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Exposing the specific roles of the invariant chain isoforms
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The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs)
is influenced by the polymorphic nature of the peptide binding groove but also by cell-
intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and
trafficking. Recent discoveries relating to Ii functions have provided insights as to how
it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for
which structure-function analyses have highlighted common properties but also some non-
redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a
characteristic that has the potential to affect the maturation of associated MHCIIs in many
different ways, depending on the isoform combinations. Here, we emphasize the pep-
tide editing properties of Ii and discuss the impact of the various isoforms on the MHCII
peptidome.
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The invariant chain (Ii; CD74) has multiple functions but is best
characterized as the main MHC class II (MHCII) chaperone. Ii
is a type II protein consisting of a short cytoplasmic tail, a trans-
membrane region and a luminal domain that can be further par-
titioned into a membrane-proximal disordered region, the main
MHCII-interacting sequence (CLIP), and a C-terminal trimeriza-
tion domain (1, 2). Mice express two Ii isoforms, p31 and p41,
the latter resulting from alternative splicing (3). In humans, the
corresponding isoforms are known as p33 and p41. Additionally,
around 20% of the Ii mRNAs are translated from an upstream start
codon that generates the p35 and p43 isoforms. These bear a 16-
amino acid cytoplasmic extension including a strong di-arginine
(RxR) ER retention motif (4–6).

Synthesized alongside MHCIIs, Ii can be viewed as: (i) a
GUARDIAN that controls access to the MHCII groove; (ii) a
SCAFFOLD that assists folding and pairing of α and β MHCII
chains; and (iii) a LEADER that directs MHCIIs to the endoso-
mal pathway. It is well established that these Ii functions depend
primarily on the ability of its CLIP region to occupy the peptide
groove of MHCIIs. Numerous reports showed that Ii proteolysis in
endosomes allows HLA-DM to free the groove of CLIP and to cat-
alyze the binding of nominal antigenic peptides [reviewed in Ref.
(7)]. Herein, we describe the main chaperone functions of Ii and
discuss how the various isoform-specific features can modulate its
peptidome-editing properties (Figures 1A–D).

GUARDIAN
Early results on the role of Ii have revealed its importance in the
presentation of intact Ags (8). By guiding MHCIIs to endosomes
while blocking their Ag-binding groove, Ii allows MHCIIs to gain
access to peptides from processed Ags and thus influences the

pool of associated-peptides (9). This is best exemplified by the
differential reactivity of a panel of autoreactive T cell clones co-
cultured with Ii+ or Ii− APCs (10). Indeed, the content of the
MHCII groove differs in transfected cell lines whether or not Ii is
expressed. In a mass spectrometry analysis of DR4-eluted peptides,
lack of Ii biased the peptide origin toward cytoplasmic proteins,
whereas Ii allowed the binding of peptides derived from exoge-
nous and endocytic proteins (11). Also, the repertoire is strongly
skewed in Ii KO mice, as demonstrated by mixed lymphocyte reac-
tions and aberrant CD4+ T cell selection (12–18). In humans
however, little is known on the impact of Ii deficiency in different
cell types. The effect of Ii on the peptidome varies and following
its degradation, the residual CLIP peptide also affects the pep-
tide’s assortment to be presented to T lymphocytes. Indeed, a
series of articles from Mellins and collaborators describing the
MHCII-CLIP affinity relationship suggest that poor Ii and CLIP
chaperoning leads to Ag processing defects with the potential to
instigate MHCII-associated autoimmunity (19–23).

In the absence of Ii, both mouse and human MHCIIs bind a
collection of long polypeptides, most likely originating from mis-
folded ER proteins (24–26). Interestingly, even in the presence
of Ii, it was recently reported that MHCIIs displayed some ER
polypeptides at the plasma membrane, the latter competing with
Ii for the class II binding groove (27). Despite the fact that MHCIIs
can associate with ER polypeptides, there are numerous functional
examples of endogenous and exogenous CD4 T cell epitopes that
are presented in the absence of Ii expression [reviewed in Ref.
(28)]. While presentation of some of these peptides was nega-
tively affected by the presence of Ii, others were Ii-independent
and loaded on recycling MHCIIs (29, 30). Ii is usually produced
in vast excess and most if not all MHCIIs mature in association
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FIGURE 1 | Portrait of the role of the human invariant chain in MHCII
presentation. (A) MHCII α and β chains assemble with Ii in the ER [1]. The
four Ii isoforms randomly associate into trimers, some of which bear ER
retention motif(s) and/or thyroglobulin domain(s). Unphosphorylated
Iip35/p43-containing trimers, associated with MHCIIs or not, exit the ER
but are recognized by β-COP and undergo retrograde transport [2]. The
MHCII-bound Ii that gets phosphorylated by PKC binds 14-3-3β, thereby
preventing β-COP binding and allowing anterograde transport [3]. (B) From
the Golgi, the different complexes gain access to the plasma membrane or
early endosomes [3]. The complexes at the plasma membrane reach the
MHCII-rich compartment (MIIC) after being internalized into clathrin-coated
pits [4]. In endosomes, presence of p41/43 will reduce processing by
inhibiting cathepsin S (iCAT) and slowing-down Ii processing and/or

transport to the cell surface [5]. (C) In multivesicular MIICs, the
carboxy-terminal trimerization domain of Ii is cleaved by non-cysteine
proteases, generating the p22 fragment. Then, cysteine proteases remove
the glycosylated portion to form the p10 fragment before active cathepsin
S (aCAT) cuts the anchored portion, leaving CLIP in the MHCII groove.
CLIP is then exchanged for an antigenic peptide spontaneously or by DM
[6]. Ii degradation frees myosin II, which can restore the cell motility and
remodeling of endosomes [7]. (D) Antigens are internalized by pinocytosis
or receptor-mediated endocytosis and degraded by proteases, including
cathepsins [8]. In the presence of p41/43, processing is more focused
given the inactivation of cathepsins. Thus, the MHCIIs that gain access to
the plasma membrane present peptides derived from receptor-mediated
Ag internalization to CD4+ T cells [9].
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with Ii (31). Still, it is tempting to speculate that under some
physiological conditions, the Ii/MHCII protein ratio may decrease
sufficiently to impact the peptidome. Accordingly, knocking down
Ii in cancers represents a possible therapeutic avenue, allowing
these cells to present new antigens to tumor infiltrating T cells
(32, 33).

Beside the gross peptidome alterations noted in the non-
physiological absence of Ii, subtle variations have been observed
when MHCIIs were expressed in the context of specific Ii iso-
forms. The GUARDIAN role of Ii is not exclusively CLIP-centered
but also shaped by the p41/43 thyroglobulin domain, which regu-
lates the proteolytic activity of numerous cathepsins (18, 34–37).
Among them, CatS breaks down large polypeptides and provokes
MHC/Ii complex dissociation by cleaving Ii between the trans-
membrane and CLIP regions in APCs (38). In thymic epithelial
cells, CatV (CatL in mice) occupies this role although redundancy
between cathepsin family members is observed (39, 40). As a
result, MHCIIs are freed from Ii cytoplasmic targeting and may
egress to the plasma membrane. It has also been suggested that
the effect of p41/43 is echoed to surrounding Ii (p33/35), limiting
overall processing, and that the thyroglobulin domain chaperones
cathepsins, increasing half-life and maintaining a pool of mature
enzymes in the MIICs (41, 42). The proportion of p41/43 isoforms
varies from 10 to 40% in professional APCs and this provides
a mechanism to modulate cathepsin activity (43). Lastly, it has
been shown that Ii luminal domain is involved in increasing the
half-life of MHCII by delaying endosomal maturation (44). As
a result, the pool of antigenic peptide could be skewed toward
receptor-mediated protein intake taking place in the highly spe-
cialized MIICs (Figure 1D). To efficiently protect the cell from
aberrant Ag presentation, the Ii isoforms must work as a team.
As seen in Tg mice expressing exclusively one mouse or human
Ii isoform, whether p31, p35 or p41, Ag presentation, and CD4
T cell selection can be restored (18, 45–48). Still, Ag presentation
by alternatively spliced isoforms was not equivalent, suggesting
the existence of divergent pathways (18, 34). Also, the differen-
tial outcomes of experimental allergic encephalomyelitis (EAE) or
asthma in p31- vs p41-expressing mice point to distinct class II
peptide repertoire (45, 49). Along the same lines, it was reported
that NOD mice devoid of Ii are protected from developing type
1 diabetes (50). The isoform balance is put into perspective by
Baugh et al., which demonstrated that the onset of experimen-
tal EAE and rheumatoid arthritis are delayed when cathepsin S
inhibitors are administered to mice (51). Further study of the dis-
tinct roles of Ii is much needed to understand the implication
of the various isoforms in immunity. Altogether, these observa-
tions clearly demonstrate the general impact of Ii on the MHCII
peptidome and the subtle editing role of the exon 6b-encoded
domain.

SCAFFOLD
While transfected MHCIIs could egress from the ER in cell lines,
Ii was found to favor the pairing and trafficking of haplotype-
matched and -mismatched α and β chains (52, 53). Some key
properties of Ii became apparent with the characterization of Ii-
deficient mice, although cell-type- and haplotype-dependent dif-
ferences were reported (54). A detailed sequence of events leading

to formation of the MHCII/Ii complex was first described by Cress-
well and collaborators (Figure 1A) (55). According to the model
proposed by Roche et al. three assembled MHCII αβ heterodimers
associate sequentially with a preformed Ii trimer, generating a pen-
tamer, then a heptamer, and ultimately a nonamer with the ability
to egress from the ER (56). This dogma was later refined to include
intermediate steps such as the initial binding of Ii to an MHCII α

chain prior to the pairing of an isotype-matched β chain (57, 58).
Although a variety of chaperones such as BIP and calnexin have
been shown to interact with the MHCII Ag presentation machin-
ery, their exact role in the final assembly and ER egress of the
MHCII/Ii complex is not well defined (55, 59). Furthermore, the
interaction between calnexin and MHCIIs until the final non-
amer formation suggested that egress is tightly restricted (60).
However, given the existence of transport-competent heptamers
and pentamers, it does not appear that universal quality control
mechanisms are in place to prevent egress of non-stoichiometric
complexes (60–62). As MHCII-free Ii trimers can egress from
the ER, the relative abundance of MHCIIs and Ii likely influ-
ences the complex stoichiometry. Cell-type-specific differences
and the affinity of CLIP for the MHCII groove may come into
play as well.

In humans, although p33 is the most abundant isoform and
generates some homotrimers, it is mostly part of heterotrimers
that have also incorporated an RxR-containing moiety (63–65).
By analogy to other multi-protein complexes such as the KATP

channel (66), the di-arginine motif would prevent premature ER
egress of MHCII-unsaturated Ii trimers (i.e., pentamers and hep-
tamers). Indeed, p35/43 require binding of the MHCIIβ chain
for anterograde trafficking (67–69). Although less abundant than
their respective Iip33/p41 counterparts, p35/43 are dominant as
the stochastic incorporation of a single RxR-bearing Ii moiety will
prevent ER egress of an heterotrimer (70, 71). Thus, p35/p43 will
favor the formation of high-order MHCII/Ii oligomers. Indeed, as
p35/43 both need to be phosphorylated by PKC and be associated
with MHCIIs to become transport competent, they form larger
complexes and egress less efficiently than homotrimers devoid
of RxR-containing subunits (Figure 1A) (65, 72, 73). A MHCII
molecule binding a p332p351 heterotrimer would have only one
chance out of three to egress the ER as a pentamer. This of course
is assuming that the MHCII cannot mask the RxR motif in trans.
This is an important issue as it was recently suggested that steric
hindrance caused by the plasma membrane and the bending of
the MHCII/Ii complex only allows formation of pentamers (61).
If this holds true, we have to assume that a cis interaction between
the MHCII and p35/43 is not required to overcome the retention
motif, otherwise many doomed complexes would be formed.

The advantage, if any, conferred by the presence of an ER
retention motif in p35/43 remains obscure. A variable Ii/MHCII
stoichiometry may modulate the MHCIIs turnaround and thus,
the peptidome that is displayed to T cells. One can imagine that
although Ii is in excess, its retention of Ii increases the available
ER pool and ensures that the ratio of free over Ii-bound MHCIIs
is as low as possible. This way, most MHCIIs would acquire their
final cargo in the endocytic pathway instead of the ER. Whether
or not the cell can modulate its physiology to favor the binding of
endogenous ER peptides remains to be seen.
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LEADER
The fundamental functional distinction between MHCI and
MHCII molecules comes from the fact that they acquire pep-
tides in different locations (74). The seminal studies of Ziegler
and Unanue demonstrated that the presentation of CD4 T cell
epitopes by MHCIIs was inhibited by chloroquine, highlighting
the importance of low pH compartments (75, 76). Evidence for
a role of Ii in the trafficking of MHCIIs to endosomes has been
described in numerous reviews (55, 77, 78). In the absence of Ii,
MHCIIs are not transported to endocytic compartments as effi-
ciently and accumulate at the plasma membrane (4, 5). Confocal
and electron microscopy experiments using transfected cell lines
revealed that a clear colocalization of MHCIIs with endosomal
markers or internalized antigens required co-expression of Ii (70,
79). Deletion and site-directed mutagenesis experiments estab-
lished the importance of the cytoplasmic domain for intracellular
trafficking and allowed the mapping of two classical leucine-based
endosomal sorting signals in all Ii isoforms (79).

In line with the role of the leucine-based motifs in Ii degra-
dation and CLIP removal, it was shown that deletion of the Ii
cytoplasmic tail resulted in the cell-surface display of Ii/MHCII
complexes being unable to acquire antigenic peptides (80). In
contrast, one can wonder if the specific characteristics of p35/43
affect transport of the complex and, ultimately, the peptidome.
Many studies using various Ii+ cell types and transfected cell
lines have reported that even in the absence of MHCIIs, some
p33/p41 homotrimers gain access to post-Golgi compartments
and acquire complex N- and O-linked oligosaccharides (4, 5, 68,
81). However, as mentioned above, p35/p43-containing trimers
are retained in the ER (63). The general model stipulates that an
unphosphorylated p35 moiety binds β-COP upon arrival at the
cis-Golgi sorting station, causing the retrograde transport of the
complex in COPI-coated vesicles and the apparent steady-state
ER retention (82) (Figure 1A). However, when phosphorylated
by PKC on serine 8, Ii recruits 14-3-3β to prevent the binding of
β-COP on the RxR motif (47, 56–58, 73). Still, it remains to be
determined how the complex is transported from the ER to the
Golgi. While largely undefined, export signals have been described
in some cargo proteins, allowing their incorporation in COPII-
coated transport vesicles originating at ER exit sites (83). Other
transmembrane proteins exit through the default pathway (84).
Whether the 16-amino acid extension of p35/43 confers specific
sorting properties to MHCIIs in such early step as ER egress has
yet to be addressed. Another important question that remains is,
if the RxR motif is masked by 14-3-3β, why can’t a phosphory-
lated Ii trimer be released from the Golgi in MHCII-negative cells?
Although there is compelling evidence for competition between
14-3-3β and β-COP, the need for MHCIIs in the transport of
p35/p43-containing complexes beyond the Golgi apparatus was
overlooked in previous studies and remains unexplained.

The stringent quality control mechanism operating at the level
of the Golgi suggests that p35/p43-including complexes do not
simply reach the plasma membrane through the default path-
way. Many groups have studied the route taken by the MHCII/Ii
complex to reach the late endosomes/lysosomes [reviewed in Ref.
(85)] (Figure 1B). It is now recognized that AP-2 adaptors, which
connect cargo and plasma membrane clathrin-coated pits, are

important in the sorting of MHCII/Ii complexes to the endocytic
pathway. The actual model proposes that the bulk of MHCII/Ii
complexes exit the Golgi by a clathrin-independent mechanism
en route to the plasma membrane where they are internalized in
association with AP-2 [Ref. (86, 87) and references therein). How-
ever, one must bear in mind that there could be important cell-type
differences in the transport of MHCIIs. Also, in some of the stud-
ies looking at the trafficking of Ii, it is not entirely clear which Ii
isoform(s) was (were) expressed and in what proportions. Thus, a
thorough comparison of p35 and p33 trafficking is much needed.

One clear difference in the trafficking of p33 and p35 is that the
latter is not detected at the plasma membrane (71, 72). Kuwana
et al. have shown in transfected cells that a dominant-negative
form of dynamin caused the cell-surface display of p35, suggest-
ing that in fact, p33 and p35 follow the same path to endosomes
(72). The reason why the internalization kinetics of phosphory-
lated p35 is increased as compared to p33 is not known but may
relate to its affinity for AP-2 (88).

Many groups have documented the impact of Ii on the endo-
cytic pathway [see Ref. (78)] (Figure 1C). Ii-expressing cells
accumulate large endosomes, in which Ag and MHCIIs degra-
dation is slowed (89–93). Such effects are dependent on the cyto-
plasmic tail and the luminal trimerization domain common to
all Ii isoforms. However, based on studies using cathepsin KO
mice, it became clear that the Ii thyroglobulin domain exerts
further pressure on MHCII trafficking and maturation by limit-
ing cathepsin-mediated degradation while preventing cathepsin-
sensitive epitopes from proteolysis (94–96). Surprisingly, p41/43
and cathepsins were shown to colocalize in compartments not
implicated in Ag presentation, a finding suggesting a role in phago-
cytosis rather than Ag processing (97). In light of the recent
results by Faure-André et al. describing Ii-myosin II interactions,
it seems that Ii is also involved in cell motility/remodeling (98)
(Figures 1C,D). Reduced Ii processing caused by p41/43 would
increase the MIIC’s interaction with the myosin II motor, provid-
ing necessary extraction force to internalize membrane Ag in these
compartments (99). The endocytic pathway is a complex system
made of different tubular/vesicular entities and the exact location
where MHCIIs acquire peptides is still debated (100, 101). It is
unknown if p35/p43 have additional modulatory properties that
could translate into a change in the peptidome and the contri-
bution of each isoform to the endocytic landscape covered by Ii
remains to be evaluated (102, 103).

CONCLUDING REMARKS
The list of functions ascribed to Ii is continuously growing. Beside
its many roles in MHCII Ag presentation, Ii was shown to chaper-
one other presentation molecules, such as CD1d. As this class 1b
molecule acquires its ligands in the endocytic pathway, the role of
Ii in the selection of lipid Ags is of great interest (104). Recently, Ii
was shown to have a key impact in cross-presentation, suggesting
that its isoforms may fine tune the peptide repertoire associated
with MHCI molecules in DCs (105).

The Ii pool is highly heterogeneous and an important question
that remains is the potential isoform-specific influence of post-
translational modifications such as the addition of a glycosamino-
glycan (chondroitin sulfate, CS) side chain in the ER/Golgi (106).
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Ii-CS binds CD44 and can enhance T cell responses (107). Given
that p35/p43 regulate surface display of Ii trimers (71), it would be
interesting to determine in humans the contribution of these iso-
forms on the chaperone-independent functions of Ii, such as being
a cell-surface receptor for the macrophage migration inhibition
factor (MIF) and Helicobacter pylori (108). Whether alternative
splicing affects the affinity of these ligands for the Ii receptor
remains to be measured. Interestingly, the cytoplasmic tail is piv-
otal in the capacity of Ii to transduce signals in response to MIF or
after endosomal cleavage of its transmembrane region by Sppl2a
(109–111). The potency of p35/p43 in this context should be
tested.

The existence of Ii isoforms offers multiple layers of control
over Ag presentation. Major transformations occur during the
activation of APCs following, for example, microbial activation
of pattern recognition receptors (PRRs) signaling pathways. If
mediators of the inflammatory response (IFN-γ, TNF-α, IL-10
etc) can modulate the behavior of Ii isoforms and if the ensu-
ing changes in the expression levels of MHCIIs or Ii can affect
the peptidome should be systematically addressed. Evidence that
the relative proportions of these isoforms can somehow be reg-
ulated comes from the study of chronic lymphocytic leukemia
in which overexpression of p35 has been reported (112, 113).
Whether p35 plays a role in tumor escape from the immune sys-
tem by modulating the peptidome remains to be determined.
Also, differential p35 expression between B cells from monozy-
gotic twins discordant for type 1 diabetes was shown to affect
Ag presentation and could potentially contribute to the develop-
ment of the disease (114). On a final note, expression of Ii-Ag
fusion proteins in APCs represents a potential immunization
strategy that targets Ags directly to endosomes and skews the pep-
tidome (115, 116). Alternatively, recombinant proteins have been
engineered by replacing CLIP with the sequence of a T cell epi-
tope (117). The efficacy of these promising vaccine approaches
may benefit from the study of the biology of the various Ii
isoforms.
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