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Abstract
Most edges are anthropogenic in origin, but are distinguishable by their maintaining 
processes (natural vs. continued anthropogenic interventions: forestry, agriculture, ur-
banization). We hypothesized that the dissimilar edge histories will be reflected in the 
diversity and assemblage composition of inhabitants. Testing this “history-based edge 
effect” hypothesis, we evaluated published information on a common insect group, 
ground beetles (Coleoptera: Carabidae) in forest edges. A meta-analysis showed that 
the diversity-enhancing properties of edges significantly differed according to their 
history. Forest edges maintained by natural processes had significantly higher species 
richness than their interiors, while edges with continued anthropogenic influence did 
not. The filter function of edges was also essentially different depending on their his-
tory. For forest specialist species, edges maintained by natural processes were pene-
trable, allowing these species to move right through the edges, while edges still under 
anthropogenic interventions were impenetrable, preventing the dispersal of forest 
specialists out of the forest. For species inhabiting the surrounding matrix (open-
habitat and generalist species), edges created by forestry activities were penetrable, 
and such species also invaded the forest interior. However, natural forest edges con-
stituted a barrier and prevented the invasion of matrix species into the forest interior. 
Preserving and protecting all edges maintained by natural processes, and preventing 
anthropogenic changes to their structure, composition, and characteristics are key 
factors to sustain biodiversity in forests. Moreover, the increasing presence of anthro-
pogenic edges in a landscape is to be avoided, as they contribute to the loss of biodi-
versity. Simultaneously, edges under continued anthropogenic disturbance should be 
restored by increasing habitat heterogeneity.
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1  | INTRODUCTION

Worldwide fragmentation and loss of natural habitats increase the 
occurrence of habitat edges (also termed ecotones, boundaries, 

borders, and interfaces) that are transitional zones between adjoin-
ing ecosystems or habitats (Ewers & Didham, 2008; Lövei, Magura, 
Tóthmérész, & Ködöböcz, 2006; Ries, Fletcher, Battin, & Sisk, 2004). 
Abiotic conditions at habitat edges substantially differ from those 
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in either adjacent habitats (Ewers & Didham, 2006; Murcia, 1995). 
This can have direct impacts on the spatio-temporal distribution and 
dynamics of many species, as well as modify species interactions (pre-
dation, parasitism, competition, herbivory, pollination, and seed dis-
persal; Murcia, 1995). These abiotic, direct, and indirect biotic changes 
collectively constitute the so-called edge effect (Murcia, 1995). 
Because of the importance and ubiquity of edges, ecological responses 
to their presence have been extensively researched (Ries et al., 2004). 
Ries and Sisk (2004) and Ries et al. (2004) developed a unified model 
predicting changes in abundance near edges for any species in any 
landscape. This unified model identifies ecological flows, access to 
spatially separated resources, resource mapping, and species interac-
tions as fundamental mechanisms that change species abundance pat-
terns across habitat edges. However, some variability remains unex-
plained, which makes generalizations difficult (Ries & Sisk, 2010). Edge 
orientation (Ries et al., 2004), temporal effects (Ries et al., 2004), hab-
itat fragmentation effects (Hardt et al., 2013; Ries et al., 2004), edge 
contrast (Peyras, Vespa, Bellocq, & Zurita, 2013; Ries et al., 2004), 
magnitude of the edge effect (Ewers & Didham, 2006), species traits 
(Carvajal-Cogollo & Urbina-Cardona, 2015; Peyras et al., 2013), and 
habitat suitability (Peyras et al., 2013) were identified as possible fac-
tors responsible for the remaining variation.

However, habitat edges may also differ in their origin and main-
taining processes; therefore the age, history, and the origin of edges 
can also be important drivers of the edge effect (Strayer, Power, Fagan, 
Pickett, & Belnap, 2003). The history of a habitat edge may determine 
its structural and functional properties and its ecological conditions 
(Strayer et al., 2003). In tropical forest patches, the function and struc-
ture of edges depend on their history, and the permeability of edges 
decreases with their development (“edge sealing”; Williams-Linera, 
1990). This can be generalized into an edge history hypothesis: Edges 
created by forces no longer in operation, and maintained only by nat-
ural processes (mainly by succession) and edges repeatedly disturbed 
by anthropogenic activities (forestry, agriculture, urbanization) have 
different structural and functional characteristics and have different 
influence on species richness and assemblage composition (Strayer 
et al., 2003; Turner, Gardner, & O’Neill, 2001).

Although the history and maintenance of habitat edges have rele-
vance, their impact on the edge effect has not yet been tested. Here, 
we report the results of a meta-analysis, synthesizing the effects of 
edges with different history on a common and widespread inverte-
brate group. We focused on forest edges, which are one of the most 
common habitat edges within terrestrial landscapes (Murcia, 1995). 
We distinguished forest edges maintained by natural processes (suc-
cession, irregular extensive grazing, and irregular mowing) from edges 
repeatedly disturbed and maintained by anthropogenic influence. 
Ground beetles (Coleoptera: Carabidae) were selected as study objects 
because they are taxonomically well known, common in most terres-
trial habitats (Lövei & Sunderland, 1996), may serve as a keystone 
group (Mills, Soulé, & Doak, 1993), have often been used as indicators 
of environmental quality (Spellerberg, 1994), and there exist sufficient 
data on carabids in forest edges to make them suitable for testing the 
edge effect. Studies of edge effect on ground beetles reported findings 

that are contradictory or inconsistent. Some papers reported higher 
species richness in edges than in the forest interiors (e.g., Magura, 
2002; Magura, Tóthmérész, & Molnár, 2001), while others showed no 
significant difference in species richness between edges and interiors 
(e.g., Kotze & Samways, 2001; Taboada, Kotze, & Salgado, 2004).

We hypothesized that the reported inconsistency is caused by 
differences between forest edges maintained by natural processes 
vs. those under repeated anthropogenic influence (e.g., forestry, agri-
culture, urbanization). More specifically, we hypothesized that forest 
edges maintained by natural processes have significantly higher cara-
bid diversity than their interiors, while edges with continued anthro-
pogenic influence do not. We also hypothesized that species with dif-
ferent habitat affinities show idiosyncratic responses to forest edges, 
and edges still under anthropogenic influences are more easily pene-
trable for matrix species. We call this the “history-based edge effect” 
hypothesis. We tested these hypotheses by a meta-analysis using sub-
group analyses, which is an appropriate method to determine whether 
the edge effect on ground beetles differs significantly at edges with 
different history (Borenstein, Hedges, Higgins, & Rothstein, 2009).

Our analysis shows that carabid diversity is higher only at edges 
not under continued human influence. We also found that the edges 
are penetrable for certain groups of species while impermeable to oth-
ers, depending on the origin and development of the edges, support-
ing the history-based edge effect hypothesis.

2  | MATERIALS AND METHODS

2.1 | Literature search and data selection

We collected data by performing a literature search on Web of 
Science (now incorporating several biological databases) for the 
period 1975–2015, using the following search terms: TOPIC = (for-
est* OR woodland*) AND TOPIC = (edge* OR margin* OR ecotone*) 
AND TOPIC = (carabid* OR ground beetle*). Additionally, we scanned 
the reference section of the publications found in this search for addi-
tional, undetected, relevant publications. We did not distinguish by 
publication forum, and “gray literature” was also considered to avoid 
selection bias (Pullin & Stewart, 2006). To be included, a paper had to 
report data on carabid abundance and/or species richness, compar-
ing at least a clearly defined forest interior and a forest edge. Data 
were extracted from text, tables, and graphs. From papers that stud-
ied carabids along transects, only data from the interiormost forest 
locations were used. Distance of the innermost forest locations from 
the edges was 25–150 m; thus, samples from the forest locations 
could be regarded as statistically independent from those in the edges 
(Digweed, Currie, Cárcamo, & Spence, 1995). Samples in the forest 
edges were collected in the 0–15 m edge zone, where 0 m represents 
the line of outermost trees.

2.2 | Classification of edges based on their origin

Forest edges were classified according to their maintaining processes. 
Edges whose neighboring habitats have been unmanaged (forest 
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interiors without fire, cutting or thinning; adjacent grasslands or mead-
ows without burning, intensive grazing, or mowing) for at least 50 years 
were classified as edges maintained by natural processes. These edges 
are maintained by natural processes (such as succession) or irregular 
interventions (irregular mowing and irregular extensive grazing), with 
succession starting between such disturbance events. Edges created 
by forestry activities (clear-cutting, forest management), urbanization 
(forest patches embedded in, and adjacent to an urbanized area) or 
agriculture (the neighboring habitat cultivated or intensively grazed, 
mowed, and/or regularly burned), and repeatedly disturbed by such 
operations were termed edges under continued anthropogenic influ-
ence. Anthropogenic influences, including forestry operations, man-
agement of the urban environment, tillage, pesticide, herbicide and 
fertilizer use, intensive grazing, mowing, and repeated fires lead to 
simplified forest edges (Boutin & Jobin, 1998; Harper et al., 2005), 
because these disturbances repeatedly disrupt population, commu-
nity, and ecosystem structures, and change resource availability, sub-
strate structure, and/or the physical environment (Pickett & White, 
1985). Forest edges maintained by natural processes are well struc-
tured, have stratified vegetation layers, and contain a mixture of plant 
species from the adjoining habitats (Forman & Godron, 1986).

2.3 | Evaluation methods

At the assemblage level, the mean overall abundance and species rich-
ness of ground beetles (Coleoptera: Carabidae) were analyzed. Species 
with different habitat affinities may show different responses to edge 
effect; therefore, ground beetles were classified by habitat prefer-
ence, distinguishing (1) forest specialists (species associated with for-
est habitats); (2) habitat generalists (species occurring both in forests 
and other habitats); and (3) species associated with open habitats. 
Such information was accepted if stated in the original paper; if not 
given, it was retrieved from the literature (Bousquet, 2010; Freude, 
Harde, & Lohse, 1989; Hůrka, 1996; Lindroth, 1985), or from Internet 
databases. Species whose habitat affinity could not be unequivocally 
categorized were not included into the analyses. Subsequently, forest, 
generalist, and open-habitat species were evaluated separately.

2.4 | Statistical analyses

For each edge-to-interior comparison, a common effect size, the 
unbiased standardized mean difference (Hedges’ g) was calculated 
between forest interior and forest edge: 

 

 and 

where XF and XE are the mean abundance or species richness of forest 
interior and forest edge, respectively, nF and nE are the sample sizes of 
the forest interior and forest edge, and SF and SE are their respective 
SD values. A negative g value means higher abundance or species rich-
ness in forest edges than interiors.

We used subgroup meta-analysis to determine whether the edge 
has an effect on ground beetle abundance and species richness 
according to forest edge history. The two main groups were forest 
edges maintained by natural or anthropogenic processes. Edges with 
anthropogenic disturbances were further divided into subgroups 
based on the type of human influence (forestry, urbanization, or agri-
culture). We estimated the overall effect and examined the effects of 
moderators (edge history; type of anthropogenic influence) using a 
random-effects model. The random-effects model was used because 
studies were not expected to estimate a common effect size due to 
variation in regions, locations, conditions, experimental setups, and 
research methods used in the individual studies (Borenstein et al., 
2009). Random-effect models are more plausible than fixed-effect 
ones because they attribute the distribution of effect sizes to real 
differences among studies and do not assume sampling error as the 
only source of differences (Borenstein et al., 2009). The mean effect 
size was considered statistically significant if the 95% bootstrap con-
fidence interval (CI; calculated with 999 iterations) did not include 
zero.

We assessed whether effect sizes were homogenous or varied 
across studies (i.e., if there was heterogeneity), because if effect sizes 
vary across studies, the interpretation of results will be substantially 
different than under consistent effect sizes. To describe the het-
erogeneity, complementary measures, Q, T2, and I2, were estimated 
(Borenstein et al., 2009). Using a Q-test based on analysis of vari-
ance, we partitioned the total variance (Qtotal) into within- (Qwithin) and 
between group (Qbetween) variances, and these were tested for statisti-
cal significance (Borenstein et al., 2009). Significant variance between 
groups (Qbetween) means that edge effect on species richness or abun-
dance significantly differed according to the history or the continued 
anthropogenic influence. To evaluate the proportion of true variance 
explained by the covariates (subgroup classification), the R2 was cal-
culated (Borenstein et al., 2009). During the calculations, subgroups 
with less than five cases were excluded from subgroup (categorical) 
analyses.

Meta-analyses are often exposed to publication bias resulting in 
missing studies and a potentially biased effect sizes (Borenstein et al., 
2009). Therefore, we tested the publication bias using funnel plots and 
the Egger test (Borenstein et al., 2009). In case of significant asym-
metry, the trim and fill method was used as suggested by Duval and 
Tweedie (2000). This method calculates the number of missing studies 
and estimates their effect sizes as well as standard errors; then, these 
missing studies are added to the data set and the summary effect size 
is recomputed. This method yields an unbiased estimate of the sum-
mary effect size (Borenstein et al., 2009). Meta-analyses, heterogene-
ity measures, and assessing publication bias were completed by the 
MAd and metafor packages (Del Re & Hoyt, 2014; Viechtbauer, 2010) 
operated in the R version 3.2.0.
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3  | RESULTS

The literature search yielded 204 publications. After applying the 
selection criteria, 53 papers were retained. Of these, mean abundance 
and/or species richness with standard deviations, and sample sizes 
for forest interiors and edges were recoverable from 39 publications. 
Twelve papers studied forest edges maintained by natural processes, 
26 papers investigated edges maintained by continued anthropogenic 
interventions, and a single study examined both. Edges maintained by 
human influence were further grouped according to the activity type: 
forestry (10 papers), urbanization (three papers), or agriculture (13 
papers). Studies were carried out on all continents (except Antarctica), 
with a majority from Europe (21 papers); the number of experiments 
from Asia (6) and North America (7) were almost equal. Few papers 
reported work on African, Australian (two each), and South American 
(1) forest edges (see Appendix S1).

3.1 | Edge responses at assemblage level

Ground beetle abundance was not significantly different according to 
the history of edges (Qbetween=0.131, df = 1, p = .717; see Appendix 
S2): There was no significant difference in ground beetle abundance 
between forest edges and respective interiors, neither when edges 
were maintained by natural processes nor when edges had continued 
anthropogenic influence (Figure 1a). Total heterogeneity in the over-
all model, however, was significant (Qtotal = 195.556, df = 35, p < .001; 
see Appendix S2), and there was also significant residual, unexplained 
heterogeneity (Qwithin = 195.467, df = 34, p < .001; see Appendix S2). 
In anthropogenically maintained edges, the edge effect on abun-
dance was not significantly related to the disturbance type (agricul-
ture vs. forestry; Qbetween = 0.010, df = 1, p = .920; see Appendix S2). 
The abundance of ground beetles in edges and their interiors was 
not significantly different when edges were under agricultural or 
forestry disturbance (Figure 1a). Both the total and the unexplained 

heterogeneities were significant (Qtotal = 88.458, df = 17, p < .001 
and Qwithin = 88.347, df = 16, p < .001, respectively; see Appendix 
S2). Neither the classical nor the random-effects version of the Egger 
test revealed significant asymmetry in the funnel plot, indicating the 
absence of publication bias (see Appendix S3).

Edge effect on species richness was significantly different accord-
ing to edge history (Qbetween = 19.636, df = 1, p < .001; see Appendix 
S2). Forest edges maintained by natural processes had significantly 
higher species richness than their interiors, while edges under contin-
ued anthropogenic influence showed no such difference (Figure 1b). 
Although the covariates accounted for substantial proportion of true 
variance (R2 = 37.16%), there was still significant unexplained hetero-
geneity (Qwithin = 159.651, df = 41, p < .001; see Appendix S2). The 
edge effect on species richness was not significantly related to the 
type of disturbance (Qbetween = 0.696, df = 1, p = .404; see Appendix 
S2). In either type of anthropogenically disturbed edges (forestry or 
agriculture), the species richness in edges vs. interiors was not sig-
nificantly different (Figure 1b). Both the total and the unexplained 
heterogeneities were significant (Qtotal = 88.448, df = 23, p < .001 
and Qwithin = 88.291, df = 22, p < .001, respectively; see Appendix 
S2). There was no publication bias regarding species richness (see 
Appendix S3).

3.2 | Edge responses by habitat affinity

The edge effect on the abundance of forest specialist species was 
related to edge history (Qbetween = 11.733, df = 1, p = .001; see 
Appendix S2). The abundance of forest species was not significantly 
different between edges maintained by natural processes and their 
interiors, but was significantly lower in the edges than in the interior 
in the case of edges under anthropogenic disturbance (Figure 2a). 
The classification of edges according to the maintaining processes 
(covariates) accounted for a small proportion only of the true vari-
ance (R2 = 4.14%); consequently, both the total and the unexplained 
heterogeneities were significant (Qtotal = 1008.142, df = 216, p < .001 

F IGURE  1 Mean effect sizes of 
random-effect models (mean Hedges’ g 
±95% confidence interval) for abundance 
(a) and species richness (b) of ground 
beetles. Values in brackets refer to the 
number of comparisons from which 
the mean effect size was calculated. A 
negative g value means higher abundance 
or species richness in forest edges than 
interiors. The mean effect size was 
considered statistically significant if 
the 95% bootstrap confidence interval 
(CI) did not include zero. “Edges with 
human influences” represents data from 
edges under anthropogenic influence 
(agriculture, forestry, industry, recreation, 
or urbanization)
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and Qwithin = 983.506, df = 215, p < .001, respectively; see Appendix 
S2). Nonetheless, the edge effect on the abundance of forest spe-
cies significantly differed according to the type of human distur-
bance (Qbetween = 10.439, df = 2, p = .005; see Appendix S2). In edges 
disturbed by agriculture or urbanization, significantly fewer forest 
specialists were in the edges than their interiors, while there was no 
such significant difference in forestry-influenced edges (Figure 2a). 
Both the total and the unexplained heterogeneities were signifi-
cant (Qtotal = 185.32, df = 68, p < .001 and Qwithin = 168.443, df = 66, 
p < .001, respectively; see Appendix S2). Both regression tests 
showed significant funnel plot asymmetries. The trim and fill method 
estimated 15 missing values, but adding these did not change the non-
significance of the overall effect in the model (see Appendix S3).

The edge effect on the abundance of generalist species was not 
significantly different by either the history of edges or the type of 
human influence (Qbetween = 0.064, df = 1, p = .8 and Qbetween = 3.061, 
df = 1, p = .08, respectively; see Appendix S2). Overall, the abundance 
of generalist species was significantly higher in the edges than inte-
riors. However, abundance was not significantly different between 
edges disturbed by forestry and their respective interiors (Figure 2b). 
In all models, both the total and the unexplained heterogeneities were 
significant (see Appendix S2). The random-effects version of the Egger 

test indicated funnel plot asymmetry, but the trim and fill procedure 
(adding 38 data points) did not change the significance of the overall 
effect (see Appendix S3).

The edge effect on the abundance of open-habitat species was 
not related to the edge history (Qbetween = 0.664, df = 1, p = .415; see 
Appendix S2). Their abundance was always higher in the edges than 
interiors, both in edges maintained by natural processes and anthropo-
genically maintained edges. However, forestry-influenced edges and 
their interiors did not have significantly different numbers of open-
habitat individuals (Figure 2c). Neither the total nor the unexplained 
heterogeneities were significant (see Appendix S2). There was asym-
metry in the funnel plot, but the recomputed model did not give a 
different outcome, even though 23 missing values were added (see 
Appendix S3).

4  | DISCUSSION

4.1 | Diversity-enhancing properties of the edges

Forest edges maintained by natural processes have a stratified hori-
zontal structure, with a shrub and sapling zone (so-called mantel) 
toward the forest interior, and a perennial herb layer (saum) toward 

F IGURE  2 Mean effect sizes of 
random-effect models (mean Hedges’ 
g ±95% confidence interval) for the 
abundance of forest specialist (a), generalist 
(b), and open-habitat ground beetle species 
(c). Values in brackets refer to the number 
of species for whose abundance the mean 
effect size was calculated. A negative g 
value means higher abundance in forest 
edges than interiors. The mean effect size 
was considered statistically significant if 
the 95% bootstrap confidence interval 
(CI) did not include zero. “Edges with 
human influences” represents data from 
edges under anthropogenic influences 
(agriculture, forestry, industry, recreation, 
or urbanization)
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the open habitat (Forman & Godron, 1986). Because of this physiog-
nomy, edges maintained by natural processes have a distinct microcli-
mate, high habitat heterogeneity, and environmental conditions that 
vary at a modest amplitude (Cadenasso, Pickett, Weathers, & Jones, 
2003; Harper et al., 2005). In contrast, forest edges still under anthro-
pogenic influence are repeatedly exposed to direct (by forest manage-
ment, management of urban environments, tillage, plowing, intensive 
grazing, mowing, and fires), and/or indirect (pesticide, herbicide, and 
fertilizer drift) disturbance. Therefore, edges under human influence 
have more widely fluctuating microclimatic and environmental condi-
tions. Due to the dissimilar structure, environmental conditions, and 
habitat heterogeneity of edges of different history, their diversity-
enhancing properties are also different. Forest edges maintained by 
natural processes commonly contain species from both adjoining habi-
tats but also species characteristic of, and often restricted to, the edge 
(Lacasella et al., 2015; Magura, 2002; Magura et al., 2001). Moreover, 
forest edges maintained by natural processes are rich in microhabitats 
and food supply (Cadenasso et al., 2003); therefore, many species visit 
these edges for feeding, reproducing, resting, and overwintering dur-
ing their life cycles resulting in a higher species richness in these forest 
edges than in the adjoining habitats (Odum, 1971). Changes in veg-
etation structure and composition, microclimate, and microhabitats 
in the forest edges under human influence are detrimental for both 
species from the neighboring habitats and the edge-preferring ones 
(Murcia, 1995). Consequently, overall species richness in such edges 
may not be higher than in the adjoining habitats as our analysis of data 
on ground beetles also testified. It seems likely that a similar pattern 
exists regarding spiders: higher spider species richness was reported 
in forest edges maintained by natural processes than their interiors 
(Horváth, Magura, Péter, & Tóthmérész, 2002; Lacasella et al., 2015), 
but not in the case of continued anthropogenic influence (Fuller, Irwin, 
Kelly, O’Halloran, & Oxbrough, 2013; Rodrigues, Mendonça, & Costa-
Schmidt, 2014).

4.2 | Filter function of the edges

Forest edges are not only frequent structural components of the land-
scape; they also have important functions regulating biological pro-
cesses, like dispersal or invasibility (Ries et al., 2004). Edges created 
and maintained by forestry (clear-cutting, group felling, other forest 
management) seem to be permeable by matrix species (Strayer et al., 
2003), as these edges allow the open-habitat specialists and gener-
alist species from the surrounding, non-forested matrix to colonize 
the forest interior and the forest specialist species to move the other 
way. Invasion by open-habitat and generalist species into the forest 
interior may cause decline or local extinction of native forest interior 
specialists and facilitate or accelerate further invasion by alien spe-
cies, causing further habitat deterioration of both the edge (Pryke & 
Samways, 2012), and the interior (Pinheiro, Duarte, Diehl, & Hartz, 
2010; Pryke & Samways, 2012). Such damaging effects on the species 
diversity, structure, and function of the forest interiors are increas-
ing (Harper et al., 2005, 2015; Murcia, 1995). Contrary to this trend, 
open-habitat and generalist species were significantly more abundant 

in forest edges maintained by natural processes, indicating an immi-
gration pressure, but they were significantly less numerous in the for-
est interiors, suggesting that these edges operate as an impermeable 
filter, inhibiting these species to penetrate into the forest interior, 
and returning these species to the matrix habitat from which they 
originated (Strayer et al., 2003) or redirecting them to move along the 
edges (Wood & Samways, 1991). Therefore, forest edges maintained 
by natural processes mount biotic resistance against the invasion of 
matrix species into the forest interior. Biotic resistance can be caused 
by the presence of predators, competitors, lack of suitable food, non-
preferred fluctuations in habitat conditions, unsuitable egg-laying 
sites, all of which may cause, alone or in concert, the habitat becoming 
a population sink for these species.

The abundance of forest specialist species showed no significant 
difference between the forest edges maintained by natural processes 
and their interiors, indicating that naturally maintained edges are per-
meable and suitable habitats for forest species. Although we have no 
direct proof, it is likely that they will have opportunities to disperse and 
may reach other forest fragments. Contrary to this, the abundance of 
forest specialist species was significantly lower in edges under contin-
ued anthropogenic influence than in the interiors meaning that such 
edges are practically impenetrable, discouraging the dispersal of forest 
specialists between forest fragments, thereby contributing to higher 
isolation in fragmented landscapes.

Our finding that the edge effect can be mediated by edge history is 
based on a single invertebrate group, ground beetles, which are at the 
consumer trophic level of the food web. Such influence may plausibly 
exist for other organisms with a different trophic position, mobility, 
development type, life history, or life span (see for butterflies Pryke 
& Samways, 2001, 2003). Cadenasso and Pickett (2001) showed that 
more seeds from the surrounding open landscape crossed through 
experimentally thinned forest edges than through the intact edge 
and also dispersed farther into the forest interior. Moreover, similarly 
to our results, previous studies on invertebrates also showed that 
species from the forest interior can move through the forest edges 
maintained by natural processes (for spider, centipedes, and ground 
beetles: Lacasella et al., 2015; for spiders: Gallé & Torma, 2009), while 
these natural forest edges prevent the matrix (open-habitat) species 
to cross them (Lacasella et al., 2015). Forest remnants with anthro-
pogenic edges, however, are invaded by species from the surround-
ing matrix (geometrid moths: Axmacher et al., 2004; ground and rove 
beetles: Knapp et al., 2013; spiders and ground beetles: Matveinen-
Huju, Koivula, Niemelä, & Rauha, 2009), but are repulsive for forest 
specialists (ground and rove beetles: Knapp et al., 2013; bark bee-
tles: Peltonen & Heliövaara, 1998). These results also strengthen our 
hypothesis which predicts different filter function of edges depending 
on their history.

Abruptness, the rate at which forest transitions to the adjacent 
non-forested habitat could be the main cause of the different filter 
function of forest edges with different histories (Bowersox & Brown, 
2001). This usually has a spatial dimension: abrupt edges are often also 
narrower. Forest edges maintained by natural processes have a strati-
fied structure and are highly heterogeneous, therefore display gradual 
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changes in habitat structure and environmental conditions. The grad-
ually changing structure and environmental conditions, on the one 
hand, permit the dispersion of forest specialist species from the forest 
interior to the edge. On the other hand, these gradual forest edges 
have a buffering capacity and prevent the neighboring open habi-
tats to extend their “condition halo” into the forest interior, therefore 
inhibiting the invasion of generalist and open-habitat species into the 
forest interior. Contrary to this, in edges under anthropogenic influ-
ences with simplified structure, the changes in habitat structure and 
environmental conditions are abrupt. These abrupt edges create unfa-
vorable habitats for forest specialists, decreasing their dispersal from 
the forest interior into the edges and outside. Moreover, the buffer-
ing capacity of abrupt edges is limited; therefore, the environmental 
conditions (e.g., temperature, moisture) in forest interiors bordered by 
abrupt edges could allow the invasion of generalist and open-habitat 
species into the forest interior.

4.3 | Conservation, future directions, and challenges

Although the covariates (classification of edges according to their 
history or the type of human disturbance) accounted for a consider-
able proportion of the true variance, in all models there remained 
significant unexplained heterogeneity. The variance explained by 
the covariates (edge classification based on history) was also low, 
indicating the existence of other factors influencing the edge effect. 
This heterogeneity could arise from differences in biogeographi-
cal regions, and/or study designs and methods applied in the indi-
vidual studies. Besides those features of edges identified in our 
study (history or maintaining processes, disturbance types), other 
inherent features of edges (e.g., size, isolation, type and quality of 
adjacent habitats, orientation, temporal effects, edge contrast; see 
Ewers & Didham, 2006; Ries et al., 2004) could also contribute to 
heterogeneity. Furthermore, each species (yet with the same habi-
tat affinity) responds to edges in its own particular way, resulting a 
species-dependent filtration by edges (Ingham & Samways, 1996). 
Therefore, all of the above mentioned features must be considered 
in future edge effect studies.

From the point of conservation, preserving and protecting all 
edges maintained by natural processes, and preventing unfavorable 
changes to their structure, composition, and characteristics will 
better protect the quality of forest interiors. Anthropogenic edges 
continue to be frequently created, for example, by forestry practices 
in boreal forests in Canada and Fennoscandia (Harper et al., 2015). 
The remaining intact forest patches after anthropogenic interven-
tions are important source habitats. The role of patch size, config-
uration, distance between patches, corridors, and the nature of the 
matrix are instrumental to insure dispersal between the fragments, 
particularly for forest specialist species (Naaf & Kolk, 2015). Our 
data now add support to the idea that boundaries, like forest edges, 
are also important in conservation management (Samways, 2007). 
Forest edges under continued anthropogenic influence can hamper 
the dispersal of forest specialists between habitat patches, obstruct-
ing metapopulation processes (Jordán, Magura, Tóthmérész, Vasas, 

& Ködöböcz, 2007). Therefore, the increasing presence of anthro-
pogenic edges in a landscape is to be avoided, as they contribute to 
forest degradation and the loss of biodiversity (Harper et al., 2005). 
Simultaneously, the restoration of edges under continued anthropo-
genic intervention is an urgent task in conservation management. 
Promoting habitat heterogeneity and reducing the contrast between 
these edges and the surrounding habitats (softening the edges) to 
encourage movement of forest specialist species through the edges 
are crucial tasks during restoration (Anderson & Carter, 1987; 
Samways, 2007).
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