
An Evaluation of Methods for Inferring Boolean
Networks from Time-Series Data
Natalie Berestovsky, Luay Nakhleh*

Department of Computer Science, Rice University, Houston, Texas, United States of America

Abstract

Regulatory networks play a central role in cellular behavior and decision making. Learning these regulatory networks is a
major task in biology, and devising computational methods and mathematical models for this task is a major endeavor in
bioinformatics. Boolean networks have been used extensively for modeling regulatory networks. In this model, the state of
each gene can be either ‘on’ or ‘off’ and that next-state of a gene is updated, synchronously or asynchronously, according to
a Boolean rule that is applied to the current-state of the entire system. Inferring a Boolean network from a set of
experimental data entails two main steps: first, the experimental time-series data are discretized into Boolean trajectories,
and then, a Boolean network is learned from these Boolean trajectories. In this paper, we consider three methods for data
discretization, including a new one we propose, and three methods for learning Boolean networks, and study the
performance of all possible nine combinations on four regulatory systems of varying dynamics complexities. We find that
employing the right combination of methods for data discretization and network learning results in Boolean networks that
capture the dynamics well and provide predictive power. Our findings are in contrast to a recent survey that placed Boolean
networks on the low end of the ‘‘faithfulness to biological reality’’ and ‘‘ability to model dynamics’’ spectra. Further, contrary
to the common argument in favor of Boolean networks, we find that a relatively large number of time points in the time-
series data is required to learn good Boolean networks for certain data sets. Last but not least, while methods have been
proposed for inferring Boolean networks, as discussed above, missing still are publicly available implementations thereof.
Here, we make our implementation of the methods available publicly in open source at http://bioinfo.cs.rice.edu/.

Citation: Berestovsky N, Nakhleh L (2013) An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data. PLoS ONE 8(6): e66031. doi:10.1371/
journal.pone.0066031

Editor: Panayiotis V. Benos, University of Pittsburgh, United States of America

Received September 29, 2012; Accepted May 6, 2013; Published June 21, 2013

Copyright: � 2013 Berestovsky, Nakhleh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Seed Grant from the Gulf Coast Center for Computational Cancer Research, funded by John and Ann Doerr Fund for
Computational Biomedicine and and an Alfred P. Sloan Research Fellowship to L.N. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nakhleh@rice.edu

Introduction

The fate of a cell, and an organism as a whole, is determined by

the functioning of a complex cellular machinery. Part of this

machinery, referred to as the regulatory network, is comprised of

molecular species (genes, proteins, micro RNA, etc.) and their

interactions. This network, upon receipt of extracellular signals,

relays signals from the cell membrane to the nucleus, and initiates

a transcription process that controls the production and abun-

dance of proteins. Proper functioning of these networks is essential

to the survival and adaptation of all living organisms, while

malfunctioning of these networks has been identified as the cause

of various diseases. Therefore, elucidating these networks in

different cells and organisms, and understanding their structural

and dynamic properties under different conditions are major

endeavors in biology. The sheer size and complexity of these

networks make it essential to develop computational tools for

automated inference, or learning, of these networks from

experimental data.

Advanced biotechnologies have amassed large amounts of

genomic and proteomic data to enable computational inference of

parts of these regulatory networks. Various approaches for

modeling and analyzing regulatory networks have been intro-

duced, which differ in the levels of complexity they model and

provide different advantages and limitations [1,2]. These ap-

proaches vary in their assumptions and parameterization, and

consequently expressiveness, from the very detailed (e.g., systems

of ordinary differential equations) to the least detailed (e.g., graph

connectivity). The tradeoff among criteria such as simplicity,

scalability and expressiveness, highlights one of the central issues in

systems biology, where defining the scope and abstraction level of

the model highly depends on the availability of biological

knowledge to incorporate into the model as well as the question

of interest [3].

Boolean networks have emerged as a plausible model of

regulatory networks (e.g., [4,5]) that, on the one hand, does not

require knowledge of the kinetic parameters, and on the other

hand, provides important insight into the dynamics, as well as

steady-state behavior, of the system. Their appeal lies in the fact

that the Boolean relationships can be established from relatively

small amounts of experimental data. Under a Boolean network

model, the state of a gene is either ‘on’ or ‘off,’ and that state is

updated according to a Boolean rule, or function, that relates the

next-state of a gene to the current-state of the entire system. As

such updates are executed for a number of steps, the dynamics of

the Boolean network are simulated and Boolean trajectories of the

model are produced. These trajectories can be compared to the

experimental data for validation and refinement of the model.

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e66031

Further, the Boolean network can be manipulated to simulate in

silico perturbations for generating testable hypotheses.

To account for stochasticity in gene regulatory systems [6,7],

probabilistic Boolean networks (PBNs) were introduced [8,9].

Unlike deterministic Boolean networks, the next-state of a gene is

determined by a Boolean function that is selected, with a certain

probability, from a set of Boolean functions associated with that

gene. While PBNs are more appropriate for modeling regulatory

networks than deterministic Boolean networks, their application in

practice has been very limited, mainly due to the complexity of

computing the state transitions and steady-state distributions [10].

More broadly, a wide array of mathematical and computational

techniques have been devised for modeling regulatory networks.

These models differ, among other things, in the assumptions they

make, the quality and quantity of experimental data they require,

and in their expressive and predictive powers. For a recent survey

of such classes of methods, the reader is referred to [1,2]. In this

paper, we focus on deterministic Boolean networks, and incorpo-

rate asynchronous simulations of these networks, which is aimed at

capturing stochasticity.

The process of inferring the Boolean model from time-series

data can be separated into two distinct steps. In the first step, the

time-series data is discretized into maximally informative binary

state transitions (which we refer to as ‘‘binarization’’). The second

step uses these binary profiles to learn the Boolean network that

best captures the Boolean trajectories. Once a Boolean network is

learned, it can be analyzed for structural and steady-state

properties, simulated, in synchronous or asynchronous mode, to

reveal the dynamics of the underlying system, or perturbed in silico

to generate testable hypotheses.

In this paper, we evaluate the performance of methods that

have been proposed for binarizing time-series data and for

learning Boolean networks. We use the time-series data of four

regulatory networks, three of which are synthetically generated

and one consisting of true experimental data points. For the first

step, we consider three pre-processing methods: (1) the k-means

clustering technique with k~2, which was proposed in [11], (2)

the BASC A method of [12], and (3) an iterative k-means clustering

method that we propose. For the second step of learning the

Boolean network from binary data, we consider the three most

commonly used methods: REVEAL [13], Best Fit [14], and Full

Fit [15]. All these methods are reviewed briefly below. We assess

the performance of combinations of these methods on four

regulatory networks of varying sizes (in terms of the number of

species and interactions) and dynamics complexity, report on the

results, and make recommendations on their use. In particular, we

find that our iterative k-means binarization method, combined with

BESTFIT or REVEAL, produce best quality Boolean networks,

with ability to capture even complex oscillatory dynamics. We also

find that Boolean networks, when learned using the appropriate

methods, have good predictive power. Our findings on the four

systems disagree with the classification of [2], which puts Boolean

networks on the lower end of the expressiveness scale. Last but not

least, we make our implementation of the methods available

publicly in open source at http://bioinfo.cs.rice.edu/. Our

implementation allows the user to choose any combination of

data binarization and network learning methods.

Methods

In this paper, we are concerned with the problem of learning a

Boolean network from time-series data. Let X be an n-dimensional

binary vector that represents the current state of the system. Each

element Xi[X corresponds to the state (0 or 1) of species i. A

Boolean network defined by a set F of n Boolean functions. For

every fi[F , such that 1ƒiƒn, fi(X(t))~Xi(tz1). In other words,

given a current state of the system X(t), fi determines the (binary)

value of species Xi at time tz1. Given a Boolean network N on n

variables and an initial state X(0)[f0,1gn
, the dynamics of the

system can be simulated by repeatedly applying the Boolean

functions and updating the ‘‘current’’ state. In the classical

synchronous simulation, the states of all variables are updated

simultaneously after all of the functions in F have executed,

whereas in asynchronous simulation, the states are updated one at

time by randomly choosing a function fi[F and updating the state

of Xi immediately. The final asynchronous simulation is the average

across many executions. The latter technique belongs to the

category of single-molecule level models [2]. This category of simulators

is based on the stochastic simulation algorithm (SSA) [16,17]

which is widely accepted and frequently used. Roughly speaking,

asynchronous simulation of a Boolean network amounts to

executing SSA with a uniform distribution on the Boolean

functions to be executed. Both synchronous and asynchronous

simulation methods are used throughout this work.

The input of our problem consists of time-series data

S~fS1, . . . ,Sng of n species, each of size mz1, where

Si(t)[Rz (0ƒtƒm) is the concentration of species i at time t,
and the output is a Boolean network N on the n species (or a set, in

the case that multiple optimal networks are found; we define

optimality with respect to an error below). Approaches that learn

N from S first binarize the time-series data, that is, turn S into

binary trajectories B (one per species), and then learn the network

from B. In this work, we evaluate the performance of two existing

binarization techniques [11,12] and an additional one that we

devise, and evaluate three network learning methods [13–15] in all

nine possible combinations, on four regulatory networks. The

general outline of the learning approaches is given in Table 1 with

detailed description of each step presented below. Since the two

versions of k-means are initialized randomly, multiple applications

may result in different binarizations, and potentially different

networks; hence the need for iterating i times in the algorithm (this

iteration is neither needed nor performed when the binarization is

done via the deterministic BASC A method).

Binarization
Two clusters k-means binarization. (KM-1) directly clus-

ters the time-series data into two clusters with all values in the

cluster with the higher mean being set to 1, and the ones in the

cluster with lower mean set to 0 [11]. This method is fast and

effective for simple time-series; however, it could miss some of the

features of the data especially in the presence of oscillations and

fluctuations.

Iterative k-means binarization. (KM-3) is a new method

we propose to address the shortcomings of of KM-1 when dealing

with complex dynamics. In this method, we define a depth of

clustering d, and set the initial number of cluster to k~2d . In each

iteration, we classify the data into k disjoint clusters C1
Si

, . . . ,Ck
Si

;

then, for each cluster Cx
Si

, all its values are replaced by the cluster’s

mean m(Cx
Si

). For the next iteration, we decrement the values of d

by one, and repeat the clustering on data from current iteration.

This process continues until d~1, resulting in final binarization

where the data in the cluster with higher values are replaced by 1,

and the data in the the cluster with lower values are replaced by 0.

In our analysis, we found that d~3 yields the best results for all

systems we consider here. For d~1, this method is equivalent to

KM-1. Fig. 1 illustrates the advantages of iterative k-means

clustering, while halving the value of k in each iteration, over

Inferring Boolean Networks

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e66031

direct use of k-means to acquire two clusters. Direct clustering into 2

clusters misses the oscillations in the data, whereas the iterative

application of k-means successfully captures it.

BASC A binarization. (BASC A) first converts the vector of

time-series measurements into an ordered, ascending step function

f of size N with N{1 discontinuities. It, then, uses dynamic

programming to calculate optimal step functions with

n[f0:::N{2g discontinuities by minimizing the Euclidean

distance to the initial step function f . Further, in each step

function, the algorithm finds the strongest discontinuity n’ using

the scoring metric that favors large jump size (characterized by the

difference between the average of all f (i)wf (n’) and average of all

f (i)ƒf (n’)) and the lower approximation error with respect to the

original f (the sum of the quadratic distances of all data points

using f (n’) to determine the potential threshold). When the vector

v of all strongest discontinuities has been identified, BASC A

determines the final threshold by using the median value in v. For

full details, the reader is referred to [12].

In both k-means binarization methods, the initial cluster

centroids are chosen at random. Multiple runs of these binariza-

tion methods can lead to different binary profiles B and,

potentially, to different Boolean networks N. BASC A, on the

other hand, is deterministic. Different runs with BASC A may still

result in different networks due to sampling in the Boolean

network learning algorithms.

Redundancy removal
The steady state of a Boolean network is obtained when we have

two equal consecutive states; that is, X(t)~X(tz1). However, in

practice, it may be that data is measured at a very fine time-scale,

giving a false indication of steady-state signal, especially when

abstracted into binary values. Therefore, it is important that the

binarized data is processed so as to remove ‘‘false steady-state’’

transitions, while maintaining the true steady-state transition.

Since a steady-state is a point attractor, a pair of equal consecutive

states is indicative of a true steady state only if it was the last pair in

the series. Therefore, except for the last pair in the series, we

remove from each maximal consecutive sequence of identical

states all but one of the states. We also considered a reduction

techniques proposed by [18], where the authors first determine the

average number of bits needed to consider a transition significant

and then reduce the binary profiles to only keep the significant

transition changes. This method is equivalent to our approach if

only 1 bit is needed to mark a significant transition. However, we

found that when the average number of bits needed is above 1, this

reduction method skips some of the informative transitions that

could be used in the Boolean network learning step.

Learning a Boolean network
REVEAL. (REVEAL) [13] uses deterministic transition table

to infer the Boolean relationships between the variables. First,

additional data pre-processing of converting binarized profiles B
into transition table is needed. It is possible that in B we may have

pairs of transitions (X(t),X(tz1)) and (X(t’),X(t’z1)), where

t=t’, X(t)~X(t’), and X(tz1)=X(t’z1). This scenario amounts

to nondeterministic transition tables, and cannot be handled by

REVEAL. To address this, if there are transitions from state s
leading to k possible states t1, . . . ,tk, we count the number of times

each transition (s,ti), 1ƒiƒk, is observed, keep the pair (s,ti) with

the highest count, and remove the rest. This eliminates non-

determinism from the transition table. Using the resulting

transition table, for each variable Xi, REVEAL computes the

entropy value H(Xi)~{
X

p(x) log p(x), where p(x) is the

probability of observing value x (x[f0,1g) for variable Xi [19].

Further, for each subset X ’(fX1, . . . ,Xng of variables, REVEAL

computes the mutual information between Xi and X ’ as

M(Xi,X ’)~H(Xi)zH(X ’){H(Xi,X ’)

where H(X ,Y)~{
X

p(x,y) log p(x,y) is the joint entropy of X

and Y . The smallest (in terms of size) subset X ’ that yields

M(Xi,X ’)=H(Xi)~1 reflect the set of genes whose states

determine the next state of the gene represented by variable Xi.

To resolve, the function f ’(X ’)~Xi is assigned only in the case if it

is complete (all permutation of X ’ are represented), and discarded

otherwise. REVEAL algorithm works incrementally by first

checking how well each single gene determines the value of Xi

(for every i), then checks every pair of genes, then every triplet of

genes, and so on. In [13], the authors recommended not

considering subsets X ’ with more than three genes. This

maximum input size was shown in original work of Liang et al.

to be most effective in terms of both biological plausibility and

inability to be further reduced.

Best-Fit Extension. (BESTFIT) determines, for each Bool-

ean variable Xi, the set X ’(fX1, . . . ,Xng of size kƒn, that best

explains Xi with the least error size. The algorithm utilizes partially

defined Boolean function pdBf(T ,F), where T ,F[f0,1gk
, and denote

the set of true and false examples, as extracted from binarized

time-series data. For each time step 0vtvm{1, unique

occurrences of pairs X’(t) and Xi(tz1) are added to pdBf(T ,F),

such that T~fX’(t)[f0,1gk : Xi(tz1)~1g and

F~fX’(t)[f0,1gk : Xi(tz1)~0g. Further, the error size e is

defined by the number of inconsistencies within pdBf(T ,F) and

is determined by size of the intersection of the sets e~size(T\F).
The X ’ with the lowest error is chosen and the undefined entries in

the corresponding pdBf(T ,F) are randomly assigned to extract a

deterministic function. For full details, the reader is referred to

[14]. Similar to REVEAL, BESTFIT also works incrementally,

resolving Xi with X ’ of smallest size and discarding the rest.

Enumeration inference method. (FULLFIT) determines

the set X ’(fX1, . . . ,Xng that fully explains the variable Xi.

Table 1. Algorithm 1 From Time-series to Boolean Networks.

Input:

N Time-series S~fS1,S2, . . . ,Sng of n species;

N Binarization method bin[fKM{1,KM{3,BASCAg ;

N Learning method learn[fREVEAL,BESTFIT ,FULLFITg ;

N Error scoring metric Error(:,:) ;

N Number of iterations i;

Output:

All Boolean networks that are optimal under the error metric;

MinError/? .

Repeat i times:

1. B~bin(S);

2. Remove redundancy in B;

3. N~learn(B);

4. If Error(N,B)vMinError

(a) MinError/Error(N,B) ;

Return all Boolean networks N with Error(N,B)~MinError .

doi:10.1371/journal.pone.0066031.t001

Inferring Boolean Networks

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e66031

Similar to BESTFIT, for each time step 0vtvm{1, unique

occurrences of pairs X’(t) and Xi(tz1) are added to pdBf(T ,F),

and the number of inconsistencies e is calculated. The only

difference here is that algorithm only accepts the functions with

e~0 [15]. Ideally, after all possible, fully consistent, functions are

gathered, all resulting networks can be enumerated by choosing a

single function for each Xi. However, in practice it could quickly

becomes computationally infeasible. To address that, Martin et al.

suggest sampling networks from the pool of functions [15].

In all three methods it is often the case that a single Xi can have

multiple X ’ of the same size that determine it. This happens

because the original data is incomplete, as the binarized time-

series might not have all possible input-output pairs represented in

it. The incomplete transition table allows all algorithm to match

each X ’ to multiple functions f ’. Therefore, for a given

binarization, we sample 100 networks and assess them to find

the one with minimum error for a single binarization.

Error assessment
As a Boolean network is learned by one of the three algorithms,

we need to assess its quality, or fit for the data. Let

B~fB1 . . . ,Bng be a set of binary trajectories of equal size used

to infer a Boolean network N. We execute N using a synchronous

Boolean simulator [20] to generate a binary trajectory Y whose

length is equal to that of B, and whose first state is identical to that

given by B. In a synchronous simulation, all states are updated

simultaneously after execution of all the Boolean functions. The

use of this simulator further illustrates the need to remove

redundancy in the binary data, as the system cannot stay in the

same state unless for the steady state. We then define the error of

Boolean network N with respect to data B as

Error(N,B)~

P
1ƒtƒM

(DB(t){Y(t)D):In½ �

n:M
, ð1Þ

where In is an n-dimensional vector of all ones, and M is the

number of states in the binarized, reduced time series. A network

with smaller error better captures the system. Zero error can be

achieved for some, but not all, networks, indicating an inferred

Boolean network that perfectly matches the reduced binarized

data.

Results

In this section, we evaluate the performance of each bin:learn

combination in Table 1 on four time-series data sets, one of which

is experimental and the other three are synthetically generated

from regulatory network kinetic models. The data sets vary in the

number of species, the number of data points, as well as in the

complexity of the dynamics; we discuss the implications of size and

complexity in the next section.

The first system we analyzed consists of a regulatory network of

four genes, adopted from [21]. In this network, gene A is self-

regulatory, the protein products of genes A and B form a

heterodimer that activates the expression of gene C, the protein

product of gene D activates the translation of the protein product

of B, and the protein product of C inhibits the expression of genes

B and D. The system of ordinary differential equations (ODEs)

that we used to model the toy network from [21] is:

dA=dt~va{ka
:A

dB=dt~
Vb
:Dnd

KbzDnd

1

KIczCnc
{kb

:B

dC=dt~
Vc
:(A:B)nab

Kcz(A:B)nab
{kc

:C

dD=dt~
Vd

KIczCnc
{kd

:D

To generate the time-series data shown in Fig. 2(a) for this

system, we used the following values for the parameters: va~1,

ka~1, Vb~1, Kb~5, KIc~0:5, kb~0:1, Vc~1, Kc~5, kc~0:1,

Vd~1, kd~1, nab~nc~nd~4. Further, we used an initial

condition of A(0)~B(0)~C(0)~D(0)~0. We solved the ODEs

numerically by using the ode45 built-in function in Matlab. This

network exhibits complex, oscillatory dynamic behaviors, as can

be shown in Fig. 2(a).

For the second system, we used an experimentally derived time-

series data set for a Jak2/Stat5 signaling network with negative

regulatory feedback loops. The dynamics of this pathway were

explored by Bachmann et al. to determine the roles of the two

transcriptional negative feedback regulators Socs3 and CIS [22].

For this system, we obtained the time-series data from [22], which

are shown in Fig. 2(c). The experimental data shows a spike in the

activity of the phosphorylated signaling components (pJak2, pEpoR,

and pStat5) at the initial time points, but later suppression by the

inhibitory feedback from the expressed genes Socs3 and CIS.

For the third system, we used an Smad network [23]. Smad

proteins are an important intracellular mediator of TGFb
signaling, a system that plays a significant role in cell growth

and differentiation. Upon TGFb stimulation, Smad proteins

accumulate in the nucleus and regulate the transcription of target

genes [23]. This system is relatively much larger than the two

systems we have analyzed thus far. To produce time-series data for

the Smad system, we acquired a curated COPASI model from the

Biomodels database [24]. Using this model, we obtained time-series

data in Fig. 2(e).

The fourth system we analyzed is one similar to the Smad system

in terms of the number of species, yet more complex in terms of

dynamics. The budding yeast cell cycle is a classic example of the

sequence of events during which a growing cell replicates. The

system has been mostly worked out in a consensus set of

interactions. Chen et al. developed a system of ODEs to model

this consensus hypothesis [25]. The synthetic data for the Smad and

cell cycle systems were generated using COPASI [26]. The

dynamics of the budding yeast cell cycle are shown in Fig. 2(g).

The original time series is normalized between 0 and 1.

Ability to model dynamics: Expressiveness of the learned
Boolean networks

For each bin:lean combination in Table 1, we execute 100

searches of minimum-error Boolean networks, according to Eq.

(1), where each search is run for up to 10,000 iterations (the search

is terminated whenever a minimum error of 0 is achieved, since

this is the best possible value). For each of the four systems, we

report Min error, Convergence, Uniqueness, and Correctness, in

Table 2. Min error is the minimum error achieved by a Boolean

network over the 100 searches. For Convergence, the value

indicates the number of iterations it took each of the 100 searches

Inferring Boolean Networks

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e66031

to identify the minimum-error Boolean network, averaged by the

number of searches (100). Hence, a value of x for Convergence

indicates that, on average, it took each search x iterations to learn

the minimum-error Boolean network. The lower this value, the

better the performance of the method. The Uniqueness value

indicates the number of distinct Boolean trajectories produced, or

captured, by the learned Boolean networks. The upper bound on

this value is 100, and that would indicate that all learned Boolean

networks have distinct trajectories. A value of 1 indicates that all

Boolean networks learned capture exactly the same dynamics (this

Figure 1. Iterative k-means clustering with d~1 (direct binarization) vs. d~3. More refined binarization is achieved with higher values of d .
doi:10.1371/journal.pone.0066031.g001

Figure 2. True dynamics (left column) and the dynamics based on asynchronous simulation of the best-scoring Boolean networks
learned from the data (right column) of the four systems: toy network (a–b), Jak-Stat (c–d), Smad (e–f), and budding yeast cell cycle
(g–h). The Boolean network simulated for each system is one with minimum error obtained by the KM3:REVEAL method (see Table 2).
doi:10.1371/journal.pone.0066031.g002

Inferring Boolean Networks

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e66031

does not necessarily mean that they are identical Boolean

networks, though). In addition to systematically computing the

error between the ‘‘true dynamics’’ and the dynamics of the

learned Boolean networks, using Eq. (1), we also visually inspected

the dynamics and checked if they match (mainly by comparing the

curves); this is the Correctness entry in Table 2, which takes value ‘

Y’ if the true dynamics and the asynchronously simulated

dynamics of the learned Boolean network match, and ‘ N’

otherwise. The reason we conducted a visual inspection is because

automatically comparing two time series is not a trivial task, and

even existing measures suffer from exaggerating the difference

between two time series in some cases, and diminishing that

difference in other cases (e.g., imagine comparing two time series

data sets whose only difference is that all times points in one are

shifted by some constant).

Table 2 shows the performance of the nine bin:learn combina-

tions of Table 1 on the four systems. For the Jak-Stat and Smad

systems, a minimum error of 0 was achievable, whereas for the toy

network the lowest possible error achievable was 0.007 and for the

cell cycle system it was 0.005. As the Correctness values indicate,

the minimum-error Boolean networks always produced dynamics

similar to the true dynamics, as revealed by visual inspection. The

exception to this trend are the Boolean networks learned using the

BASC A binarization on the toy network, in which case minimum-

error networks were learned, but their dynamics trajectories

looked different from the true ones. Further, for the budding yeast

cell cycle system, learned Boolean networks with error up to twice

the minimum error achievable produced similar dynamics to the

true ones. More generally, the combination KM3:BESTFIT

always generated the Boolean network with the minimum possible

error, followed by KM3:REVEAL. The repetitive nature of KM3

makes it perform well for systems with oscillatory dynamics. The

dynamics produced from the best-scoring learned network on each

of the four systems are shows in the right column of Fig. 2.

For the Jak-Stat system, the BASC A:FULLFIT combination did

not produce a single network for this case. This could only happen

if every considered function f ’ contained non-determinism. On the

other hand, KM3 is able to achieve zero error with all learning

methods. For the Smad system, binarizing the data with KM3

resulted in learning zero-error networks, regardless of the learning

method. For the cell cycle system, the BESTFIT learning method

resulted in minimum-error networks, regardless of the binarization

method.

In terms of convergence, both the binarization and the learning

method have an effect. For example, in the case of the Jak-Stat

system, using KM3:BESTFIT converges in 1 iteration, whereas

using KM3:REVEAL requires on average 2,237 iterations. In this

case, the learning method makes a big difference. However, it is

important to note that if we take the minimum error and

correctness into account (that is, require that the learned network

has the minimum error and that its dynamics match the true ones

by visual inspection), then KM3 is the best, in terms of

convergence, across all systems and learning methods, except in

the case of the cell cycle system, where KM1 results in a faster

convergence than KM3, when combined with BESTFIT for

learning; however, the difference is only 2 iterations, which is

negligible.

In terms of uniqueness, the only system on which multiple

distinct Boolean networks were learned is the Smad system. What

characterizes this system is that it is large in terms of the number

species, yet has very simple dynamics. This is analogous to the

‘‘too many variables, too few equations’’ case in solving systems of

equations, where the degree of freedom is very large, and non-

uniqueness of solutions naturally arises.

Dynamics of the learned Boolean networks (using the

KM3:REVEAL combination), as obtained by asynchronous

Boolean simulation using the tool of [20], match the true

dynamics very well, for the most part, as shown in Fig. 2.

Faithfulness to biological reality: The learned Boolean
functions

The binarization and redundancy removal steps described

above result in the removal of data, and with this removal comes

loss of information. This loss of information undoubtedly affects, to

varying degrees, the match between the learned Boolean network

itself and the rules governing the true system underlying the time-

series data. Further, the fact that the number of Boolean functions

is exponential in the number of genes in the system combined with

the fact that in practice very few data points are available to learn

these networks give rise to a situation where multiple Boolean

networks with equal score (or, error) can be learned. Indeed, in

[15] for example, the authors discussed the issue that multiple

Table 2. Evaluation results for different combinations of binarization and learning methods on the four networks.

Toy network Jak-Stat Smad Cell cycle

KM-1 KM-3 BASC A KM-1 KM-3 BASC A KM-1 KM-3 BASC A KM-1 KM-3 BASC A

REVEAL Min error 0.43 0.007 0.025 0.28 0.0 0.26 0.48 0.0 0.73 0.52 0.012 0.52

Convergence 1 14 1 595 2237 2 1 12 1 6 559 1

Uniqueness 1 1 1 1 3 1 1 96 1 1 6 1

Correctness N Y N N Y N N Y N N Y N

BESTFIT Min error 0.13 0.007 0.125 0.0 0.0 0.26 0.48 0.0 0.73 0.05 0.005 0.05

Convergence 1 17 1 85 1 1 1 1 1 6 8 1

Uniqueness 1 1 1 1 6 1 23 96 1 1 53 1

Correctness N Y N Y Y N N Y N Y Y Y

FULLFIT Min error 0.43 0.15 0.7 0.0 0.0 – 0.48 0.0 0.73 0.4 0.08 0.4

Convergence 1 18 1 104 1 – 1 1 1 6 741 1

Uniqueness 1 1 1 1 6 – 23 96 1 1 6 1

Correctness N N N Y Y – N Y N N N N

doi:10.1371/journal.pone.0066031.t002

Inferring Boolean Networks

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e66031

‘‘optimal’’ networks were learned and that a summary of these

networks could be presented. However, two important points are

worth mentioning here. First, in practice, the regulatory network is

unknown, and judging whether a Boolean network provides a

close approximation or not is not easy to do objectively. Second, in

our study, and other similar studies of modeling techniques,

ordinary differential equations are used as a proxy of the real

system and are used to simulate the ‘‘true dynamics.’’ When

comparing a learned Boolean network, or any other model, to

these ODEs, it is important to keep in mind that these ODEs

themselves are not necessarily unique with respect to the dynamics

they generate (that is, many other systems of ODEs, some simpler

and some more complex, could generate the same dynamics).

Thus, assessing the faithfulness of learned Boolean networks to

biological reality must be done with these two points in mind.

In addition to the dynamics of the learned networks, we also

inspected the Boolean functions that the methods learned for each

of the systems. We discuss here only the networks learned for the

toy network and Jak-Stat system. For the toy network, the unique

zero-error Boolean network obtained by KM3:REVEAL consists

of the functions: A�~D _ A, B�~A ^D, C�~B, D�~:C

(where X � denotes the next state of variable X). These Boolean

rules capture many of the assumptions of the network (e.g., C

inhibits D, D activates B). While there is no direct involvement of

A in the regulation of C, its effect is captured indirectly via B,

which has A in its regulatory function. Further, in the Boolean

function for updating A, the network captures the fact that A is

self-regulatory. Indeed, if A is treated as an input to the system and

set to 1, the Boolean functions learned are: B�~D, C�~B,

D�~:C. Keeping the two points we raised above in mind, the

question is, for example: Since the Boolean rule B�~D conveys no

effect of C on B�, how would the ‘‘true dynamics’’ change if we

remove the 1=(KIczCnc) term from the equation for dB=dt? We

performed this test and the results showed that the change to the

‘‘true dynamics’’ was negligible (too negligible to make a difference

in the Boolean network learned from the data!).

For the Jak-Stat system, KM3:REVEAL produces three Boolean

networks that differ only in the function controlling CIS. The

functions learned by this method are:

pJak2�~:pStat5 ^ :Socs3

pEpoR�~:pStat5 ^ :Socs3

pStat5�~:Socs3

Socs3�~Socs3 _ pStat5

CIS�~fSocs3,:pStat5 ^ Socs3,Noneg

While this Boolean network is much simpler than the detailed

model constructed in [22], it does capture several of the reactions

highlighted in that model. For example, in [22], the authors

assumed that Jak2 is inhibited by Socs3, which is captured in the

inferred Boolean network. For the other reactions, the Boolean

network inferred ‘‘short-circuited’’ versions (that is, indirect effects

are inferred as direct ones). This Boolean network further reveals

that CIS does not play a role in regulating the other molecules

and, rather, Socs3 is the more central regulator.

It is important to note here that the original model of [22] was

very detailed and incorporated much information from the

literature. In our case, the model is learned simply from one

time-series data set (Fig. 3 in [22]) without any additional

knowledge to guide the inference of the Boolean functions. It is

very important to note here that the parameters of the model (e.g.,

rate constants and initial concentrations) can have a significant

effect on the the topology and functions of the inferred Boolean

network. To illustrate, consider a biological network with a

reaction in which A has an inhibitory effect on B, which would be

inferred as a Boolean rule of the form B�~:A. If the

concentration of A in the experiment or the reaction rate is too

low, the experimental data might not exhibit the actual effect of A
on B, resulting in an inferred Boolean network that might neither

capture A as an effector of B, nor that the effect is inhibitory.

The amount of data needed for modeling
In [2], Boolean networks were placed on the lower end of the

spectrum in terms of the amount of data needed for modeling (in

our context, the amount of data is the number of time points at

which molecular concentrations are measured in an experiment).

However, even for a very abstract model of regulatory networks,

such as Boolean networks, we hypothesize that the amount of data

required to capture the dynamics is a function of the complexity of

those dynamics in the underlying (unknown) system. Of the four

systems we considered here, two exhibit simple dynamics (the Jak-

Stat and Smad systems) and two exhibit complex, oscillatory

dynamics (the toy network and the cell cycle system).

As we have seen already, all KM3:* combinations were

successful at capturing the dynamics of the Jak-Stat system from

a relatively small experimental data set with 14 time points. To

explore the effect of the samples data points on the learned

networks, we reanalyzed the toy network in two different ways.

First, we generated 8- and 16-time-point data sets by dividing the

time-series data to reflect measurements at 0 min, 5 min, 15 min,

30 min, 45 min, 1 hr, 2 hr, 3 hr, 6 hr, 8 hr, 10 hr, 12 hr, 15 hr,

18 hr, 21 hr, and 24 hr. Second, we manually selected time points

to capture the oscillatory patterns of the original system (this is not

doable in real data analyses, but we do it here to see if ‘‘optimal’’

choice of data points would result in good networks).

We observed similar results to those of the Jak-Stat system on the

Smad system, where a few data points were sufficient to learn

Boolean networks that capture the true dynamics. However, the

situation is very different for the other two systems that exhibit

more complex dynamics.

Figure 3 shows the dynamic trajectories for the toy network as

interpolated from the sampled data points (left panels), as well as

the binary version of these dynamics as obtained by KM3 (right

panels).

As Figure 3(a) shows, the points selected from pre-defined time

steps do not represent the dynamics of the oscillations and the

resulting binary data is of very poor quality. Figure 3(b) shows the

points that were manually selected to capture the peaks and

troughs of the oscillation. However, even with manually selected

points, none of the three methods (with KM3 binarization) were

able to produce this oscillatory patterns in the Boolean network.

This illustrates that a large number of time points is needed to

learn a good Boolean network when the dynamics are complex.

For example, we found that for the budding yeast cell cycle system

at least 50 data points are needed to accurately capture the

dynamics. But it is important to keep in mind that this system is

heavily oscillatory.

Inferring Boolean Networks

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e66031

Predictive power of the learned Boolean networks
To validate the predictive power of Boolean networks, we

conducted k-fold cross-validation experiments for the toy network,

as well as the Smad and cell cycle systems. For each of these three

systems, we used the mathematical models to generate k data sets,

each differing in the initial state, used k{1 of these data sets to

learn the Boolean networks, and used the remaining single data set

for validation. That is, we treated each of k data sets here as a

subsample. This procedure was repeated more than k times for

each system (to account for the potential non-uniqueness of the

solutions): 100 times for the toy network, and 50 times for both the

Smad and cell cycle systems.

For the toy network, we used the set of ODEs to generate 16

different data sets, corresponding to every possibility of setting the

initial concentrations of the four species in the system to 0 or 1. For

the Smad system, we used the COPASI model to produce six

additional data sets that differed in the initial concentration of

RSmad-cyt, RSmad-nuc, Smad4-cyt, and Smad4-nuc. The initial states

of the 7 data sets are: (1,1,1,1), (0,1,1,1), (1,0,1,1), (1,1,0,1),

(1,1,1,0), (0,0,1,1), and (1,1,0,0), where the four entries in each

tuple correspond to the four molecules, respectively. For the

budding yeast cell cycle system, we identified four ‘‘input’’ species

(MASS, ORI, CLN2, and CDH1) and generated four additional

data sets, using the COPASI model, that differed in the initial

states of these species, for a total of five data sets with initial states:

(0,0,0,1), (1,0,0,1), (0,1,0,1), (0,0,1,1), and (0,0,0,0).

The validation step was conducted as follows. Let N be a

Boolean network learned from k{1 data sets, and let D be the k-

th time-series data set. First D is binarized to generate the binary

trajectories; call this D’(t), and assume 1ƒtƒM. Then, for each

pair of consecutive states in D’, that is (D’(t),D’(tz1)), we

synchronously execute the Boolean rules of N on state D’(t) for

one step, thus obtaining a new binary state E, compare E to

D’(tz1), and compute the fraction of the number of entries in E

that are different from D’(tz1). This is repeated for every

1ƒtƒM{1, and the results are summed and divided by M{1.

This procedure results in error values between 0, indicating the

Boolean network is a perfect predictor, and 1, indicating the

Boolean network makes wrong predictions all the time.

For Boolean network inference, we used the KM3:REVEAL

and KM3:BESTFIT combinations, as these produced the best

results in other experiments, as discussed above. For the toy

network, the two methods produced Boolean networks with

prediction error of 0:149 and 0:144, respectively. For the Smad

system, the two methods produced Boolean networks with

prediction error of 0:442 and 0:502, respectively. For the cell

cycle system, the two methods produced Boolean networks with

prediction error of 0:262 and 0:268, respectively.

Clearly, Boolean networks have very good predictive power of

about 86% on the toy network, and a good predictive power of

about 74% on the cell cycle system. The predictive power on the

Smad system is poorer, reaching only about 56% in the case of

KM3:REVEAL and about 50% in the case of KM3:BESTFIT.

To understand this poor predictive power, we investigated the

seven data sets we generated for the cross validation experiment,

Figure 3. Dynamics of Boolean networks learned from 16 time-points of the toy network. (a) Time points correspond to 0 min, 5 min,
15 min, 30 min, 45 min, 1 hr, 2hr, 3hr, 6hr, 8 hr, 10 hr, 12 hr, 15 hr, 18 hr, 21 hr, 24 hr. (b) Time points are manually selected to capture the oscillatory
patterns of the original system. Left panels show the time points selected, and right panels show the binary data obtained by applying KM3 to the
measurements at the selected time points in the left panels. Binarized data are shifted vertically for readability. Blue, green, red, and cyan curves
correspond to species A, B, C, and D, respectively.
doi:10.1371/journal.pone.0066031.g003

Inferring Boolean Networks

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e66031

and found that the times series across these data sets had a much

larger variability than those for the other two systems.

Conclusions
In this paper we studied the performance of methods for

inferring Boolean networks from time-series data. Separating this

problem into two steps, binarization and learning, we introduced a

new method for binarizing time-series data, and evaluated the

performance of methods within a single framework. We demon-

strated the effectiveness of each method combination by analyzing

four data sets that vary in size and dynamics complexity. We

further demonstrated that proper binarization is crucial for the

learning method to produce the correct network. This is

demonstrated by the varying degree of success of the FULLFIT

learning method, as it sensitive to any non-determinism that may

result during binarization. We also observe that the randomized

binarization obtained by k-means clustering, especially KM3,

results in better Boolean networks than ones learned from data

that is binarized using BASC A. Most importantly, we found that

the two combinations that performs best across all systems are

KM3:REVEAL and KM3:BESTFIT. While the latter is much

faster in terms of convergence, both are capable of capturing time-

series trends very well. Fast convergence of BESTFIT can be

explained by its lack of requirement that the candidate functions f ’
be complete. REVEAL, on the other hand, only accepts complete

functions; consequently, it produces more intuitive Boolean

networks, yet at the cost of time to converge. Our results show

that, when learned properly from time-series data, Boolean

networks can capture the dynamics to a high degree of accuracy,

and can provide good predictive power. Further, depending on the

complexity of the dynamics in the underlying network to be

learned, the amount of time points at which concentrations must

be sampled may be very large (which disagrees with the commonly

stated claim that Boolean networks require very little data to learn

or train).

Author Contributions

Conceived and designed the experiments: NB LN. Performed the

experiments: NB. Analyzed the data: NB LN. Contributed reagents/

materials/analysis tools: NB. Wrote the paper: NB LN.

References

1. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene

regulatory network inference: Data integration in dynamic models|a review.
Biosystems 96: 86–103.

2. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory

networks. Nature Reviews Molecular Cell Biology 9: 770–780.
3. Kitano H (2002) System biology: A brief overview. Science 295: 1662–1664.

4. Kau_man S, Peterson S, Samuelsson C, Troein C (2003) Random Boolean
network models and the yeast transcriptional network. Proc Natl Acad Sci USA

100: 14796–14799.

5. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is
robustly designed. Proc Natl Acad Sci USA 101: 4781–4786.

6. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression
in a single cell. Science 297: 1183–1186.

7. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, et al. (2010) Quantifying E.
coli proteome and transcriptome with single-molecule sensitivity in single cells.

Science 329: 533–538.

8. Shmulevich I, Dougherty E, Kim S, Zhang W (2002) Probabilistic boolean
networks: a rule-based uncertainty model for gene regulatory networks.

Bioinformatics 18: 261–274.
9. Shmulevich I, Gluhovsky I, Hashimoto R, Dougherty E, Zhang W (2003)

Steady-state analysis of genetic regulatory networks modelled by probabilistic

boolean networks. Comp Funct Genomics 4: 601–608.
10. Liang J, Han J (2012) Stochastic Boolean networks: An efficient approach to

modeling gene regulatory networks. BMC Systems Biology 6: 113.
11. MacQueen JB (1967) Some methods for classification and analysis of

multivariate observations. In: Cam LML, Neyman J, editors, Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability. University of

California Press, volume 1, 281–297.

12. Hopfensitz M, Mussel C, Wawra C, Maucher M, Kuhl M, et al. (2012)
Multiscale binarization of gene expression data for reconstructing boolean

networks. IEEE/ACM Trans Comput Biol Bioinformatics 9: 487–498.
13. Liang S, Fuhrman S, Somogyi R (1998) REVEAL, a general reverse engineering

algorithm for inference of genetic network architectures. Pacific Symposium of

Biocomputing 3: 18–29.

14. Lähdesmäki H, Shmulevich I, Yli-Harja O (2003) On learning gene regulatory

networks under the boolean network model. In: Machine Learning. volume 52,

147–167.

15. Martin S, Zhang Z, Martino A, Faulon JL (2007) Boolean dynamics of genetic

regulatory networks inferred from microarray time series data. Bioinformatics

23: 866–874.

16. Bartlett M (1953) Stochastic processes or the statistics of change. Journal of the

Royal Statistical Society, Series C (Applied Statistics) 2: 44–64.

17. Gillespie D (1976) A general method for numerically simulating stochastic time

evolution of coupled chemical reactions. Journal of Computational Physics 22:

403–434.

18. Erkkild T, Korpelainen T, Yli-Harjal O (2007) Inference of boolean networks

from time series data with realistic characteristics. In: IEEE International

Workshop on Genomic Signal Processing and Statistics. 1–4.

19. Shannon C (1948) A mathematical theory of communication. Bell System

Technical Journal 27: 379–423.

20. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations

for life scientist. Source code for biology and medicine 3.

21. Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, et al. (2009)

Systems Biology: A Textbook. WILEY-VCH Verlag GmbH & Co.

22. Bachmann J, Raue A, Schilling M, Bohm ME, Kreutz C, et al. (2011) Division

of labor by dual feedback regulator controls jak2/stat5 signaling over broad

ligand range. Molecular Systems Biology 7.

23. Clarke DC, Betterton MD, Lui X (2006) System theory of smad signaling. IEE

Proc-Syst Biol 153: 412–424.

24. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, et al. (2010) Biomodels

database: An enhanced, curated and annotated resource for published

quantitative kinetic models. BMC Systems Biology 4.

25. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, et al. (2004)

Integrative analysis of cell cycle control in budding yeast. Molecular Biology of

the Cell 15: 3841–3862.

26. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) Copasi | a complex

pathway simulator. Bioinformatics 22: 3067–74.

Inferring Boolean Networks

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e66031

