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An important process by which genes and environ-
ments work together to influence behavior is gene–
environment correlation (Plomin, DeFries, Knopik, & 
Neiderhiser, 2016). Gene–environment correlation refers 
to the association between the genotype that individuals 
inherit from their parents and the environment in which 
they are raised (Plomin, DeFries, & Loehlin, 1977). Three 
forms of gene–environment correlation are typically 
distinguished: passive, active, and evocative. An exam-
ple of passive gene–environment correlation is that 
more educated parents are likely to provide both ben-
eficial genes and educationally supportive family envi-
ronments, such as books in the home, for their children. 
Therefore, shared genes confound associations between 
putative environmental variables and child attainment. 
Active and evocative gene–environment correlations 

reflect how genotypes lead to phenotypes: Individuals 
select and evoke environments on the basis of their 
genetically influenced traits.

It is essential to investigate gene–environment interplay 
in educational attainment for several reasons. First, edu-
cational attainment is an important trait for individuals 
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Abstract
Polygenic scores now explain approximately 10% of the variation in educational attainment. However, they capture 
not only genetic propensity but also information about the family environment. This is because of passive gene–
environment correlation, whereby the correlation between offspring and parent genotypes results in an association 
between offspring genotypes and the rearing environment. We measured passive gene–environment correlation 
using information on 6,311 adoptees in the UK Biobank. Adoptees’ genotypes were less correlated with their rearing 
environments because they did not share genes with their adoptive parents. We found that polygenic scores were 
twice as predictive of years of education in nonadopted individuals compared with adoptees (R2s = .074 vs. .037, p = 
8.23 × 10−24). Individuals in the lowest decile of polygenic scores for education attained significantly more education if 
they were adopted, possibly because of educationally supportive adoptive environments. Overall, these results suggest 
that genetic influences on education are mediated via the home environment.
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and society, partly because of its significance for health 
and health inequalities. Second, gene–environment cor-
relation clearly matters for educational attainment. Adop-
tion, twin, and instrumental-variables research suggest 
that shared genes largely explain associations between 
parent and child attainment (Holmlund, Lindahl, & Plug, 
2011). Third, polygenic scores, which index the genetic 
liability that each individual carries for a specific trait, are 
notably powerful for educational attainment and now pre-
dict approximately 10% of the variation in years of educa-
tion (Lee et  al., 2018), a finding with potential social 
implications (Plomin & von Stumm, 2018). However, it has 
been shown only recently that this prediction includes not 
only direct genetic effects on an individual’s own education 
but also indirect genetic effects through relatives, that is, 
predicting the family environment (Bates et al., 2018; Kong 
et al., 2018).

Behavior-genetic study designs are needed to disen-
tangle causal processes affecting educational attain-
ment. Adoption studies do this by removing overlapping 
genetic and environmental influences (passive gene–
environment correlation). This is achieved by measur-
ing the resemblance of adopted children to their birth 
parents and to their adoptive parents. The former gives 
an estimate of direct genetic influence independent of 
passively correlated environmental effects. The latter 
gives an estimate of shared environmental influence, free 
of correlated genetic effects. Passive gene–environment 
correlation may be estimated as the extent to which 
genes contribute more to the covariation between mea-
sures of the family environment and offspring traits in 
nonadoptive than adoptive families (Plomin, Loehlin, & 
DeFries, 1985). Notably, other forms of gene–environment 
correlation are still present in adoptees, because heritable 
proclivities lead them to select and evoke experiences.

More recently, researchers have applied genomic 
tools to family data to estimate direct and indirect 
effects on educational attainment (Bates et  al., 2018; 
Domingue, Belsky, Conley, Harris, & Boardman, 2015; 
Kong et al., 2018; Selzam et al., 2019; Wertz et al., 2018; 
Young et  al., 2018). These designs are conceptually 
related to adoption designs, because they account for 
shared genes between parents and offspring. For exam-
ple, genetic variants that were not passed on by parents 
can have only indirect effects on offspring traits, 
through genetically influenced parental behavior (Bates 
et al., 2018; Kong et al., 2018). When indirect effects 
were controlled for with a polygenic score for educa-
tion based on nontransmitted variants, the variance 
explained by the transmitted score shrank from 5% to 
2% (Kong et al., 2018). The nontransmitted score also 
independently predicted attainment. The family envi-
ronment is an important contributor to polygenic-score 
prediction because it is adding to estimates of genetic 
influence and because parents still influence their 

offspring after analyses control for shared (transmitted) 
genes.

The present study drew on an unusually large and 
relatively unexplored sample of adoptees and harmo-
nized a traditional quantitative genetic approach with 
modern genomic tools. Our main aim was to use the 
natural experiment created by adoptive placement to 
measure the importance of passive gene–environment 
correlation for educational attainment. When children 
are adopted by nonrelatives, the indirect genetic path 
between the rearing environment and their traits is not 
present because adoptive parents are not genetically 
related to adopted children. Three hypotheses follow. 
First, the phenotypic variance should be lower in adop-
tees compared with nonadopted individuals, because 
adoptees do not have the additional source of variance 
of passive gene–environment correlation (Loehlin & De 
Fries, 1987; Plomin, 1994). This discrepancy could also 
be due to adoptive families varying less in socioeco-
nomic status or being selected for perceived parenting 
ability (Natsuaki et al., 2019; Rutter, 2006). Second, if 
passive gene–environment correlation inflates heritabil-
ity estimates, then heritability should be lower in adop-
tees than in nonadopted individuals, because adoptees 
are reared in environments that are less correlated with 
their genotypes. Third, for the same reason, the variance 
explained by polygenic scores will be lower in adoptees 
and may be closer to the direct genetic effect of an indi-
vidual’s own DNA.

Method

Sample, genotype quality control,  
and phenotype definition

The UK Biobank is an epidemiological resource includ-
ing British individuals from the ages of 40 to 70 at 
recruitment (Allen, Sudlow, Peakman, Collins, & UK 
Biobank, 2014). UK Biobank participants were asked, 
“Were you adopted as a child?” In total, 7,407 individuals 
said “yes,” and 495,209 individuals said “no.” No addi-
tional information was collected on factors that are 
understood to reduce the representativeness of adop-
tees as a study sample: the age of adoption, whether 
the adoption was domestic or international, or whether 
individuals were adopted by biological relatives. 
Genome-wide genetic data came from the full release 
of the UK Biobank data and were collected and pro-
cessed according to the quality-control pipeline (Bycroft 
et al., 2018). We restricted analyses to individuals with 
full phenotypic data for education, who also passed 
genotype quality-control criteria. This left 6,311 adopted 
and 375,343 nonadopted individuals for analysis.

Genotype quality-control criteria were common 
genetic variants of minor allele frequency greater than 
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0.01 that were directly genotyped or imputed with high 
confidence (information-content metric > 0.4), individu-
als with a genotype call rate greater than 98% who had 
concordant phenotypic and genetic gender information, 
and individuals who were unrelated to others in the 
data set (less than third-degree relatives). We removed 
relatives using a greedy algorithm to minimize the 
exclusion of adoptees. To reduce confounding from 
population stratification, we limited all analyses to indi-
viduals of European ancestry, as defined by four-means 
clustering on the first two genetic principal components 
provided by the UK Biobank. We also controlled for 10 
ancestry principal components of the European sample 
in all genomic analyses.

Years of education, a proxy for educational attain-
ment, was defined according to International Standard 
Classification of Education categories, as in previous 
genomic studies of the phenotype in UK Biobank and 
other samples (Lee et al., 2018). The response catego-
ries were as follows: none of the above (no qualifica-
tions) = 7 years of education; Certificate of Secondary 
Education (CSE) or equivalent = 10 years; O level/
General Certificate of Secondary Education (GCSE) or 
equivalent = 10 years; A level/AS level or equivalent = 
13 years; other professional qualification = 15 years; 
National Vocational Qualification (NVQ), Higher 
National Diploma (HNC), or equivalent = 19 years; col-
lege or university degree = 20 years.

Statistical analyses

Phenotypic comparisons.  First, we formally tested the 
hypothesis that nonadopted individuals show greater 
phenotypic variance than adopted individuals because of 
the presence of an additional source of variance (passive 
gene–environment correlation). A nonparametric test was 
used given the nonnormal distribution of the years-of-
education variable (Brown & Forsythe, 1974). This test is 
based on absolute deviations from the median rather than 
the group mean. We also tested for differences in years of 
education, age, and sex between the two groups using a 
Wald test, z test, and Wilcoxon test, respectively.

Single-nucleotide-polymorphism (SNP) heritability 
estimation.  Second, to test the hypothesis that herita-
bility is lower in adoptees, whose rearing environments 
are less correlated with their genotypes, we estimated the 
variance explained by common genetic variants for years 
of education in adoptees using genomic-relatedness-based 
restricted maximum likelihood (GREML; Yang, Lee, Goddard, 
& Visscher, 2011) and compared this with the heritability 
estimate for nonadopted individuals. This method esti-
mates heritability as the extent to which genetic similarity 
among unrelated individuals can predict their trait similar-
ity. In GREML, a matrix of genomic similarity for each pair 

of unrelated individuals across genotyped variants is com-
pared with a matrix of their pairwise phenotypic similarity 
using a random-effects mixed linear model. This allows 
the variance of a trait to be decomposed into genetic and 
residual components using maximum likelihood. We used 
two genetic-relatedness matrices: one for adopted indi-
viduals and a second for a subset of 6,500 nonadopted 
individuals. This was to enable comparison of two simi-
larly sized samples and to reduce the computational bur-
den that results from scaling GREML to a sample as large 
as the UK Biobank. For both genomic matrices, we used a 
relatedness cutoff of 0.025. Subsamples were made using 
the “sample_n” function in the dplyr package in the R pro-
gramming environment (Version 3.5; R Core Team, 2019). 
We compared these results with heritability estimates 
derived from a second method, linkage-disequilibrium 
score regression (LDSC; Bulik-Sullivan, Loh, et al., 2015). 
Unlike GREML, LDSC does not require individual-level 
data, allowing it to be computationally feasible to esti-
mate the heritability of education in the full sample of 
nonadopted individuals. LDSC also enabled us to estimate 
genetic correlations (see below).

Polygenic scoring.  Third, we tested whether the power 
of polygenic scores was greater for individuals who were 
reared with their biological relatives than for adoptees. 
The sample of nonadopted individuals was subdivided 
into three independent groups for polygenic-score analy-
ses. Our first sample consisted of 318,843 nonadopted 
individuals for genome-wide-association (GWA) analysis. 
The purpose of this was to estimate the effect sizes of 
associations between genome-wide genetic variants and 
years of education for the creation of individual-level 
polygenic scores. We derived our base summary statistics 
file for years of education by meta-analyzing summary 
statistics from our own GWA analysis in this subsample 
with independent summary statistics obtained from the 
Social Science Genomics Consortium (excluding UK Bio-
bank and 23andMe; Lee et al., 2018). The sample size for 
these external summary statistics was 324,160, leading to 
a total sample size of 643,003 individuals in our GWA 
meta-analysis.

Our second independent sample included 50,000 
individuals for training our polygenic scores for years 
of education, that is, identifying the optimal p-value 
threshold for inclusion of SNPs. The standard set of  
p values in PRSice 2 software was tested: .001, .05, .1, .2, 
.3, .4, .5, 1 (Choi & O’Reilly, 2019).

Our third independent sample contained 6,500 indi-
viduals, to match the sample size of adopted individu-
als, on which to run polygenic-prediction models. In 
these prediction models, we regressed the years-of-
education phenotype in the UK Biobank on poly-
genic scores for years of education in adoptees and 
then repeated the analysis in the 6,500 nonadopted 
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individuals. In this third set of analyses, we used a set 
p-value threshold obtained from the training step. This 
exact sample was the same as the one used to estimate 
SNP heritability of years of education. Notably, this 
polygenic-score analysis is better powered than the SNP 
heritability analysis, because it capitalizes on the power 
of the large discovery sample (N = 643,003).

As a negative control, we tested the polygenic-prediction 
comparison between adopted and nonadopted indi-
viduals for height, which has not shown evidence of 
passive gene–environment correlation in previous stud-
ies (Kong et al., 2018; Selzam et al., 2019). As with the 
education analysis, we trained the polygenic score on 
the basis of the largest independent association study 
(Wood et al., 2014) in the sample of 50,000 individuals; 
we then tested the prediction at the best p-value thresh-
old in our two independent and similarly sized samples 
of adopted and nonadopted individuals.

Supplemental analyses.
Heritability of adoption status.  Substantial heritability 

of our environmental moderator might have affected the 
interpretation of our main results. To explore this, we 
also estimated the heritability of adoption status using 
LDSC in the full sample (N = 381,654). The genetic “influ-
ence” on adoption largely arises in the biological-parent 
generation because heritable traits influence the likeli-
hood of adoption of their child.

Polygenic-score-by-adoption interaction analyses.  Dif-
ferences in genetic influences on the same trait across 
contexts—in this case, adoption—can also be concep-
tualized as gene–environment interaction, whereby the 
impact of genes on educational attainment may be con-
tingent on adoption status. We aimed to further explore 
our main results by testing a formal polygenic-score-
by-adoption interaction regression model. The model 
contained main effects for polygenic score for years of 
education, adoption, and covariates, plus the interaction 
term, as well as interaction terms for polygenic score and 
adoption with each covariate (Keller, 2014). We tested a 
linear model for additive interaction and a logistic model 
for multiplicative interaction. To visualize any interaction, 
we plotted the regression slopes for polygenic prediction 
of educational attainment for adopted and nonadopted 
individuals (with both variables standardized to have a 
mean of 0 and a standard deviation of 1). Additionally, we 
stratified polygenic scores for adopted and nonadopted 
individuals overall (N = 12,811) into deciles and tested for 
mean differences in years of education between adopted 
and nonadopted groups in each decile.

Qualitative differences in the genetic influence on edu-
cation by adoption status.  We assessed whether educa-
tion is driven by the same set of genetic influences in 
adopted and nonadopted individuals. First, we estimated 

the genetic correlation between years of education in our 
samples. For this, we ran GWA analyses of years of edu-
cation in the full sample of nonadopted individuals (N = 
375,343) and in the sample of adoptees, and then esti-
mated the genetic correlation between them using LDSC. 
Second, we tested whether education is genetically linked 
to different traits between adoptees and nonadopted 
individuals. To this end, we estimated genetic correla-
tions between years of education and 247 traits, available 
on LD Hub (Zheng et al., 2017), for both adopted and 
nonadopted individuals. We compared the magnitudes 
of genetic correlations between years of education and 
other variables between the adopted and nonadopted 
samples with z tests.

Birth-year-related differences in genetic influence.  Dur-
ing the period when UK Biobank participants were grow-
ing up (1930s–1970s), access to education increased, and 
there was great change in the norms and regulations 
surrounding reproduction, contraception, and adoption. 
Previous studies have found that genetic influence on 
years of education increased in this period in the United 
Kingdom, because environmental differences between 
people had less influence on whether they stayed in edu-
cation (Lee et al., 2018). We investigated temporal change 
in patterns of genetic influence on education in adopted 
compared with nonadopted individuals by stratifying 
polygenic-prediction analyses according to year of birth. 
Specifically, all individuals were split into seven mutually 
exclusive birth-year groups, each with a range of 5 years, 
and polygenic-score analyses were conducted separately 
for each of the year groups.

All analyses (SNP heritability, polygenic scoring, 
GWA) controlled for the following covariates: sex, age, 
10 ancestry principal components, and factors capturing 
genotyping batch and center. The majority of the analy-
ses were completed in R Version 3.5. GREML was per-
formed in the GCTA software (Yang et al., 2011). GWA 
meta-analysis was performed in METAL (Willer, Li, & 
Abecasis, 2010). Polygenic-score analyses were per-
formed in PRSice 2 (Choi & O’Reilly, 2019). To compare 
polygenic-score results between adopted and non-
adopted individuals, we obtained bootstrapped stan-
dard errors for the R2 statistics using the boot package 
in R, with 1,000 replications. Genome-wide genetic cor-
relations were estimated using LDSC (Bulik-Sullivan, 
Finucane, et al., 2015) and LD Hub (Zheng et al., 2017). 
The UK Biobank is a controlled-access public data set 
available to all bona fide researchers.

Results

Sample analyzed

The total sample of individuals with education-pheno-
type data and quality-controlled genotype data was 
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381,654. As described in the Method section, individuals 
were split into four mutually exclusive groups: (a) 6,311 
individuals adopted as children, (b) 318,843 nonadopted 
individuals for GWA analysis, (c) 50,000 nonadopted 
individuals for training of polygenic scores, and (d) 
6,500 nonadopted individuals for genomic analyses for 
comparison with adoptees. Nonadopted individuals 
were randomly placed into groups b, c, and d.

Phenotypic results

Phenotypic differences between adoptees and non-
adopted individuals were generally modest in size but 
because of the large sample size in this study, several 
were statistically significant (see Table 1). We found 
that there was significantly greater variance in years of 
education for nonadopted individuals than for adoptees 
(26.2 vs. 25.8, respectively; p = .002 compared with 
6,500 nonadopted individuals in group d; p = 3.2 × 10−5 
compared with all nonadopted individuals). Table 1 
provides descriptive statistics for years of education, 
age, and sex in the two groups. Adoptees in the UK 
Biobank were significantly younger on average (p = 
.026 compared with group d; p = .009 compared with 
all nonadopted individuals), although point estimates 
were similar (56.4 vs. 56.7). There were significantly 
more males in the adopted group (p = .033 compared 
with group d; p = .008 compared with all nonadopted 
individuals), but the magnitude of the difference was 
small (48% vs. 46% male). Adoptees had significantly 
fewer years of education (p = 3.3 × 10−11 compared with 
group d; p < 2.2 × 10−16 compared with all nonadopted 
individuals in the UK Biobank). This is also reflected 
in the lower percentage of college attendees (20 years 
of education in Table 1) in the adopted group (28% 
compared with 33% in the nonadopted group). All 

comparison results were consistent between the large 
and small samples of nonadopted individuals.

SNP heritability estimates

Figure 1 shows GREML-derived SNP heritability esti-
mates for years of education in both adopted individu-
als and nonadopted individuals (left-hand bars). The 
estimate of heritability was larger in individuals reared 
with their relatives (0.29, SE = 0.079), compared with 
adopted individuals (0.23, SE = 0.079). However, con-
fidence intervals were wide and overlapped, so the 
difference in heritability was not significant.

It was not computationally feasible to estimate the 
heritability of education using all nonadopted individu-
als with GREML. Notably, though, the LDSC-derived 
heritability was 0.17 (SE = 0.005) in the full sample of 
nonadopted individuals (N = 375,343) and 0.14 (SE = 
0.073) for adoptees, corroborating the pattern of results 
found using GREML. LDSC estimates are typically lower 
than GCTA and GREML-derived estimates (Evans & 
Keller, 2018).

Polygenic-prediction results

Figure 1 shows that twice as much phenotypic variance 
in years of education was explained by polygenic scores 
for years of education in nonadopted individuals (0.074) 
as in adoptees (0.037). This difference was highly sig-
nificant (p = 8.23 × 10−24). The optimal significance 
threshold (p) for inclusion of SNPs was 1 (see Table S1 
in the Supplemental Material available online). Table S2 
in the Supplemental Material shows the full results from 
the polygenic-prediction analyses.

For our negative control analysis of height, as 
expected, the variance explained by the polygenic 

Table 1.  Descriptive Statistics for Adopted and Nonadopted Individuals Included in the 
Study

Variable
Adopted

(n = 6,311)
Nonadopted
(n = 375,343)

Nonadopted
(Group d; n = 6,500)

Age M = 56.4, SD = 8.53 M = 56.7, SD = 8.01 M = 56.7, SD = 8.06
Sex 48% male (n = 3,010) 46% male (n = 172,706) 46% male (n = 2,978)
Years of education 
  7 1,209 (19%) 62,651 (17%) 1,064 (16%)
  10 1,780 (28%) 100,210 (27%) 1,709 (26%)
  13 749 (12%) 43,448 (12%) 755 (12%)
  15 350 (6%) 19,428 (5%) 354 (5%)
  19 433 (7%) 24,300 (6%) 428 (7%)
  20 1,790 (28%) 125,306 (33%) 2,190 (34%)

Note: For years of education, both ns and percentages of the subsample are given. Adoptees were compared 
with the full sample of nonadopted individuals and with our smaller subsample used for genomic analyses 
(group d).
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score in adoptees (0.127, SE = 0.008) versus nonadopted 
individuals (0.134, SE = 0.008) was not significantly 
different (p = .62). The optimal significance threshold 
(p) for inclusion of SNPs in the polygenic score was 
.001.

Supplemental analyses

Heritability of being adopted.  We found a liability-
scale SNP heritability of being adopted of 0.059 (SE = 
0.004), assuming the population prevalence of adoption is 
identical to the sample prevalence (1.7%). If the actual 
population prevalence differed and was, for example, 0.7% 
or 2.7%, the liability-scale SNP heritability would become 
0.047 (SE = 0.002) or 0.066 (SE = 0.005), respectively. Adop-
tion status showed significant genetic correlations with 
education, age at first birth, depression, and obesity after 
analyses corrected for multiple testing (see Table S5 in the 
Supplemental Material), although these correlations should 
be viewed with caution given the low SNP heritability of 
adoption. Adoption status could be significantly predicted 
by the polygenic score for years of education (R2 = .008,  
p < 2 × 10−16). The heritability of adoption was low but may 
have confounded our between-groups comparisons.

Polygenic-score-by-adoption interaction.  We tested 
a formal interaction model to further examine the finding 
that genetic influences on education are weaker in the 
sample of adoptees. The interaction between polygenic 
score and adoption status in predicting years of education 
is shown in Figure 2. The regression slope is significantly 
steeper in the nonadopted group, indicating that years of 
education increases more as polygenic scores for educa-
tion increase in this group compared with the adopted 
group. See Table S3 in the Supplemental Material for 
results of the full interaction model. Using linear regres-
sion, we confirmed that polygenic prediction of education 
interacts beyond additivity with adoption status (interac-
tion estimate = −0.33; p = 2.66 × 10−4). This means that 
polygenic scores had a smaller association with education 
in adoptees. Then, using logistic regression instead of lin-
ear regression, we also found that the interaction exceeded 
multiplicativity (interaction estimate = −0.18; p = .0009). 
The finding of interaction exceeding both additive and 
multiplicative models means that the combined effect of 
polygenic score for education and adoption status is not 
scale dependent and is greater than either the sum or 
product of their individual effects, respectively.

To further explore the interaction, we plotted the 
mean years of education per decile of polygenic score 
for years of education, separately for adopted and non-
adopted individuals. Figure 3 shows that for individuals 
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in the lowest decile of polygenic score for education, 
those who were adopted as children achieved substan-
tially higher mean years of education (−0.24, SE = 0.03; 
standardized) compared with nonadopted individuals 
(−0.40, SE = 0.03). This mean difference between 
adopted and nonadopted individuals was significant in 
the bottom decile (p = 7.05 × 10−5) but not for other 
deciles of polygenic load. See Table S4 in the Supple-
mental Material for full results of the decile analysis.

Qualitative differences in genetic influences accord-
ing to adoptee status.  We found that largely the same 
genetic influences were operating on education regard-
less of adoption status. First, the genetic correlation 
between years of education in adopted and nonadopted 
individuals was not significantly different from 1, 0.81  
(SE = 0.21). Second, we found no evidence that educa-
tional attainment was associated with different traits in 
individuals who were adopted. Figure S1 in the Supple-
mental Material presents estimates of genetic correlations 
between years of education and 247 external traits, sepa-
rately for the adopted and nonadopted samples. None of 
these were significantly different between adoptees and 
nonadopted individuals after multiple-testing correction. 
Because of the relatively small sample of adopted indi-
viduals, these results should be interpreted with caution.

Year-of-birth stratification analysis.  Our final sen-
sitivity analysis tested for differences according to year of 

birth in polygenic prediction from direct effects (indi-
cated by the variance explained in the adoptees) versus 
from passive gene–environment correlation (indicated by 
the difference in variance explained between nonadopted 
individuals and adoptees). We found small, nonsignifi-
cant differences in the variance explained by polygenic 
scores for education depending on the year-of-birth 
group considered. Figure S2 in the Supplemental Material 
shows that polygenic prediction remained generally sta-
ble for the adoptees across generations at approximately 
0.04, and any differences between age strata were non-
significant. We note that subsampling reduced the statisti-
cal power to detect differences within and between 
groups across time. See Table S6 in the Supplemental 
Material for sample sizes of each year-of-birth group.

Discussion

Cumulatively, our findings suggest that the family envi-
ronment provided by relatives plays an important role 
in the manifestation of genetic effects on education. 
Polygenic scores explained significantly less variance 
in the educational attainment of individuals who were 
adopted away from their parents as children (R2 = .04) 
compared with individuals reared with their relatives 
(R2 = .07; difference test: p = 8.23 × 10−24). The variance 
explained by polygenic scores in years of education in 
adoptees (R2 = .04) approximated the prediction from 
the direct effects of individuals’ own DNA. The differ-
ence between the variance explained in nonadopted 
individuals and adoptees suggests that about half of 
the predictive power of polygenic scores for educa-
tional attainment comes from passive gene–environment 
correlation. We also found that individuals in the lowest 
decile of polygenic score attained significantly more 
years of education if they were adopted.

By showing that polygenic scores for education are 
twice as powerful in nonadopted individuals compared 
with adoptees, we suggest that genetic influence on 
educational attainment is magnified when individuals 
are reared by their close genetic relatives, with whom 
they share both genes and environments. Our results 
agree with recent evidence showing that the effects of 
passive gene–environment correlation reduced the vari-
ance explained by polygenic scores by 30% to 50% 
(Kong et al., 2018; Selzam et al., 2019).

Following other recent research (Kong et al., 2018; 
Selzam et al., 2019), we use the term direct genetic effect 
to refer to the effect of the polygenic score among adop-
tees after analyses control for passive gene–environment 
correlation. However, it cannot be assumed that esti-
mating the direct effect of a polygenic score is tanta-
mount to isolating a straightforward purely genetic 
effect or a genetic propensity. Genetic effects are never 
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truly direct but are always behaviorally mediated and 
expressed in the context of an environment. Active and 
evocative gene–environment correlation mechanisms 
are essential in how genes influence traits in everyone, 
including adoptees (Plomin, 2014), and these are 
included in estimates of direct genetic influence.

Our observation that individuals in the lowest decile 
of polygenic score for education attain significantly 
more education if they are adopted could be due to 
educationally supportive adoptive environments. This 
agrees with previous evidence showing that adoptees 
had higher school achievement and intelligence-test 
scores than nonadopted siblings or peers who stayed 
with their birth family (van IJzendoorn, Juffer, & 
Poelhuis, 2005) and that such advantages are retained 
in their adult qualifications (Maughan, Collishaw, & 
Pickles, 1998). The specificity of this result to adoptees 
in the lowest decile of polygenic score links to previous 
evidence that the “boosting” effect may be stronger in 
higher-socioeconomic-status adoptive families and for 
children rescued from poverty (Duyme, Dumaret, & 
Tomkiewicz, 1999; Turkheimer, 1991). This environ-
mental effect of adoptive parents might suggest that 
efforts to help individuals stay in education can be 
effective for those with less genetic propensity for 
education.

These results should be viewed in light of several 
limitations. First, interpreting genetic influence in adop-
tees as direct and free of passive gene–environment 
correlation requires that close biological relatives were 
not involved in the education of the adoptees. Unfor-
tunately, the UK Biobank contains no information about 
the age of adoption beyond that it occurred in child-
hood, nor does it contain information about whether 
individuals were adopted by relatives or were able to 
identify and contact their biological parents. This 
knowledge would have allowed us to exclude individu-
als who were not solely socialized with adoptive fami-
lies and therefore to make a precise comparison with 
individuals who were reared with their birth parents. 
However, polygenic prediction of education still dif-
fered markedly between the two groups, even though 
adoptees may have been in contact with their biological 
relatives. Thus, the effects of passive gene–environment 
correlation may contribute even more than half of the 
predictive power of polygenic scores for education, as 
we estimated here.

A second caveat is lack of generalizability. The UK 
Biobank is not representative of the general population, 
because there is healthy and wealthy volunteer selec-
tion (Fry et al., 2017; Keyes & Westreich, 2019), and we 
have analyzed data only on individuals with European 
ancestry. Adoptees may not be random samples of the 

population. Indeed, adoption status is not a purely 
random environmental exposure but is slightly heritable 
(our estimate is 6%), and this may confound our 
between-groups comparisons. Moreover, because 
detailed adoption data are lacking in the UK Biobank, 
we were unable to conduct sensitivity analyses adjust-
ing for aspects of adoption that have known associa-
tions with important outcomes, including school 
performance. For example, it would have been useful 
to know whether adoptions were domestic or interna-
tional or occurred in the context of childhood adversity 
or institutionalization (Howard, Smith, & Ryan, 2004).

Similarly, adoptive parents tend to differ systemati-
cally from other parents: They are likely to be more 
educated, more socially advantaged, and to have lower 
rates of psychopathology (Rutter, 2006). A recent U.S. 
study found that children are adopted into households 
that differ in average parental education compared with 
biological children (Domingue & Fletcher, 2019). This 
probably applies to the UK Biobank, although we can-
not be certain because of the lack of parental data. If 
adoptive families are more homogeneous with respect 
to these characteristics, environmental variance may 
contribute less to differences in educational attainment 
among adoptees, and trait heritability estimates are con-
sequently likely to be higher. However, the fact that 
lower environmental variance may act to inflate genetic 
influence in adoptees compared with nonadopted indi-
viduals makes our finding of significantly higher poly-
genic prediction in nonadopted individuals more 
striking. Again, the effects of passive gene–environment 
correlation for education may be even greater than we 
estimate.

There are several advantages of using the present 
adoption design for distinguishing direct genetic influ-
ence from passive gene–environment correlation. 
Unlike other methods, our approach does not require 
intergenerational data, which is valuable but has its 
own issues, such as cohort differences in genetic effects. 
Analyzing the adoptees in the UK Biobank also bypasses 
several limitations of traditional adoption studies, 
including low sample size and reliance on weak indi-
rect proxies for inherited load for specific traits (birth-
parent trait status rather than individual-level polygenic 
scores). However, future progress in understanding the 
mechanisms driving the transmission of educational 
attainment will require intergenerational, longitudinal, 
and genetically informative data sets, including detailed 
characterization of the home environment. A develop-
mental approach is useful, because gene–environment 
correlations likely arise early in childhood, and there will 
be complex reciprocal effects across time. Researchers 
have already started to pinpoint genetically influenced 
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aspects of families that are associated with children’s 
polygenic scores for education (Krapohl et al., 2017; 
Wertz et al., 2019; Wertz et al., 2018).

The evidence presented in this article highlights the 
importance of the family environment to causal mecha-
nisms influencing individual differences in educational 
attainment. This can be through possessing genes that 
shape the educational environment provided for off-
spring that also directly influence attainment in the 
child or through providing an educationally supportive 
environment for an adopted child.
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