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Abstract: The integrated circuit (IC) manufacturing process involves many players, from chip/board
design and fabrication to firmware design and installation. In today’s global supply chain, any
of these steps are prone to interference from rogue players, creating a security risk. Therefore,
manufactured devices need to be verified to perform only their intended operations since it is not
economically feasible to control the supply chain and use only trusted facilities. This paper presents
a detection technique for malicious activity that can stem from hardware or firmware Trojans. The
proposed technique relies on (i) repetitious side-channel sample collection of the active device,
(ii) time-domain stitching, and (iii) frequency domain analysis. Since finding a trusted sample is
generally impractical, the proposed technique is based on self-referencing to remove the effects of
environmental or device-to-device variation in the frequency domain. We first observe that the
power spectrum of the Trojan activity is confined to a low-frequency band. Then, we exploit this
fact to achieve self-referencing using signal detection theory. The proposed technique’s effectiveness
is demonstrated through experiments on a wearable electronics prototype and system-on-chip
(SoC) under a variety of practical scenarios. Experimental results show the proposed detection
technique enables a high overall detection coverage for malicious activities of varying types with
0.8 s monitoring time overhead, which is negligible.

Keywords: hardware/firmware trojan detection; wearable electronic device security; flexible elec-
tronic security; IoT security; malicious activity detection; side-channel analysis; spectrum analysis;
self-referenced trojan detection

1. Introduction

The Internet of Things (IoT) compromises a network of computing devices ranging
from low-power edge nodes, such as sensors, to more powerful and capable computing
systems. For instance, the use of wearable devices has been increasing very rapidly
in health applications, such as remote monitoring and diagnosis [1]. Similarly, smart
devices are already used for smart grid, smart home, smart city management, and supply
chain management. At the same time, the increasing adoption of IoT poses new security
challenges, mainly due to its limitations on hardware, compute resources, and power.

Cost and development time are two major problems faced by the designers of low-
volume system-on-chips (SoCs). Design reuse has been one of the most effective practices
in the semiconductor industry since it can dramatically reduce design, verification, and test
costs. Hence, most, if not all, companies employ third-party IP (intellectual property) cores
from dozens of vendors to amortize their cost and shrink the design turn-around time.
Moreover, the boards and firmware for these devices can also be developed and installed by
third-party vendors. With a global supply chain with many players, ensuring the security
of wearable and IoT devices is a daunting challenge. Thus, it has become necessary to trust
but verify the IoT devices both at production time and in the field [2].
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Small form-factor battery-powered embedded systems, such as wearable devices,
have limited computing power and battery capacity. These limitations make existing
cybersecurity mechanisms such as anti-virus software and anomaly detectors [3] too costly
to implement. Thus, ensuring the security of wearable devices with acceptable overhead
is a new challenge that requires cost-conscious solutions. Security of embedded devices
becomes even more critical because the increased inter-connectivity provides more space
for attackers to introduce the Trojans [4].

Attacks on wearable devices can be performed using Trojans implemented as mali-
cious hardware or firmware modifications. The wide range of attack space has resulted in
exponentially increasing security problems. To evade detection, the malicious modifica-
tions are hidden carefully with minimal overhead, and they activate either randomly or
after specific trigger incidents [5]. Therefore, the symptoms of the Trojan are not always
observable. Moreover, when a Trojan is active, its impact on measurable factors, such
as system performance or power consumption, is typically negligible due to the subtle
modification it makes. Detecting hardware and firmware Trojans is challenging due to
several factors. First, there is a wide range of trigger mechanisms and payload, which
are hard to enumerate. Second, the diversity of intellectual property (IP) cores and their
sources amplifies the detection complexity. Finally, one cannot compare the compromised
chip against a trusted sample because obtaining a golden source may not be possible. As a
result, maintaining the authenticity of each resource is becoming more challenging.

This paper presents a method to detect malicious activity in lightweight wearable
and IoT devices. The proposed approach does not rely on any trusted sample; instead,
it establishes a baseline for each individual device based on its periodic steady state
(PSS) behavior. By referencing the detection threshold to baseline characteristics of each
individual device, environment and process variations can be removed. In order to collect
data, without affecting operation of the device, the proposed technique uses a signal
stitching technique in which side channel information of repetitious code sequences is
sampled and processed to monitor device activity.

Figure 1. Wearable electronics prototype.

The proposed technique is demonstrated on the wearable device prototype shown
in Figure 1, which runs gesture recognition software including an arbitrary repetitive
gesture recognition algorithm. It first brings a side-channel signal (in our case, the power
consumption) of the device into a periodic steady-state (PSS). Then, the repetitive patterns
are stitched with any existing data from the same device to construct a representative
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measurement. As an example, Figure 2a shows the run-time data collected from the device
in one instance with zero padding. These data are stitched to pre-existing data (collected
earlier) shown in Figure 2b, to obtain the complete data sequence, shown in Figure 2c.
The complete data can be analyzed in the frequency domain to establish criteria for flagging
suspicious activity. The collected side channel data can be expressed as the sum of the
primary system response (i.e., the power consumption without a Trojan), the Trojan activity,
and environment and measurement noise. Placing the device into a PSS concentrates the
known application signal power at a specific frequency and its harmonics. This leaves
a large portion of the signal spectrum unoccupied and available for detection. If there
is a Trojan activity, it will be present over a wider frequency band since it is unlikely to
be correlated with primary activity. Thus, the unoccupied bins of the spectrum can be
analyzed to determine whether there is unauthorized activity.

The major contributions of this paper are as follows:

• A methodology for time-domain signal switching to collect side channel signal infor-
mation on repetitive primary activity to reduce test duration,

• A limited-bin spectral analysis technique for detecting unauthorized activity to reduce
the computational burden of the detection technique,

• A self-referenced malicious activity detection technique applicable to not only sinu-
soidal excitation but also to repetitive patterns to remove the process and environmen-
tal variation effects,

• Evaluation of the proposed approach while running gesture recognition and Wi-Fi
applications without requiring a trusted sample.

• Extensive experiments with a wearable electronics prototype [6] and a commercial
multiprocessor system-on-chip (MpSoC) [7], and show the effectiveness of the pro-
posed detection technique.

The rest of the paper is organized as follows. The threat model is explained in
Section 2. Related work is presented in Section 3. The proposed malicious activity detection
technique is described in Section 4. Finally, extensive experimental evaluation is presented
in Section 5, and conclusions appear in Section 6.

Figure 2. (a) Zero padded data that is subjected to Trojan check; (b) zero-padded repetitive gesture recognition pattern with
one period of zero padding at the starting; (c) stitched one period of data to repetitive gesture recognition data.

2. Threat Model

Many IoT devices run their own operating system and applications. As these devices
become more common, they will also become bigger targets for hackers. Trojans could
target the firmware to insert malicious code and gain access to sensitive information or
cause damage. They could take the form of passive hardware entities which help malicious
software bypass pre-existing hardware protection systems.

Figure 3 illustrates attack models for potential hardware and firmware Trojan threats.
The IoT vendor receives the process model from the foundry and produces the circuit
layout using this process model. Malicious modifications can be added at production time
or while the device is in use in the field. The threats can originate at the foundry, dur-
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ing firmware design, or production firmware installation. There can be circuit modifications
and firmware modifications. Hardware threats originate at the foundry from malicious
attackers (e.g., third-party consultants, rogue employees) who modify the hardware to
insert malicious circuitry. When triggered by prespecified analog or digital conditions,
the modifications can have passive effects, such as leaking information [8], or cause mal-
function (e.g., by heating the device). The analog trigger mechanisms include temperature,
device aging, or signal delay between two points [9]. Similarly, digital conditions can be
implemented as combinational or sequential circuits [10]. Firmware threats can be added
during firmware installation at the IoT vendor or other third-party company. The attacker
can also make firmware changes during field updates. These changes can require physical
contact to the device [11] or done remotely through any network connectivity, such as
Bluetooth and Wi-Fi. Majority of firmware updates are delivered via the internet, opening
doors to the attackers to invade the device remotely [12]. Hence, every product in the field
needs periodic monitoring to verify recent changes made to the system.

IoT
Vendor

Foundry
Layout

Process model

+

Circuit 
modification

Manufactured chips

+

Firmware 
Installation

Firmware 
modification

Production Time Threats

In-Field Threats

Field Use

Firmware 
modification

Firmware 
Update+

Figure 3. Threat model.

3. Related Work

Battery-driven embedded systems have limited computing power and battery ca-
pacity. These constraints only worsen when the system is subject to demands of security.
Embedded devices are attractive targets for today’s sophisticated and innovative attacks
since they are not suitable for traditional security mechanisms, such as anti-virus and
anomaly detectors, built for general-purpose computers. These attacks can be realized as
hardware [13–16] and firmware modifications [17], known as Trojans. This wide range of
attack space has resulted in exponentially increasing security problems.

Hardware Trojans are small-scale circuits designed to perform a malicious operation
not intended by the original system [18]. Attackers can insert them at multiple points in
the supply chain, such as the foundry [19] or a third-party IP provider [20], as illustrated
in Figure 3. Various techniques have been developed to detect hardware Trojans during
testing or at run-time in the field [21]. The technique we proposed in this paper falls
into the run-time detection category. Run-time hardware Trojan detection approaches can
modify the target structure they aim to protect [22]. Similarly, they can employ multi-
ple modular redundancies at the software level to perform a task even with malicious
hardware [23]. Test-time approaches employ functional verification [22] and side channel
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measurements [24,25]. Functional verification techniques use the test patterns with the
highest probability of identifying Trojans that cause device logic failure. The side-channel
measurement-based techniques attempt to infer a Trojan’s presence by measuring parame-
ters that the Trojan can alter. Path delays, transient supply currents, and average supply
currents are examples of these parameters. The difficulty of finding a known reference is a
significant challenge for detecting Trojans by side-channel analysis. Typically, this reference
is established by a transistor-level simulation [26]. Alternatively, the reference can rely
on reliable samples of the circuitry, which may not even exist. Even if a reliable reference
can be established, noise in the system and measurement errors present another challenge.
Generally, the Trojan symptom (in terms of current/power and delay variance) may also be
comparable to predicted variations due to process and environmental noise. In contrast to
previous work, our proposed approaches are focused on signal processing with limited-bin
spectral analysis and signal detection theory, which eliminates the impact of process and
environmental variations. They do not require a golden reference as a benchmark.

Compared to hardware, the firmware is more easily distributed, making it a much
easier attack target to compromise the embedded systems. Since embedded devices run on
firmware, we need to understand how the firmware works. The firmware provides neces-
sary information for the hardware device to communicate with other devices. Firmware
is found on all kinds of computer hardware but is most vulnerable in embedded devices
that generate or exchange vast amounts of privacy-sensitive, or security-critical informa-
tion [27]. Due to increasing demand for connected embedded devices on the emerging
IoT [28], firmware security has become more critical than ever to organizations such as
banks, governments, and businesses [29,30]. We can classify firmware attacks as static or
dynamic. Static firmware attacks focus on modifying firmware code residing in memory
via hardware modification or firmware updates or patches [31–33]. In contrast, dynamic
firmware attacks attempt to exploit dynamic memory components such as stacks and heaps
to change the behavior of the firmware control flow [34]. The vulnerabilities leveraged
by firmware for malicious modification have been addressed in several research studies
ranging from battery-powered personal health monitor devices to conventional industrial
control systems [35–37]. On the detection and identification side, however, there is limited
research work available. Here, detection approaches can be divided as signature based
(looking for signatures of known attacks) or anomaly based [38] (modeling the expected
behavior of firmware and detecting deviations from this reference model). A recent study
focused on a low-cost technique to detect malicious firmware modification in embedded
devices by using readily available registers [39]. The proposed framework needs exhaustive
offline profiling to generate a reference database. Moreover, this detection mechanism
relies on write-protected memory components, which are still vulnerable to alteration
through hardware modification. The authors of [40] described a firmware vulnerability
in a network adapter by which a remote attacker on the network can gain full access to
the victim’s machine. They proposed a pragmatic detection technique that detects any
unexpected changes in the control flow when a return value is modified in the network
adapter [41]. The work presented in [3] proposes anomaly analysis for embedded firmware
by employing source code instrumentation techniques. Any deviation from the referenced
run of the firmware is flagged as anomalous. The proposed technique needs to establish
a reference model and running the instrumented firmware offline. However, it requires
considerable overhead for the computationally intensive task.

Our proposed technique fills a gap in the ability to detect malicious modification.
To compare with our previous work [2], in this paper, we propose a self-referenced ma-
licious activity detection technique applicable to not only sinusoidal excitation, but also
to repetitive patterns to remove the effects of process and environmental variations. This
paper demonstrates a technique to place the device under test in a repetitive state using
functional algorithms so as to limit the frequency response of its authorized activity signa-
ture in a small number of frequency bins. This allows us to enable detection in the field.
The previous work [2] requires specific and dedicated test sequence to achieve repetitive



Sensors 2021, 21, 3408 6 of 21

state and resulting energy is more concentrated. However, achieving this repetitive state
in the field is difficult. We also propose a methodology for time-domain signal switching
to collect side-channel signal information on repetitious primary activity to reduce the
test duration. This allows us to collect data over time without disabling the device for
an extended duration of time. The extensive experiments are conducted using a wear-
able electronics prototype and commercial multiprocessor system-on-chip (MpSoC) with
real-life examples such as gesture recognition and Wi-Fi application to demonstrate the
effectiveness of the proposed detection technique in real world usage conditions. In [2],
the hardware experiments were conducted on the only MpSoC with a synthetic example
such as simple matrix multiplication to create sinusoidal wave forms.

4. Malicious Activity Detection
4.1. Run-Time Testing and Signal Stitching Technique

It is highly desirable to detect hardware or firmware Trojans before chips are deployed,
but existing techniques cannot guarantee comprehensive a coverage for all types and sizes
of Trojans. If a Trojan attack is introduced after production, such as insertion during a
firmware update, or was not detected at production time, in-field activity monitoring
and run-time testing can significantly reduce its risk. In exchange for some performance
overhead, these approaches can flag the device or disable it upon detection of malicious
activity. The challenge, however, is that these testing and monitoring activities, like
measuring device current, power consumption or memory usage, should not interfere with
normal device operation.

Many IoT devices are active only for short intervals, between which the system is
placed into a low-power or sleep mode [42]. Hence, the idle periods can readily be used for
test data collection. The same set of applications that run during normal operation can be
used for PSS generation in test mode during idle time. Therefore, malicious modification(s)
cannot evade detection when testing is performed.

The proposed detection technique uses a run-time signal stitching technique to collect
data without interrupting its functionality. The device is monitored, and data are collected
during idle time. One can also collect data during active periods. However, the associated
overhead can affect its performance since resource-constrained wearable or IoT devices
have limited processing capability [43]. The data collection with many different applications
can further increase Trojan detection coverage by activating additional hardware and
firmware components. These applications can run in a predefined test mode configuration
to create periodic steady-state conditions.

As long as the device reaches a periodic steady-state, it does not matter when the data
are collected. Hence, we can select any suitable time-span for testing, and the best choice is
the idle stage of the device. By collecting data during repetitive patterns and stitching it
with existing data, the overall operational pattern of the device can be established. After
the entire data sequence is assembled, the proposed detection algorithm can be run to
determine whether the collected data contains known or unknown authorized activity. The
signal stitching technique also enables collection of data during different times of the day.
Hence, the technique is able to detect a Trojan that has a larger bandwidth than the length
of a single measurement.

Memory has always been a difficult delicate balance in wearable systems. Unlike
personal computers (PCs), tablets, and other devices, wearable devices have significantly
smaller memory capacity. However, the memory capacity still must be adequate to sup-
port the required functionality and the device firmware. With their expansive growth in
popularity, users expect more features and performance from wearable and IoT devices,
but these features cannot come at the expense of basic functionality. In other words, im-
proved processing and memory capacity should come with improved security and privacy
features. Thus, the memory is a requirement for the proposed malicious activity detection.
To this end, performing data collection and analysis during idle times means there will
free memory that is sufficient for running the detection algorithm. As seen in Figure 4,
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the device is monitored and during its idle time, part of the data are measured. This data
are stitched with previously collected data samples to synthesize a complete data sequence.
When the required data sequence is collected, frequency domain analysis can be run.

Complete Data Sequence

ACTIVE

IDLE

IDLE TEST

Figure 4. Illustration of device usage in a day and measuring current of device in idle stage for
data stitching.

4.2. Optimized Fast Fourier Transform (FFT) Algorithm for Zero-Padded Data

IoT or wearable devices typically run on limited battery operated power and there-
fore present unique challenges in terms of availability of computational resources. Thus,
a new challenge to ensuring the security of wearable devices is power awareness [44].
Activity monitoring, measurement of complete data sequences, and detection algorithm
computation add significant overhead that requires further power aware optimization.

First, the proposed detection method relies upon identification of a repetitive pattern
in the main application to effectively decouple the fundamental frequency and its har-
monics from other unexpected activity. Thus, some monitoring time is required for the
detection algorithm to function. However, we can minimize the monitoring time by reusing
previously collected and analyzed data which has not been flagged for suspicious activity.
Figure 5a shows a shorter period of data that have been collected and zero-padded to
match the size of the complete data sequence for Fourier transform analysis. In Figure 5b,
the collected data are zero padded for a period of samples and then its Fourier Transform
is saved. The Fourier Transform of saved and zero-padded data can be summed as seen in
Figure 5c to assemble a complete spectrum that can be analyzed for suspicious activity.
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a)

b)

c)

FT

FT

FT

Figure 5. Illustration of superposition of Fourier Transform that is using saved and a period of data to
determine suspicious activity. (a) One period of data time and frequency response. (b) The collected
data are zero padded for a period of samples and then its Fourier transform. (c) Complete spectrum
that can be analyzed for suspicious activity.

Second, the computation time and power consumption need to be minimized to
support a seamless, energy efficient security monitoring system. The Recursive Fast
Fourier Transform (FFT) algorithm can be optimized by skipping zero padded data as
in Algorithm 1, where Input represents the zero-padded period of measured data, NFFT
represents the sample size of the test data, and Size represents the original number of
sample points before zero-padding. For optimal efficiency, the number of samples in the
stitched data set must be a power of two. The optimized FFT algorithm is 4.2 times faster
than the standard recursive FFT algorithm for NFFT = 1024 and Size = 32 samples. We will
discuss more about computation time of the FFT in experimental data in Section 5.
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Algorithm 1: Optimized recursive fast Fourier transform for zero-padded data

1 procedure FFT (Input, N, Size)
2 for k = 0; k < N/2; k = k + 1 do
3 FFT0 = Input[k];
4 FFT1 = Input[2k + 1];
5 end
6 y0 ← FFT(FFT0, N/2, Size);
7 y1 ← FFT(FFT1, N/2, Size);
8 if NFFT/Size ≤ N then
9 if NFFT/Size == N then

10 for k = 0; k < N; k = k + 1 do
11 yk ← FFT0[0];
12 end
13 else
14 for k = 0; k < N/2; k = k + 1 do
15 if not(y0

k == 0 AND y1
k == 0) then

16 yk ← y0
k + wy1

k ;
17 yk+N/2 ← y0

k − wy1
k ;

18 else
19 yk ← 0;
20 yk+N/2 ← 0;
21 end
22 end
23 end
24 return y;
25 end

4.3. Proposed Detection Technique Overview

The major problem in detecting unauthorized activity is obtaining a golden signature,
which is extremely difficult, and in some cases, unfeasible. Moreover, Process-Voltage-
Temperature (PVT) variations and environmental noise can mask the effect of the Trojan
circuit on measured parameters (e.g., power [45], even if multi-dimensional analysis is
used [26,46]). Therefore, a decision on the presence (or absence) of a Trojan should also
preferably be taken without the need for a golden or trusted reference.

To detect minor power anomalies due to malicious operation, the primary circuit
response must be decoupled from that of the Trojan and any background noise. We achieve
this by generating a test sequence such that the signal (i.e., the response of the device) has
spectral properties that can be differentiated from the Trojan activity. We can denote the
measured power P(t) as follows:

P(t) = P0 · sin(ω0t) + ε(t) + n(t) + PTr(t) (1)

where P0 · sin(ω0t) is the sinusoidal power consumption of the primary circuit, ε(t) denotes
the error that we make in setting up the sine wave, n(t) is random noise, and PTr(t) is the
power consumption of the Trojan circuit [2,47,48]. The power spectrum of the primary
signal, i.e., P0sin(w0t) is concentrated in one frequency location. The noise signal has a
flat spectral signature. While the specific details of the Trojan activity are unknown, its
switching speed is clearly limited by the system clock. It is also unlikely that the Trojan
activity period will match with the primary signal periodicity. Therefore, the FFTs of Trojan
and primary activity will inevitably occupy different frequency bins. As a result, the Trojan
signal bandwidth will be limited, making it different from white noise and the primary
signal. The spectrum of P(t) is the sum of the spectra of its components. The primary
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signal, P0 · sin(ω0t) is concentrated in one frequency location. The error signal, ε(t), can be
modeled as a pulse train:

ε(t) = (
Np

∑
i=1

εi · p(t− iTs)) ∗ (
Ns

∑
k=1

δ(t− kT0)) (2)

where Np is the number of samples in the sine wave, Ts is the sampling period, εi is the
magnitude of the approximation error, p(t) is a pulse with duration Ts, Ns is the number
of sine wave periods in the measurement duration, and T0 is the period of the sine wave.
Note that, while the error of the sine wave approximation within a single period can be
random, the error signal itself is also periodic with the same period as the original sine
wave. Hence, the error signal’s power spectrum will be concentrated at the harmonics of
f0, as in Equation (3):

Sε( f ) =
Np

∑
i=1

2εi
Ns

δ( f ) +
N−1

∑
n=1

(
Np

∑
i=1

2εi
nπ

sin(
nπ

Ns
))δ( f − n f0) (3)

n(t) is the noise signal. Hence, its power will spread through the entire spectrum. Finally,
PTr(t) is the unknown Trojan signal.

Although the specific aspects of the Trojan operation are unclear, the system clock
explicitly limits its switching speed. We may therefore confidently presume that this is not
related to the primary signal. As a result, the bandwidth of the Trojan signal would be
limited, rendering it separate from white noise and the main signal.

Figure 6 shows that the operation of Trojan has a clear fingerprint. However, we
cannot say that we have understanding of this continuum, since we do not know how
Trojan performs. In order to identify an unexpected signature, we concentrate on what is
anticipated of the system and flag if there is any abnormal behavior. This will allow us to
decide if the spectrum differs noticeably from its intended state.

Primary Signal Harmonics

Figure 6. Spectrum of the total current.

The detection algorithm uses a run-time signal stitching technique that eliminates
hardware variation, and the self-referencing technique removes the effect of process and
environmental variation. It can detect any activity that consumes power. The detection
method utilizes a periodic run of the device application(s) to create a steady state that
concentrates the known signal power at a known frequency. Moreover, using the native
application(s) of the device for steady state characterization allows for normal operation
and triggering of the conditions that activate the Trojan. In addition, coverage of triggering
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conditions can be increased by designing patterns that activate different hardware and
firmware portions of the device. In summary, if there is a Trojan that is activated while the
application is running, the proposed algorithm is able to detect this abnormal behavior.

The proposed detection algorithm is shown in Figure 7. We sample and process the
composite power signal P(t) in the digital domain. We first pass the power signal through
a low-pass filter, whose cut-off frequency is chosen to include harmonics of the primary
signal that are above the noise floor. The resulting signal Pre f (t) is subtracted from that
of P(t) to exclude primary signal components from the analysis. The resulting residual
time-domain signal Pd(t) contains noise, the majority of the Trojan signal energy, and some
additional components due to modeling effects. The noise level, σn, can be determined from
the residual spectrum Pd( f ) by taking an average of the spectrum. To avoid false positives
due to noise, we set a spectrum threshold of 3σn (corresponding to a confidence level of
nearly 99.7%), and record spectral components (V) exceeding this threshold. We extend
the mathematical model to remove the need for sinusoidal excitation, which may not be
practical in an Internet of Things (IoT) context. Similarly, there is a need for techniques to
detect malicious activity in lower power IoT devices. To this purpose, this paper uses a
random repetitive pattern to operate the device under test so that its current consumption
is pushed into a PSS. At the same time, the Trojan is excited in an uncorrelated state. In this
way, the system’s output is decoupled from that of the Trojan activity and the noise.

S f ( f ) =
∞

∑
n=1

2Pf

nπ
sin(

nπd
T

)δ( f − n f0) (4)

V=  Pd(f)>3σ  

Pref(t)LPFP(t)

+
-∑  

Pd(f)FFTPd(t)

σ

Flag

size(V)>0.01N

Figure 7. Detection algorithm.

Detection of unknown malicious activity can be generalized to any periodic fore-
ground signal, including a periodic pulse train, as in Equation (4), where Pf represents
the power of each pulse, d represents the duration of each pulse, and T represents the
period of the pulse train. Hence, it is possible to use this self-referencing technique where
the foreground (legitimate) activity is repetitive, resulting in a power signature in the
shape of a pulse train. This can be achieved either by intentionally repeating a program
segment or identifying a program segment that repeats and adjusting the sampling window
accordingly. If the same foreground frame is captured several times, it is possible to obtain
a spectral signature of the foreground activity. The spectral signature of each window then
is compared to this average to determine whether the signature contains the expected flat
spectrum (due to noise) or unknown unauthorized activity in addition to noise which
would result in a non-flat spectrum. We use the high-frequency portion of the spectrum as
a reference to judge the flatness of the resulting signature. By placing a threshold on the
spectral signature, we can determine how many bins violate this threshold. The number
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of such bins should not exceed 1% (due to the 3σ band). Hence, violations beyond this
number are treated as evidence of unauthorized malicious activity.

5. Experimental Evaluation
5.1. Experimental Setup

To evaluate the proposed approach, we perform two sets of experiments, one on
an IoT device prototype [6] and another on a commercial MpSoC [7]. The experiment
setup is shown in Figure 8. The wearable IoT device runs a gesture recognition algorithm
under a limited energy budget [49] and is representative of low-power IoT devices used
for human–computer interaction and mobile health monitoring. The second application
scenario uses Wi-Fi communication, which is omnipresent in many mobile application
scenarios, ranging from smartphones to simple Wi-Fi enabled IoT devices. In each of
these cases, the Trojan activates randomly, resulting in different time/frequency signatures.
We performed the experiments at different times during the day to demonstrate that the
system does not generate false positives. For the Wi-Fi application, we used C++ code
portion to inject firmware Trojan to disturb the system. The foreground application reads
sensor information and transmits the data over Wi-Fi to a target destination. To model the
malicious activity, we employ a simple firmware Trojan that copies the sensor data to a
separate location at random instances.

(a) (b)
Figure 8. (a) Wi-Fi experiment setup with Power monitoring tool. The Odroid board is connected to
a low voltage power monitor tool from Monsoon Solution; (b) flexible prototype experiment setup
with NI-DAQ machine.

The wearable and IoT device is capable of performing multiple tasks and is config-
ured to fulfill one or more needs of a specific target group. It can support applications
such as gesture recognition, temperature reading, location reporting, heart rate reading,
and health/fitness monitoring, all of which create a periodic steady state without requiring
any special arrangements during the design stage. We have to remember that an exhaustive
testing strategy is universally acknowledged to be prohibitive because designs of even
moderate complexity would require hundreds of years to test comprehensively.

These various periodic applications can be selected to reduce test generation effort and
will effectively account for continuous working and environmental changes. In addition to
these functional applications, dedicated firmware that concentrates the power spectrum
on known harmonics can be added and run periodically. Such an application can run at
arbitrary frequencies unknown to the attacker, thereby obscuring the test strategy, even if
the attacker has knowledge of the design, and changing the run frequency from one test
period to another will further help to prevent compromising the detection system. In our
implementation, we use gesture recognition and Wi-Fi applications, which are expected to
create a repetitive pattern while the device is in use in the environment.
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5.2. Malicious Activity

When a Trojan is inserted into a chip, it is almost certain that it will consume power.
The Trojan’s contribution to the circuit’s overall power consumption, but, on the other side,
is highly dependent on its size and type. We know that overall Trojan activation includes
functional and structural forms, which would be incredibly difficult given that the Trojan’s
size and form are uncertain. A trigger circuit and a payload circuit are common components
of Trojans. Using the trigger inputs and/or internal states of the circuit, the trigger circuit
determines whether the Trojan payload condition is met or not. The trigger portion is often
thought of as always-on circuitry that controls the activity of the compromised device in
order for the triggering sequence to take place. The payload circuit creates malfunctions
such as leakage of information, downgrading performance of the circuit, or catastrophic
failure of the system.

For our analysis, we will consider the output effect of the Trojan on power consump-
tion while the trigger circuit or payload circuit is working. Based on observation of power
consumption, we are able to detect abnormalities or malicious activity at the device. Thus,
we must be able to separate the components of current that are likely to be consumed by a
Trojan in the infested device. In this work, we present four types of Trojans and their energy
ratio in Table 1. From the standpoint of the trigger circuit, Trojans appear to increase power
usage or unnecessary processes, resulting in faults or a gradual degradation in product
efficiency. Since their impact on the regular circuitry is negligible at any given moment,
detecting them is difficult.

Table 1. Types of Trojans.

Trojan Type Activity Duration (∼ms) Trojan/Total Energy (%)

Type I 5 1
Type II 10 2
Type III 15 3
Type IV 30 6

In an ideal case, our malicious activity detection method applies circuit input vectors,
triggers the malicious activity, observes the unintended behavior, and reports it to the
design owner. However, in practice, the activation of malicious activity is very difficult
and sometimes is impossible, as we do not have enough information about the Trojan’s
features, including its location (firmware or hardware), the trigger condition, and the
malicious functionality. Therefore, we propose to focus on the side-channel signal of the
Trojan as the primary detection method as power consumption of the Trojan is a substantial
side-channel signal analysis parameter. In this article, we pay particular attention to
determining the smallest detectable Trojan, i.e., the lowest energy that a Trojan may have
and still be detected, using one of these four types of malicious activities that are enabled
at random times. Instead of focusing on identifying triggering and activation mechanisms,
our proposed method is intended to detect a malicious addition of any kind. We should also
note that the always-on type of Trojan that shows constant direct current (DC) consumption
is not the target of the proposed detection method. This type of Trojan can easily be found
by a time domain power trace detection method [50].

5.3. Comparisons to Existing Trojan Detection Methods

By comparison, time domain analysis of the same current measurement data for our
proposed Trojan types cannot distinguish between Trojan-free or Trojan-infested runs. This
occurs because the Trojan’s current consumption is hidden within the margins allowed
for process and environment variations [51]. In this way, malicious activity can be hidden
within the run from the system level examination. Figure 9a plots the current consumption
when a period of gesture recognition application is run by 100 of the Trojan-free runs,
as well as the µ± 3σ envelope of the current consumption for 500 of the Trojan-free runs.
Figure 9b,c plot the current consumption when a period of gesture recognition application
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run by the Type-III and Type-IV Trojan-infested runs, respectively. This demonstrates that
the malicious activity is still within the µ± 3σ envelope and cannot be detected by time
domain analysis.

(c)(b)(a)

Figure 9. The µ± 3σ current consumption envelope of 500 Trojan-free runs and the current con-
sumption of 100 Trojan-free runs (a), the current consumption of 100 Type-I Trojan-infested runs (b),
and the current consumption of 100 Type-II Trojan-infested runs (c).

5.4. Proposed Detection Algorithm Optimization

Many Trojan identification proposals investigate the presumption of rarity. The aim
is to cut down on the monitoring and computation time of the test (i.e., the size of the
collected information from device), while increasing the confidence level that the system
being tested is free of Trojans. This is very desirable as it lessens the test time (faster testing
is needed for resource-constrained device) and eliminates the stress of continuous testing.

As seen in Table 2, our detection algorithm can be used with a different set of test
modes. To use the proposed detection algorithm, different test modes can be selected
based on the device usage. We also evaluate the sensitivity of our detection method in the
presence of measurement and background noise. Our proposed test requires collection
of 20 s of data which can be collected without system interruption for the test Mode 1.
When the complete data sequence is collected, the analysis of the data takes approximately
60 s to run with standard recursive FFT algorithm. Since test Mode 1 may not be practical
during periods when the device is in heavy use, we apply a signal stitching technique
to eliminate the need for continuous data collection. Thus, the monitoring time can be
reduced to approximately 0.8 s. Once the full sequence of data are collected, a regular FFT
can be run which takes approximately 60 s to complete the analysis for the test Mode 2.

Table 2. Proposed detection method test modes.

Test Mode Signal Stitching Min Monitoring Time (s) Computation Time (s) FFT

Mode 1 No 20 60 Regular
Mode 2 Yes 0.8 60 Regular
Mode 3 Yes 0.8 14 Optimized

Battery-powered devices have limited resources to support normal operation, so
security or monitoring functions need to minimize their resource requirements. The
proposed technique consumes 80 s for Mode 1 testing, which can be done during device
idle time. The Mode 1 test also represents the most exhaustive method that was explored.
As seen in Table 2, other test modes require much less time and achieve acceptable coverage.
The computation time of a regular FFT can be further optimized for our proposed detection
technique as seen in the test Mode 3. Part of the data from the Fourier Transform is saved,
as seen in Figure 5b. A limited period of data are measured and zero-padded to the same
size of the complete data sequence. If the Fourier Transform of the zero-padded data are
added to the saved Fourier Transform, which was previously analyzed and not flagged
for any suspicious activity, we can safely analyze one period of data using our proposed
optimized FFT. Hence, the single test computation time will go down approximately 4.2
times with optimized FFT as seen in Table 2. Test Mode 3 is used to analyze a short
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period of data that was collected recently, while Mode 2 waits until the device collects and
stitches a full data sequence for analysis. Test Mode 2 works effectively with data collected
throughout the day to detect the abnormalities and provides higher detection coverage.
In contrast, test Mode 3 is able to run the detection algorithm based on only a short period
of available data.

5.5. Gesture Recognition Application

The gesture recognition algorithm runs with a period of 0.8 s on the IoT prototype
attached to the user’s wrist [52]. The prototype features test ports to measure power
consumption of the microprocessor. The power consumption was measured using NI PXIe-
4081 and PXIe-4080 digital multimeter systems with a 5 kHz sampling frequency. During
the recognition algorithm running, the motion processing unit records the accelerometer
and gyroscope readings. Then, the micro-controller processes the sensor data using a
neural network to recognize the user gesture. Finally, the recognized gesture is transmitted
via Bluetooth Low Energy (BLE) communication protocol. While the application runs in
the foreground, various malicious programs, as seen in Table 1, are launched randomly on
the micro-controller.

The total current drawn by the IoT prototype with and without Trojan activity is
depicted in Figure 10a. We observe that the time domain signals are almost identical,
highlighted also by the zoomed-in section of the plot. The current signals after low-pass
filtering are plotted in Figure 10b. The difference between the original and filtered signal
gives the residual signal as shown in Figure 10c. This residual time domain signal contains
the noise and the majority of the malicious activity energy, but the malicious activity is still
not differentiable. Finally, we provide the power spectrum of the current with and without
Trojan activity in Figure 10d. The frequency domain data clearly show that the malicious
activity exhibits a unique signature at low frequencies, which is easily differentiable from
the spectrum without any malicious activity.

To show the robustness of the detection technique, we ran our test with four different
types of Trojans for 5, 10, 20, 40, and 80 s. In our experiments, we collected data of
740 spectra which had no malicious activity and 110 different spectra for each type of Trojan.
The experiments were performed at different times of the day to improve confidence in the
detection technique for environment changes, such as temperature. The signal stitching
technique was used in these experiments to combine data gathered at the different time
during the day and therefore with different temperatures. In each of these cases, the Trojans
activate randomly, resulting in different time/frequency signatures. The experiments were
performed at different times of the day to improve confidence in the fact that there are
no false-positives generated by the system. This ensures that potential changes in the
environment do not affect the evaluation. As mentioned earlier, even without the presence
of malicious activity, a small percentage of the spectrum may be polluted due to harmonics
not related to the signal. Therefore, the threshold level for violations is set to 1% of the
compared bins of the lower frequency and will flag suspicious activity only if violations
exceed the limit.

As seen in Figure 11a, the red lines show a false negative rate of Trojans, and the blue
lines depict the minimum violated bin percentage. The percentage of minimum violated
bin is flat if we go beyond 20 s of monitoring time. The number of bins over the self-
referenced threshold does not linearly increase with monitoring time. Figure 11b plots the
total detection time with respect to the duration of a single observation to evaluate the cost
of testing, based on the number of tests required to detect unauthorized activity. In order to
make sure the system is secure, the confidence level is set to 99% for completely automated
malicious activity detection. The detection time decreases up to 20 s of observation,
but increases after that.
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(a) (b)

(c) (d)

FFT

Figure 10. (a) The total current drawn by the IoT prototype; (b) the current signal after the low-pass filter; (c) the resulting
residual time domain signal, which contains the noise signal and the majority of the malicious activity energy; (d) the
residual signal spectrum with calculated noise threshold levels.

(a) (b)
Figure 11. (a) Relation of False negative rate (FNR) (red) and minimum number of violated bin (blue)
with respect to monitoring time. There are no false positives; (b) total time to detect malicious activity
with respect to single observation time.

Based on the observation, we see that Type III and IV Trojans can be detected by a
single test if the monitoring time is 10 s or more. The Type I Trojans require five repetitions,
and Type II Trojans require only two repetitions of 20 s or more to detect, as seen in
Figure 11b. Based on our experimental outcome, we decided on a monitoring time of 20 s,
which is optimal for all types of Trojans under consideration.
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Power consumption by malicious activity is minimal compared to the rest of the activ-
ity of the original system. In particular, we focus on determining the smallest detectable
Trojan, i.e., the lowest energy that a Trojan may have and still be detected, using one of
these four types of malicious activities that are randomly enabled with various activity
duration. We run the Trojans on a standalone basis 1000 times and take the average of
the total determined energy to calculate the energy of the Trojans. As seen in Figure 12,
the false negative rate is drastically reduced when the Trojan energy increased from 1% to
2%, and we reliably detect the Trojan if it is 3% or more of the total energy of the system. In
addition, the percentage of violated bins significantly increases when the Trojan energy
increases from 2% to 3% but does not change much after that.

Figure 12. Relation of false negative rate (FNR) (red) and the minimum number of violated bin (blue)
with respect to Trojan energy. There are no false positives.

5.6. Wi-Fi Application

The Wi-Fi application C++ firmware code runs on MpSoC (Odroid-XU3). The fore-
ground application reads sensor information and transmits the data over Wi-Fi to a target
destination. To model the malicious activity, we employ a simple firmware Trojan that
copies the sensor data to a separate location at random instances. The Odroid board is
connected to a low voltage power monitor tool from Monsoon Solution Inc. [53]. The raw
power data are collected with PowerTool software for further analysis. The foreground ap-
plication reads sensor information and transmits the data over Wi-Fi to a target destination.
To model the malicious activity, we employ a simple firmware Trojan that copies the sensor
data to a separate location at random instances. We assume that the Trojan is always active
and do not rely on a particular trigger mechanism.

First, we randomize the patterns of the Wi-Fi application just like the firmware Trojan.
Figure 13a shows the residual power pattern (after averaging) under this scenario. Since
there is no repeating pattern to the foreground application, the signatures with and without
Trojan are identical. Next, we repeat the Wi-Fi application with the same frame, whereas
the Trojan is unaltered. Figure 13b shows the residual spectrum of the remainder signal
after averaging and filtering. Due to the repetitive nature of the foreground signal, it can
be referenced with respect to itself, leaving only small variations due to noise and other
factors. The malicious activity due to the Trojan is observable under this scenario. Note
that, for detection, we do not need to compare the spectrum with a golden signature; the
expectation is to have a flat spectrum, regardless of the power levels. We only need to
analyze the spectrum of the measured signal to deduce whether it contains only noise or if
there is unwanted activity in addition to the primary circuit current signal and noise.

We performed 500 different experiments, with and without malicious activity. For each
experiment, the IoT device is driven into a periodic steady state for approximately 30 s by
sending repetitive Wi-Fi messages. We apply the noise threshold explained in Section 4,
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and count the number of frequency bins above the noise level, which are referred to as
violations. The histogram of the number of violations is depicted in Figure 13c. We can
observe that the spectrum without malicious activity had a significantly lower number of
violations as expected. In fact, there is a very clear separation between the histograms of
spectrum violations with and without malicious activity.

(a) (b)
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(c)
Figure 13. (a) Residual spectrum of random WiFi activity signatures with and without malicious
activity are identical; (b) residual spectrum of Periodic WiFi activity clearly reveals that there is a
significant difference; (c) histogram of number of spectrum violations for 1000 residual spectra out
of which 500 had malicious activity with minimum 36.97% of spectrum violation, while without
malicious activity experiments spectra with maximum 0.95% of spectrum violation as seen in Table 3.

Table 3 shows the number of violations for five data sets as a percentage of the
number of frequency bins. We set a threshold of 1% violations due to the random nature of
noise. In Figure 13c, we can clearly classify all the spectra with less than 1% violations as
Trojan free.

Table 3. Percentage of violations in Data Sets (DS) 1–5.

0.5 %
Threshold

w/Trojan (%) w/outTrojan (%) False (%)

Max Min Ave Max Min Ave Pos. Neg.

DS1 54.42 36.97 46.99 0.21 0.0 0.12 0.0 0.0
DS2 45.87 39.25 42.32 0.12 0.09 0.10 0.0 0.0
DS3 58.38 38.62 49.23 0.38 0.0 0.09 0.0 0.0
DS4 49.48 37.17 42.85 0.95 0.0 0.17 0.0 0.0
DS5 47.50 38.36 43.37 0.21 0.0 0.11 0.0 0.0

6. Results and Discussion

This paper presented a malicious Trojan activity detection technique using noise-based
self-referencing. The proposed approach utilizes a signal stitching technique to reduce
test time by a factor of 25 and analysis computation by more than four times with an
optimized recursive FFT. Our self-referencing technique uses power/current consumption
measurements without requiring a reliable golden reference. Self-referencing is crucial
because it is extremely challenging and, in some circumstances, impossible to attain a
golden fingerprint. This novel self-referencing technique is accomplished by placing the
design under test in a periodic steady state. The repetitive pattern, through spectral
analysis, relies on the primary circuit signal power to a known frequency and identifies
malicious behavior.

We also evaluate the sensitivity of our detection method in the presence of mea-
surement and background noise. The proposed approach is evaluated by performing
experiments on an IoT device and a commercial SoC with randomly activated and ran-
domly switching Trojans. The experimental results show that the proposed technique can
successfully detect malicious activity without causing false alarms. The Trojan detection
accuracy depends on the overall energy consumed by the unauthorized activity within
an observation bandwidth. This energy may spread over a broad spectrum fall below the
measurement sensitivity if the activity level is low. Similarly, if the Trojan is not activated
within the test duration, it will not generate a spectral signature. Furthermore, a Trojan
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that is active for a short burst may also escape detection since its energy will fall below the
detectable level.
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