) NMR spectroscopic data, see Table 1.

3.3. Cell Viability Assay

RAW 264.7 cells (6.0 × 104 cells/well) were seeded into a 96-well plate and incubated overnight
for adhesion. Following incubation, the cells were treated with compounds for 24 h. Next, Ez-CytoX
solution (1/10 volume of the culture medium, Daeil Lab., Seoul, Korea) was added to each well and
cells were further incubated for 1 h. The cell viability was assessed by measuring the absorbance at
450 nm.

3.4. NO Production Assay

RAW 264.7 cells (6.0 × 104 cells/well) were seeded into a 96-well plate and incubated overnight for
adhesion. Following incubation, the cells were treated with compounds and LPS. After 24 h incubation,
supernatants were collected and treated with Griess reagent for evaluating NO concentration in the
reactants. The absorbance was measured at 540 nm and NO production was calculated by referring to
the nitrite standard curve.
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3.5. TNF-α ELISA

Culture supernatants were applied to ELISA experiments for measuring the production of TNF-α
in LPS-stimulated RAW 264.7 cells. ELISA was performed by manufacturer’s instructions (Ebioscience,
San Diego, CA, USA). Each step was followed by washing with 1 × PBST 5 times. Briefly, plate was
coated with coating antibody solution overnight at 4 ◦C and then blocked with 1 × assay diluent for
1 h at room temperature (RT). Supernatants were applied to the plate for 2 h at RT and the plate was
incubated with biotinylated secondary antibody for 1 h at RT. After reacting the plate with horseradish
peroxidase (HRP)-streptavidin for 40 min at RT, the plate was reacted with 4-nitrophenyl phosphate
disodium salt in diethanolamine buffer as a substrate for 10 min at dark condition and the reaction was
stopped by adding 1 N NaOH. Absorbances of each well at 405 nm were applied to standard curve for
calculating the quantity of TNF-α at supernatants.

3.6. Western Blotting

RAW 264.7 cells (2.0 × 105 cells/well) were seeded into 6-well plates and incubated overnight for
adhesion. Following incubation, the cells were treated with compounds 3 and 4 in the presence of
LPS for 24 h. Total cell lysates were obtained and loaded onto sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE). Proteins were subsequently transferred onto nitrocellulose (NC)
membrane. Membranes were incubated with primary antibodies against iNOS and GAPDH, following
which the membranes were incubated with appropriate secondary antibodies. Finally, the membranes
were blotted and protein band intensities were analyzed using Imager 680 (GE Healthcare; Chicago,
IL, USA).

3.7. Statistical Analysis

The data were statistically analyzed using Student’s t-test. To prove statistical significance,
experiments were conducted in replicates as follows: nine for cell viability, NO assay, TNF-α ELISA
and three for western blotting. A p-value < 0.05 was considered statistically significant.

4. Conclusions

In the present study, phytochemical analysis of the MeOH extracts of roots of W. somnifera
led to the isolation of two novel phenylpropanoid esters, namely Withaninsams A (1) and B (2) as
an inseparable mixture, along with three known phenolic compounds (3, 4, and 6) and a pyrazole
alkaloid (5). Withaninsams A (1) and B (2) are phenylpropanoid esters that contain a side chain,
4-methyl-1,4-pentanediol unit. To the best of our knowledge, the present study is the first to report on
phenylpropanoid esters with 4-methyl-1,4-pentanediol unit. All isolated compounds were evaluated
for their anti-inflammatory effects on nitric oxide (NO) production in LPS-stimulated RAW 264.7
macrophages. Compound 3 exhibited NO and TNF-α inhibitory properties without cytotoxicity. The
active compound 3 inhibited NO production by reducing iNOS protein expression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/12/527/s1,
Figure S1: The HRESIMS data of compounds 1 and 2, Figure S2: The 1H NMR spectrum of compounds 1 and 2,
Figure S3: The 1H-1H COSY spectrum of compounds 1 and 2, Figure S4: The HSQC spectrum of compounds 1
and 2, Figure S5: The HMBC spectrum of compounds 1 and 2.
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