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Brain structural network changes provide key information about the aging process of the
brain. Unfortunately, there has yet to be a detailed characterization of these structural
networks across different age groups. Efforts to classify these networks have also
been hampered by their reliance on technically limited traditional methods, which are
unable to track multiple fiber orientations within a voxel and consequently are prone
to false detection and artifacts. In this study, a newly developed Ensemble Average
Propagator (EAP) based probabilistic tractography method was applied to construct
a structural network, with the strength of the link between any two brain functional
regions estimated according to the alignment of the EAP along connecting pathways.
Age-related changes in the topological organization of human brain structural networks
were thereby characterized across a broad age range (ages 8–75 years). The data from
48 healthy participants were divided into four age groups (Group 1 aged 8–15 years;
Group 2 aged 25–35 years; Group 3 aged 45–55 years; and, Group 4 aged 65–75 years;
N = 12 per group). We found that the brain structural network continues to strengthen
during later adolescence and adulthood, through the first 20–30 years of life. Older
adults, aged 65–75, had a significantly less optimized topological organization in their
structural network, with decreased global efficiency and increased path lengths versus
subjects in other groups. This study suggests that probabilistic tractography based
on EAP provides a reliable method to construct macroscale structural connectivity
networks to capture the age-associated changes of brain structures.

Keywords: magnetic resonance imaging, diffusion weighted imaging, ensemble average propagator, structural
network, brain development

INTRODUCTION

Human brain structural networks are functionally modular and connect effectively through neural
bundles to meet the needs for complex cognitive tasks (Schmahmann et al., 2007; Lerch et al.,
2017). This neural fiber connectivity enables the communication between the various regions
of the brain (Bassett et al., 2011) and its integrity is pivotal for individual health. Due to
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the development of non-invasive imaging technologies, such
as diffusion-weighted imaging (DWI), our knowledge of these
structural pathways have vastly improved. DWI characterizes
structural connectivity networks across brain regions in-vivo
by calculating the number of streamlines or the probability
of connections (Frank, 2002; Tuch et al., 2002; Anderson,
2005; Maier-Hein et al., 2017). The demonstrated connectivity
patterns can then be assessed through graph-based analyses that
outline the complex structural substrates of cognition (Betzel
et al., 2014). This approach has been effectively employed
to identify densely interconnected structural hub regions that
are critical to efficient neuronal signaling and communication
(van den Heuvel and Sporns, 2013).

Aging has been recognized as a significant factor affecting
brain functions. Specifically, a growing body of evidence suggests
that brain structure is altered as age increases. Although the
fundamental cause of these age-related white matter changes has
yet to be fully understood, current theories tie them to changes
in the axonal diameter and myelination, synaptic pruning, and
modification (Onoda et al., 2012; Dennis and Thompson, 2014;
Geerligs et al., 2014; Huang et al., 2015; Grady et al., 2016).
According to the “early-in-late-out” hypothesis, increases in fiber
tract white matter density and axonal myelination are important
for cognitive development during childhood and adolescence
(Paus et al., 1999). In contrast, demyelination and a loss of
nerve fibers contribute to cognitive decline (Peters, 2002). Despite
these early hypotheses and studies, available data describing
age-related changes in structural connectivity remains lacking
(Damoiseaux, 2017).

While limited, currently available evidence suggests that
old age is associated with lower connectivity and lower local
efficiency (Damoiseaux et al., 2007; Gong et al., 2009; Burzynska
et al., 2010; Otte et al., 2015). These studies, however, address
coarsely divided age subgroups. In addition, recent evidence from
Zhao et al. (2015) also suggests that the age-related trajectories of
local and global structural network efficiency changes are non-
linear. The use of large age ranges may then combine subjects at
different stages, complicating the study of age-related structural
connectivity changes that would otherwise provide useful insights
for patient diagnosis and management.

Several methods have been developed to reconstruct structural
connectivity networks. Previous studies have relied heavily on
diffusion tensor imaging (DTI) methods to trace white matter
connections (Gong et al., 2009; Betzel et al., 2014; Otte et al.,
2015; Zhao et al., 2015). Conventional DTI, however, struggles
to resolve complex fiber populations when they occur within
a DWI voxel, as is the case when tracts cross, branch, merge,
or kiss (Tuch, 2004; Hess et al., 2006; Poupon et al., 2008). As
approximately one- to two-thirds of DWI voxels contain multiple
fiber populations (Duarte-Carvajalino et al., 2014), structural
connectivity networks reconstructed based on diffusion tensor
may deviate largely from real situations. It is then necessary
to develop methods capable of parsing these complex white
matter structures.

In this study, age-related changes in structural connectivity
were investigated using a novel Ensemble Average Propagator
(EAP)-based probabilistic tractography method. Unlike DTI or

orientation distribution function methods, EAP preserves the
radial part of the diffusion signal and thus may accurately identify
the crossing orientations of neural fascicles within a white matter
voxel (Fick et al., 2014; Paquette et al., 2015). The aim of this
study was to evaluate the novel EAP approach for reconstructing
structural connectivity networks, using a healthy subject dataset
that covered a wide range of ages.

MATERIALS AND METHODS

DWI Dataset
The lifespan datasets publicly available from the Human
Connectome Project (HCP) (Marcus et al., 2011; Van Essen et al.,
2013) and the OASIS3 database (Longitudinal neuroimaging,
clinical, and cognitive dataset for normal aging and Alzheimer’s
disease1) were used in this study. Datasets included 48 subjects
aged 8–75 years, organized into 4 age groups (Table 1).
HCP subjects (34) underwent an abbreviated scan protocols
similar to that used for the WU-Minn young adult HCP study
(Feinberg et al., 2010). Data for each subject was collected
using a 3T General Electric MR scanner, with a whole-body
radiofrequency coil for signal excitation and a quadrature 8-
channel brain coil for the reception. The HCP acquisition
protocol consisted of: (1) high resolution 3D T1-weighted SPGR
sequence, with TR/TE/flip angle of 9.1 ms/4.1 ms/108, acquisition
matrix size = 256 × 256 × 320, and slice thickness = 1 mm;
(2) DWI using a single-shot spin-echo echo-planar sequence,
including 91 non-collinear encoding directions with b values of
1000, 2000, 3000 s/mm2, TR/TE = 12700/88.3 ms, acquisition
matrix size = 144 × 168 × 111, slice thickness = 2.4 mm,
and voxel size = 2.4 mm × 2.4 mm × 2.4 mm, along with
six additional images with no diffusion sensitization b = 0
s/mm2 (b0, non-diffusion-weighted images). The remaining 14
subjects from the OASIS3 dataset were scanned using a Siemens
TIM Trio 3T MRI scanner with 16-channel head coils and
the scan protocols that included: (1) high-resolution 3D T1-
weighted GR IR with TR/TE/flip angle = 2.4 s/3.16 ms/8,
acquisition matrix size = 256 × 256 × 176; (2) DWI using
a single-shot spin-echo echo-planar sequence with TR/TE/flip
angle = 9.9 s/102 ms/90, b-values = 600, 800, 1000 s/mm2,
acquisition matrix size = 96 × 96 × 60, slice thickness = 2 mm,
and voxel size = 1.98 mm× 1.98 mm× 2 mm, wherein diffusion-
weighted gradients were applied along 25 directions with one

1www.oasis-brains.org

TABLE 1 | Lifespan datasets from HCP and OASIS3 database, including
four age groups.

Age (years) N Gender

8-15 12 8 Female, 4 Male

25-35 12 5 Female, 7 Male

45-55 12 5 Female, 7 Male

65-75 12 6 Female, 6 Male
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b0 image. The overall process for scanning and data analysis is
summarized in Figure 1.

Reconstruction of the Structural
Connectivity Network
Brain parcellation and reconstruction were performed using
FreeSurfer (stable version 6.0.0)2 (Fischl, 2012). Parcellations
for each subject were generated in the native space, based on
the collected high-resolution T1-weighted MRI images. The
cerebral cortex was parcellated into 68 functional regions, 34
for each hemisphere (Desikan et al., 2006). These regions
were considered as the nodes in a structural connectivity
graph. Lastly, the corresponding atlas was affine registered
to the DWI native space for each subject. The 68 cortical
regions used to construct brain SC networks are list in
Appendix Table A1.

The DWI dataset was first denoised following the procedure
outlined by Wu et al. (2019b). The topup and eddy_openmp
FSL 6.0 commands (Ubuntu Linux 16.04) were then used
to correct eddy distortion and motion artifact (Andersson
et al., 2003; Andersson and Sotiropoulos, 2015, 2016). Briefly,
these corrections were performed by first performing an affine
alignment of each DWI image to the b0 image. Next, EAPs
were estimated from multi-shell DWI samples using spherical
polar Fourier imaging (SPFI) (Cheng et al., 2010). According
to a spherical harmonics expansion, EAPs were calculated
along 726 directions evenly distributed about a spherical shell
(Hess et al., 2006). Diffusion orientations contained within a
white matter voxel were then extracted by detecting the local
EAP peaks (Wu et al., 2018), which coincide with neural
fiber tracts. Probabilistic fiber tracking was then performed
to obtain the connection weights between different cortical
regions (Iturria-Medina et al., 2007). Under angular constraints,

2http://www.freesurfer.net/fswiki/DownloadAndInstall
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FIGURE 1 | Flowchart for the construction of structural connectivity networks
based on EAP. (A) High-resolution T1-weighted MRI images. (B) White matter
mask. (C) Cerebral cortex parcellation from T1-weighted MRI images using
FreeSurfer. (D) DWI images. (E) EAPs constructed with SPFI. (F) Structural
connectivity Networks. (G) Structural connectivity matrix. Before SC network
construction, (B,C) are co-registered into DWI B0 native space in FreeSurfer.

the deterministic path planning algorithm was subsequently
used to find all reasonable pathways between the WM voxels
belonging to different ROIs. A train of consecutive WM
voxels along each of the identified pathways was thereby
determined, and the connection strengths of these pathways
were computed by integrating their EAP alignment over a
solid angle. The connection strength of each pair of WM
voxels was then assigned as the connection strength with the
largest connection possibility. Finally, the connection strength
between each ROI pair was calculated as the sum of the
connection probabilities for each pair of WM voxels within
the ROIs (Wu et al., 2019a). The resulting link strength
depended on the alignment of the EAP along connecting
pathways, with higher strengths indicating better alignment.
Evidence suggests that the link strengths determined by EAP
fields may provide a more robust and suitable measure for
structural connectivity network analysis than diffusion tensor
and orientation distribution function (Assemlal et al., 2007;
Cheng et al., 2010). To ensure that path propagations were
anatomically realistic, we imposed a 90◦ maximum curvature
threshold between every two successive path steps (Iturria-
Medina et al., 2007, 2008; Sotiropoulos et al., 2010). This fiber
tracking procedure yielded adjacency matrices whose elements
represented the connection probabilities between each pair of
parcellated cortical regions of interest.

Network graphs were created that consisted of a series of nodes
connected by edges to interpret the generated adjacency matrices.
Each node within a network graph represented a cortical region
of interest, and the edges connecting them were assigned weights
according to their determined link strength. In this study, each
brain region was selected as the seed region, and its connectivity
strength to each of the other 67 regions was calculated. Thus,
for each subject, a 68 × 68 weighted, undirected network graph
was constructed.

TABLE 2 | Definitions of structural connectivity network metrics.

Network metrics Description

Eglob(G) = 1
N(N−1)

∑
i 6=j∈G

1
Lij

Lij is the shortest path length between node i
and j in G.

Eloc(G) = 1
N

∑
i∈G

Eglob(Gi) Gidenotes the subgraph composed of the
nearest neighbors of node i.

Lp(G) = 1
N(N−1)

∑
i 6=j∈G

Lij Lij is the shortest path length between node i
and j. This function quantifies the ability for
information to be propagated in parallel.

Cp =
1
N

∑
i∈G

C(i) Cp is the average of the clustering coefficient
over all nodes, which indicates the extent of
local interconnectivity or cliquishness in a
network.

γ = CSC
p

/
Crand

p Crand
p is the meanCpof 100 matched random

networks. CSC
p is the clustering coefficient

empirical SC network.

λ = LSC
p

/
Lrand

p Lrand
p is the meanLpof 100 matched random

networks. LSC
p is the shortest length of the SC

networks.

Enodal(i) = 1
N−1

∑
i 6=j∈G

1
Lij

Enodal(i) measures the average shortest
pathway length between a given node i and all
of the other nodes in the network.
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FIGURE 2 | Group-averaged structural connectivity maps of HCP lifespan subjects, which are 68 × 68 symmetric matrices. The subjects are arranged into four
groups by age, including 8–15, 25–35, 45–55, and 65–75 years groups. In the maps, self-connections are excluded. The numbers on the axes of connectivity matrix
are the indexes of parcellated regions.

Structural Connectivity Network
Topological Analysis
A number of network metrics were adopted to quantify the
topological features of the generated network graphs, including
global efficiency Eglob, local efficiency Eloc, clustering coefficient
Cp, regional efficiency Enodal, and the small-world parameters γ

and λ (Cao et al., 2013). After adjacency matrices were acquired
and thresholded to remove weak connections, the enumerated
network metrics were computed for each age group using the
GRETNA (Wang et al., 2015) and BCT toolboxes (Rubinov
and Sporns, 2010). Of particular interest here are the “small-
world” parameters, which estimate the efficiency of information
transfer within a defined network structure. An ideal, small-
world network described by these parameters should feature a
minimum path length between any pair of nodes equal to that of a
comparable random network, with greater local interconnectivity
or cliquishness (He et al., 2007). Lastly, the nodal efficiency
metric, Enodal, was used to describe regional properties. The

mathematical equations for these measures are provided in
Table 2, and detailed descriptions of each are provided by
Cao et al. (2013). The weights were thresholded from 0.05
and 0.21 in intervals of 0.02 to remove spurious connections.
The information from these serial measurements was integrated
to calculate the area under the curve (AUC) for each metric,
such that the resultant AUC values summarized the topological
organization of the brain structural connectivity networks,
independent of a single threshold selection. To identify the
differences across age groups, we performed Kruskal–Wallis tests
on the lifespan subjects. Finally, quadratic regression using least
square fitting was performed to fit the AUC values of each metric.

Age-Related Changes
To further investigate age-associated structural connectivity
differences, the group-wise structural connectivity hub regions
were identified for each group. These are defined as regions that
critically enable efficient neuronal signaling and communication
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FIGURE 3 | Comparison of global and regional network metrics across 4 age groups. (A) Global efficiency Eglob, and it measures the global efficiency of parallel
information transfer in a network. (B) Local efficiency Eloc, and it measures how efficient communication is among the first neighbors of a given node when it is
removed. (C) λ = LSC

p
/

LSC
p Lrand

p . (D) γ = LSC
p
/

Lrand
p . (E) Clustering coefficientCp. (F) Characterized shortest path length of SC network Lp.

TABLE 3 | Group-wise comparisons of AUC values of global and local network metrics.

Age/y aEglob aEloc aLp aCp aλ aγ

8-15 0.0059 ± 0.0013 0.0146 ± 0.0034 5.6431 ± 1.9215 0.0101 ± 0.0021 0.2088 ± 0.0168 0.7782 ± 0.2151

25-35 0.0061 ± 0.0024 0.0126 ± 0.0049 4.8403 ± 1.1238 0.0112 ± 0.0037 0.2301 ± 0.0344 1.0163 ± 0.2300

45-55 0.0048 ± 0.0024 0.0158 ± 0.0054 7.5264 ± 1.1707 0.0095 ± 0.0035 0.2314 ± 0.0307 0.8036 ± 0.1806

65-75 0.0045 ± 0.0014 0.0092 ± 0.0045 7.9390 ± 1.4663 0.0070 ± 0.0031 0.2209 ± 0.0305 0.9345 ± 0.2775

These values were the fitted AUC values (mean ± SD).
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FIGURE 4 | Age-related changes in structural connectivity networks. (A) Kruskal–Wallis tests were performed to examine topological differences across age groups,
and aEloc, aGamma and aCp can significantly differentiate age groups (p-value < 0.05). (B) The trajectories of aEg, aEloc, and aCp are statistically significant at
p-value < 0.05.

(van den Heuvel and Sporns, 2013), integrating information
to support complex cognitive functions. Network nodes were
considered to be brain hubs if their nodal efficiency Enodal was
at least one standard deviation greater than the average nodal
efficiency of the network. Group-wise backbone links were also
extracted from structural connectivity networks, which were
formed based on the rich club connections for high-capacity
brain communication (van den Heuvel et al., 2012).

RESULTS

Brain structural connectivity networks were constructed for 48
subjects using probabilistic EAP-based tractography, including
68 nodes (Appendix Table A1). Figure 2 shows the consensus

structural connectivity maps for each age group. These adjacency
matrices were symmetric, with self-connections excluded. The
values in these maps were normalized to [0, 1], with higher
values indicating stronger anatomical connectivity. Based on
these adjacency matrices, group-wise topological properties
were examined to find the structural connectivity differences
between age groups.

Network Metrics
All examined groups showed a small-world organization,
characterized by γ >> 1 and λ > 1 (Figures 3C,D). Compared
with other groups, the subjects aged 65–75 years had significantly
decreased Eglob, Eloc, and Cp, along with increased Lp
(Figures 3A,B,E,F). The descriptive statistics for the AUC
values of the thresholded graph metrics are provided in Table 3.
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FIGURE 5 | 3D distribution of hub regions in the structural connectivity
networks of the four age groups. The hub nodes are shown in brown with
node sizes indicating their nodal efficiency values. The hub regions were
mapped onto the cortical surface at the left, top, and right views. For the
index of hub nodes, see Table 4. The brain graphs were visualized by using
BrainNet Viewer software (Xia et al., 2013).

Kruskal–Wallis tests indicate that Eloc,Cp, and γ significantly
differentiate the four age groups (p-value< 0.05) (Figure 4A). All
metrics show a parabolic relationship with age from childhood
to old age (Figure 4B), although the R2 values (5.25–22.31%)
were relatively low.

Hub Regions
Hub regions were identified from the SC networks of each
group. The nodes were considered as network hubs if their nodal
efficiencies were at least one standard deviation greater than the
average nodal efficiency of the network (Cao et al., 2013). The
four age groups showed highly similar hub distributions, with
core regions mainly in the frontal (region indices: 25, 59, 63)
and parietal cortices (region indices: 23, 57, 64, 66) (Desikan
et al., 2006), consistent with previous structural connectivity
network studies on healthy adults (Sporns, 2013; van den Heuvel
and Sporns, 2013). Group-wise analysis using the GRETNA
toolbox then revealed that the 65–75 age group had reduced
nodal efficiency in the inferior parietal (left hemisphere), inferior
temporal (left hemisphere), middle temporal (left hemisphere),
precuneus (left and right hemispheres), inferior parietal (right
hemisphere), lateral occipital (right hemisphere), and superior
parietal (right hemisphere) cortices (Figure 5 and Table 4).

Backbone Links
The number of brain structural backbone links in each age group
is shown across threshold values in Figure 6, with the specific
brain backbone links for each age group at a threshold of 021
shown in Figure 7. Results suggest that the number of backbone
links in SC networks of the 65–57 years group significantly
decreased as thresholds increased (Figure 6). However, the
average backbone connection strengths showed no significant
differences between age groups (Table 5).

DISCUSSION

The performance of humans on formal cognitive testing and
real world cognitive function declines with aging, generally
peaking in the 20s and lessening thereafter. Understanding
these changes will be critical for gaining insights into the age-
associated risk of multiple neurodegenerative disorders and the
increased sensitivity of people with aging to various insults, such
as infections and brain trauma. Understanding these underlying
mechanisms is a first step toward treating or preventing them.
Studying structural connectivity may provide vital information
for understanding these normal processes of the aging brain and
hence its increased vulnerability over the lifespan.

Heretofore, many studies have relied on traditional
reconstruction methods that show limited performance
when applied to complex fiber populations. In this preliminary
study, the performance of a novel Ensemble Average Propagator-
based probabilistic tractography method was evaluated as it
reconstructed the brain structural connectivity networks of 48
subjects obtained from the HCP and OASIS3 databases. The
results suggest a non-linear evolution of age-dependent brain
structural connectivity network properties.

The current investigation presents a novel application of the
EAP. Previous EAP methods have been used to improve the
diagnosis of Parkinson’s disease, stroke detection, and brain
tissue assessment (Banerjee et al., 2016; Brusini et al., 2016;
Zucchelli et al., 2016); however, this is its first use at addressing
structural connectivity. The current probabilistic method was
modified from Iturria-Medina et al. (2007), extracting diffusion
directions from EAP and avoiding exhaustive searches to identify
the strongest paths between different ROIs.

Results obtained through this approach suggest that critical
brain structural connectivity properties are conserved
throughout the development process, which supports
the conclusion that small-world networks are resilient to
developmental alteration (Hagmann et al., 2008; Gong et al.,
2009; He et al., 2009; Supekar et al., 2010). Despite retaining a
small-world topology, however, the 65–75 years subjects showed
decreased global efficiency, local efficiency, and increased
path length (Figure 3). These findings may reflect structural
degeneration due to neuron death or fiber breakdown. These
results are supported by a recent study that reported reduced
global efficiency in the functional brain networks of older
adults (Damoiseaux, 2017). Another study, however, found
no differences in global efficiency (Gong et al., 2009). Lack of
differences may be ascribed to the use of a diffusion tensor
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TABLE 4 | Hub regions distributed in SC networks of the four age groups.

8-15 25-35 45-55 65-75

Hub regions (index) aEnodal Hub regions (index) aEnodal Hub regions (index) aEnodal Hub regions (index) aEnodal

16 0.0082 8 0.0103 7 0.0118 7 0.0130

23 0.0087 9 0.0092 8 0.0089 8 0.0143

25 0.0088 16 0.0088 16 0.0087 23 0.0136

29 0.0091 23 0.0105 23 0.0092 30 0.0148

31 0.0084 25 0.0102 25 0.0089 42 0.0105

42 0.0087 26 0.0089 30 0.0107 43 0.0087

44 0.0086 30 0.0104 32 0.0082 46 0.0100

59 0.0097 31 0.0083 38 0.0086 48 0.0100

60 0.0089 32 0.0101 41 0.0092 50 0.0100

62 0.0081 43 0.0082 42 0.0090 56 0.0087

63 0.0093 46 0.0086 46 0.0096 57 0.0107

64 0.0087 48 0.0090 50 0.0089 59 0.0104

66 0.0082 56 0.0085 57 0.0086 60 0.0091

57 0.0097 59 0.0084 64 0.0083

59 0.0089 60 0.0099

60 0.0097 64 0.0119

64 0.0094

66 0.0089

The nodes were considered brain hubs if their nodal efficiencies were at least 1 SD greater than the average nodal efficiency of the network. The corresponding indexes
(see Appendix Table A1) are listed.

FIGURE 6 | Number of backbone links of the structural connectivity networks
of the four age groups. For the 65–75 group, the number of backbone links is
decreases significantly. For other groups, there are some minor differences.

model neural tracking that cannot resolve multiple fiber
populations in a DWI voxel.

To examine the topological changes that occur over the
lifespan here, a quadratic regression model was fit to the
AUC values of each network metric (Figure 4). These results
suggest that the lifetime development of structural cortical
networks follows a non-linear trajectory. From 7 to 35 years,
brain networks strengthen with growth, training, and learning.
From 35 to 75 years, however, the network is gradually
reduced as overall cortical connectivity declines. These results
are mostly consistent with a recent study performed by Zhao
et al. (2015), which found a similar non-linear trajectory of
structural changes. The present study then investigated the

patterns of specific network topological properties. In this
way, global efficiency, local efficiency, small-worldness, and
cluster coefficients were found to follow negative parabolic
trajectories, while characteristic pathway lengths followed a
positive parabolic trajectory.

These findings complement the negative parabolic trajectories
that were uncovered for the global network properties (Zhao
et al., 2015), including network strength, cost, topological
efficiency, and robustness. Together, these results suggest that
the overall shape of graph network trajectories is consistent and
that SC network changes during development and aging are non-
linear. These results, then, identify possible structural substrates
underlying functional and cognitive changes during development
and aging and may be important for separating pathogenic
changes from normal aging processes. Some minor differences
between these two studies may arise from differences in the
dataset, tractography method, and brain parcellation schemes.
The current EAP-based probabilistic tractography method has
shown to improve fiber tracking accuracy (Descoteaux et al.,
2009). Given the scarcity of data, future studies will be required
to further corroborate these important findings.

To identify the hub regions, we examined the nodal efficiency
of each cortical region. In the 8–15 age group, 13 regions were
identified as the hubs by their large nodal efficiency Enodal
values. In the 25–35 and 45–55 age groups, 18 and 16 regions
were identified as the hubs, respectively, and 14 regions were
identified as hubs in the 65–75 age group (Table 4). Identified
hubs were predominately located in regions of the frontal and
parietal cortices that connected with multiple other cortical
regions (Mesulam, 1998). This dense interconnectivity suggests
their pivotal roles in the human structural cortical networks.
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FIGURE 7 | Backbone connections of brain structural connectivity networks
of four groups at the strength threshold of 0.21. The links were mapped into
the brain at the left, top, and right views. The edge widths represent the
connection weights between nodes. The brain graphs were visualized by
using BrainNet Viewer software (Xia et al., 2013).

The findings align with several previous studies, in which these
cortical regions were identified as critical nodes in both structural
and functional brain networks in humans (Achard et al., 2006;
He et al., 2007). Finally, it should be noted that only the 3rd
and 4th age groups included data from both the OASIS3 and
HCP datasets. Consequently, these groups included subjects who
were scanned using different systems with different acquisition
parameters. Although the overall data showed the same trends,
the effect that these protocol variations may have had on network
construction remains to be studied.

Backbone connections were then investigated across age
groups. Although all age groups showed decreases in the
backbone number as the threshold increased, the number of
backbone connections in the 65–75 years group showed a

particularly noteworthy reduction (Figure 6). The connections
that survived at the highest threshold value were primarily
composed of the prefrontal cortex and the insular cortex
(Figure 7). These results suggest a strong correlation between
the SC wiring within the prefrontal and insular cortex and
the behavioral symptoms of old age, such as inattention and
amnesia. While the adoption of a lower threshold may provide
a more comprehensive snapshot of the structural network,
probability-based approaches carry the possibility of identifying
spurious nerve fiber connections between regions that are not
biologically connected. The use of a high probability threshold
may assuage this issue and suggests that present results are
not dependent on an arbitrarily chosen threshold. To ensure
that spurious connections were removed, a range of thresholds
were applied between 0.05 and 0.21 in intervals of 0.02. Links
whose connection strength fell below the chosen threshold were
excluded from topological analysis ensuring that only strong
connections were retained. Despite the tested range, no threshold
value caused a significant change in the non-linear patterns of
age-dependent brain structural connectivity networks.

The human brain undergoes both macro- and micro-scale
structural changes throughout its lifespan (Lebel and Deoni,
2018). The white matter plasticity in response to learning or
environmental stimuli can alter the brain’s structural connectivity
network, although the magnitude and time course of these
changes can vary. Comprehensive lifespan studies provide
valuable insight into the processes of macrostructural brain
changes and have contributed to our understanding of brain
development (Gong et al., 2009; Hagmann et al., 2010; Betzel
et al., 2014; Otte et al., 2015; Zhao et al., 2015). The large-scale
brain changes during development provide a context for studying
white matter changes at the macroscopic level. The current
work aimed to characterize normative brain development from
8 to 75 years, emphasizing group-wise comparative studies and
statistical techniques to study structural connectivity network
development. Previous studies have demonstrated consistent,
rapid white matter development over the first 3 years of
life, suggesting increased myelination and axonal packing
(Huang et al., 2013). Results here clearly demonstrates that
the structural connectivity network continually strengthens
during later childhood, adolescence, and adulthood, due to
white matter changes.

There are several limitations to this study. First, this study
had a relatively small sample size (N = 48) and results should be
interpreted in that context. Nevertheless, the parabolic patterns
of functional changes observed using the novel EAP method are
promising, suggesting that an EAP-based method is a reliable tool

TABLE 5 | Connection strength of backbone links at different thresholds.

>0.05 >0.09 >0.13 >0.17 >0.21

8–15 0.1414 ± 0.0947 0.1900 ± 0.0932 0.2295 ± 0.0904 0.2660 ± 0.0892 0.3066 ± 0.0842

25–5 0.1556 ± 0.1157 0.1993 ± 0.1198 0.2457 ± 0.1225 0.2947 ± 0.1218 0.3467 ± 0.1172

45–55 0.1675 ± 0.1200 0.2207 ± 0.1183 0.2603 ± 0.1143 0.2904 ± 0.1109 0.3254 ± 0.1077

65–75 0.1409 ± 0.1050 0.1956 ± 0.1115 0.2304 ± 0.1150 0.2657 ± 0.1195 0.3154 ± 0.1303

These values are probability values (mean ± SD) of links in each group.
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for future studies. These preliminary findings will require further
corroboration from future studies with larger-sample sizes.
Second, a probabilistic tractography method based on EAP was
used to construct whole-brain neural connectivity, which is more
capable of tracking complicated fiber tracts than deterministic
tractography methods (Behrens et al., 2007). While this provides
a better reconstruction of the brain structural network, the
reliance on a probabilistic method allows for connections to be
drawn between regions that are not biologically linked. Spurious
connections are likely to show limited connection strength,
however, so the adoption of a high probability threshold should
minimize this issue, and the number of remaining connections
further suggests that results were not dependent on an arbitrarily
chosen threshold.

Third, the whole-brain structural connectivity networks were
only derived from DWI data. The brain networks can also be
studied using both structural and functional MRI data. The
combination of multimodal neuroimaging techniques should
add considerably to our understandings of how age-linked
structural disruptions in neuronal circuits are associated with
functional alterations. Lastly, subjects from the different datasets
(HCP and OASIS3) were collected using different scanners
and different acquisition protocols, the effects of which are
currently unknown and require further study. Although T1-
weighted images were denoised through a non-local SVD method
(Wu et al., 2019b), alleviating the possible influences of white
matter hyperintensities (WMH) on the WM segmentation, future
investigations will be necessary to understand the extent to
which WMHs could affect EAP calculation (Popescu et al.,
2014; Valverde et al., 2014; Prados et al., 2016). Finally, several
studies have suggested that the graphic metrics of whole-brain
structural connectivity networks are heavily dependent on the
resolution of their cortex parcellation (Wang et al., 2009). In
the future, different parcellation schemes should be used in
conjunction to provide a holistic investigation of topological SC
network features.

CONCLUSION

Non-linear parabolic patterns of age-dependent brain structural
connectivity network properties were observed across the age
ranges of 8–75 years using a probabilistic Ensemble Average
Propagator-based tractography method. This novel method
provided a reliable method to construct macroscale structural
connectivity networks that capture age-associated changes in
brain structure. This study reveals new insights into age

related changes in cognitive function that are observed clinically
and starts the process of helping us understand where to
focus our efforts at understanding the very important, age-
related brain changes that markedly increase vulnerability
to neurodegenerative disorders. Understanding age-related
vulnerability, in turn, will help us design methods to reduce these
age related risks.
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APPENDIX

The cerebral cortex was parcellated into 68 functional areas, 34 for each hemisphere. The indexes and their corresponding names of
function regions are provided in Appendix Table A1.

TABLE A1 | Cerebral cortex was parcellated into 68 functional areas, 34 for each hemisphere.

Index Region Index Region Index Region Index Region

1 lh.bankssts 18 lh.parahippocampal 35 rh.bankssts 52 rh.parahippocampal

2 lh.caudalanteriorcingulate 19 lh.parsopercularis 36 rh.caudalanteriorcingulate 53 rh.parsopercularis

3 lh.caudalmiddlefrontal 20 lh.parsorbitalis 37 rh.caudalmiddlefrontal 54 rh.parsorbitalis

4 lh.cuneus 21 lh.parstriangularis 38 rh.cuneus 55 rh.parstriangularis

5 lh.entorhinal 22 lh.pericalcarine 39 rh.entorhinal 56 rh.pericalcarine

6 lh.frontalpole 23 lh.postcentral 40 rh.frontalpole 57 rh.postcentral

7 lh.fusiform 24 lh.posteriorcingulate 41 rh.fusiform 58 rh.posteriorcingulate

8 lh.inferiorparietal 25 lh.precentral 42 rh.inferiorparietal 59 rh.precentral

9 lh.inferiortemporal 26 lh.precuneus 43 rh.inferiortemporal 60 rh.precuneus

10 lh.insula 27 lh.rostralanteriorcingulate 44 rh.insula 61 rh.rostralanteriorcingulate

11 lh.isthmuscingulate 28 lh.rostralmiddlefrontal 45 rh.isthmuscingulate 62 rh.rostralmiddlefrontal

12 lh.lateraloccipital 29 lh.superiorfrontal 46 rh.lateraloccipital 63 rh.superiorfrontal

13 lh.lateralorbitofrontal 30 lh.superiorparietal 47 rh.lateralorbitofrontal 64 rh.superiorparietal

14 lh.lingual 31 lh.superiortemporal 48 rh.lingual 65 rh.superiortemporal

15 lh.medialorbitofrontal 32 lh.supramarginal 49 rh.medialorbitofrontal 66 rh.supramarginal

16 lh.middletemporal 33 lh.temporalpole 50 rh.middletemporal 67 rh.temporalpole

17 lh.paracentral 34 lh.transversetemporal 51 rh.paracentral 68 rh.transversetemporal

The prefix of lh indicates left hemisphere, and rh represents right hemisphere. The numbers are the indexes of function regions.
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