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Renal cell carcinoma (RCC) is a disease characterized by excessive administration complexity because it exhibits extraordinary
nonuniformity among distinct molecular subtypes. We herein intended to delineate the metabolic aspects of clear cell RCC
(ccRCC) in terms of the gene expression profile. Recent studies have revealed that metabolic variations within tumors are
related to the responsiveness to immune checkpoint inhibitor (ICI) therapy and patient prognosis. We used 100 previously
reported metabolic (MTB) pathways to quantify the metabolic landscape of the 729 ccRCC patients. Three MTB subtypes were
established, and the MTB scores were calculated using principal component analysis (PCA). The high MTB score group had
better overall survival (OS) and was associated with higher expression of immune-checkpoint and immune-activity signatures.
The opposite was true of the low MTB score group, which may explain the poor prognosis of these patients. Three ICI-treated
cohorts or tyrosine kinase inhibitor (TKI) treated cohort proved that patients with higher MTB scores exhibited notable
therapeutic benefits and clinical gains. This research explained that the MTB score could be applied as a powerful prognostic
indicator and predictive of ICI or TKI therapy. Assessing the MTB scores in a more extended group will facilitate our
perception of tumor metabolism and provide guidance for studies on targeted approaches for ccRCC patients.

1. Introduction

Renal cell carcinoma (RCC) remains in the top 10 most com-
monly diagnosed malignancies globally [1]. Accounting for
70% of pathologically determined RCC, clear cell renal cell
carcinoma (ccRCC) is often histologically marked by
enriched lipid and glycogen infiltration [2]. Due to the insid-
ious and asymptomatic onset of the disease, approximately
30% of patients have already developed metastatic disease
when diagnosed, and another 20% of patients with early-
stage RCC progress to metastatic RCC (mRCC) despite of
initial treatment which eventually results in a 5-year survival
rate of only 12% [3–5].

RCC is one of the most investigated and perhaps the rep-
resentative of human cancers distinguished by metabolic
reprogramming which is evident in various systemic mani-
festations [6, 7]. A number of findings have unveiled various
metabolic changes that are directly or indirectly involved
throughout cancer development. Despite the widely
accepted Warburg effect and glutamine addiction, upregula-
tion of glutamine metabolism and lipid synthesis, and reduc-
tive carboxylation actively arises in many RCC cells, which
enables tumor cells to swiftly reproduce [8–11]. Therefore,
researchers have worked on strategies to classify ccRCC
patients into different risk groups by tumor metabolic pat-
terns. On account of transcriptome and metabolic analysis
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of ccRCC, Zhao et al. have concluded a gene signature based
on fatty acid metabolic enzymes that could divide ccRCC
patients into distinct subgroups [12]. Another study inte-
grated transcriptomic and metabolomic analyses revealed
that disordered metabolism of succinate, beta-alanine,
purines, glucose, and myo-inositol may contribute to the
unfavorable prognosis of RCC patients [13].

Cancer cells rewire their metabolism, which influences
the representation of specific cell markers and intervenes
in the immune response in the tumor microenvironment
(TME) [14, 15]. Ramapriyan et al. have concluded that the
PI3K-Akt-mTOR axis, hypoxia-inducible factor pathway
(HIF), adenosine pathway, Janus kinase/signal transducers
and activators of transcription (JAK/STAT) pathway, Wnt/
Beta-catenin signaling, and amino acid depletion metabolic
pathways are essential metabolic signaling modulating
TME and resulting immune checkpoint inhibitor (ICI) resis-
tance in various malignancies [16].

Several studies have shown that various metabolic fea-
tures within cancers may affect therapeutic strategies. In a
breast cancer research, early-stage patients were treated with

N-acetylcysteine to subdue oxidative stress and reduce
tumor growth. And the Monocarboxylate transporter 4
(MCT4) which serves as a lactate exporter was found to be
decreased in stromal cells after N-acetylcysteine treatment,
together with decreasing proliferative contents [17]. While
in melanoma, Renner et al. discovered that patients with
higher level of glycolysis displayed an inferior response to
ICI therapy [18]. Similar findings have also been reported
in RCC where higher glucose intake within tumors is associ-
ated with low T cell infiltration and poor response to ICI
treatment [19, 20].

Recent advances in ICI cancer treatment have shed light
on RCC patients, but the response rate remains low, and
most patients are resistant to ICI therapy [21, 22]. Though
numerous strides have been performed to identify the meta-
bolic mechanism and optimal treatment of ccRCC progres-
sion, molecular subtypes affecting the ccRCC patient
survival as well as ICI treatment response are still inade-
quately understood [23]. In this research, we investigated
three ccRCC cohorts that were combined to form a dataset
of 729 cases for consensus clustering reflecting on metabolic
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Figure 1: Flowchart of the study design.
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pathways. Two further processed microarray data sets with
348 and 56 samples were used to evaluate the ICI treatment
response and 53 samples for targeted therapy in the two
MTB subtypes, respectively. We aimed to explore the meta-
bolic activities among individual ccRCC patients, which can
help identify patients with distinguished clinical outcomes
and guide personalized medical treatment.

2. Materials and Methods

2.1. Acquiring RCC Datasets and Samples. Public data repos-
itories, namely, the Cancer Genome Atlas (TCGA, http://
cancergehttp://nome.nih.gov/), Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/), and the Array
Express Database (AED, https://www.ebi.ac.uk/
arrayexpress/), were explored for usable datasets for ccRCC.
Cohorts without enough sample size (<100) or relevant clin-
ical records without overall survival (OS) data were filtered
out. The RNA sequencing data (value: raw counts) of
TCGA-KIRC and CTPAC-3 datasets were downloaded from
the Genomic Data Commons Data Portal (https://portal.gdc
.cancer.gov/). The ccRCC microarray dataset E-MTAB-1980
from the University of Tokyo, E-MTAB-3218 from Bristol-
Myers Squibb clinical trial, and E-MTAB-3267 from Paris
Descartes University were downloaded from the AED
[24–26]. For all microarray datasets (E-MTAB-1980, E-
MTAB-3267, and E-MTAB-3218), raw data (.CEL Intensity
files) were downloaded, and Robust Multi-array Average
(RMA) [27] algorithm was used to adjust the background.
This step was conducted by the rma function from the Affy
R package which sequentially performed background pro-
cessing, log2 transformation, quantile normalization, and
probe expression calculation. For the same gene matched
by multiple probes, the expression level was calculated by

the median value of all probes. To form the integrated data-
set, the RNA-Seq data of TCGA-KIRC and CTPAC-3 data-
sets were converted into transcripts per kilobase million
(TPMs), which were more comparable to those measured
from microarrays [28]. Further, the “ComBat” function from
the SVA R package was operated to rectify the intrinsic
batch effects among multicohorts [29].

2.2. Consensus Clustering for Metabolic Pathways. A total of
100 metabolism pathway signatures were obtained from ear-
lier issued studies [30, 31]. In addition, we applied the
single-sample GSEA (ssGSEA) method for the evaluation
of enrichment degree of the metabolism-related signatures
via GSVA R package [32]. For the consensus clustering anal-
ysis, the K-means method was conducted to determine the
optimal MTB clusters using the “ConsensuClusterPlus” R
package [33]. This procedure was based on Euclidean dis-
tance and Ward’s linkage which was resampled for 1000
times to ensure the robustness. We used Microenvironment
Cell Populations-counter (MCP-counter) algorithm to cal-
culate infiltration levels for eight immune and 2 stromal cell
populations in each sample [34]. The enrichment of stromal
and immune scores of each individual was calculated using
the ESTIMATE method [35]. Previously reported four ICI-
resistance-related gene sets were extracted from the Molecu-
lar Signatures Database (MSigDb) and quantified via GSVA
R package [16, 36].

2.3. DEGs Correlated to the Corresponding MTB Subtypes.
Individuals were sorted into the MTB clusters in terms of
their distinguished metabolic enrichment scores. The
LIMMA R package was employed to identify the genes cor-
related to the MTB clusters. Differentially expressed genes
(DEGs) among different MTB subtypes were thought to be
significant when the adjust p value was < 0.05, and the cor-
responding fold-change was > 1.3.

2.4. Reduced Dimension and Construction of MTB Score. Pri-
marily, hierarchy clustering was applied to classify the
patients in TCGA-KIRC cohort with their inherited DEG
values. Besides, DEGs that show the positive correlation with
the MTB clusters were defined as the MTB gene signature A
and negative correlation with the MTB gene signature B.
Subsequently, the Boruta algorithm was operated to further
reduce the dimension of the MTB gene signatures which
were interpreted by the R package clusterProfiler [37, 38].
We also used clusterProfiler to draw an enrichment map
for the corresponding gene set which is a network-based
process for gene-set enrichment visualization and explana-
tion [39]. The first principal component was derived to gen-
erate the signature score by using the principal component
analysis (PCA) algorithm. Finally, we implemented a process
identical to the gene expression grade index [40] to define
the MTB score of each subject:

MTBScore =〠PC1B−〠PC1A: ð1Þ

2.5. Acquisition of Genomic Mutation Data. The homolo-
gous gene somatic mutation data (MAF files) of subjects in

Table 1: Clinical characteristics of three ccRCC cohorts (TCGA,
CTPAC-3, and Tokyo).

Characteristic
TCGA, N =

5301
CTPAC-3, N =

1101
Tokyo, N =

1011

Age 61 (52, 70) 61 (53, 70) 64 (56, 72)

Gender

Female 186 (35%) 30 (27%) 24 (24%)

Male 344 (65%) 80 (73%) 77 (76%)

Stage

Stage I 266 (50%) 52 (47%) 66 (65%)

Stage II 57 (11%) 13 (12%) 10 (9.9%)

Stage III 123 (23%) 33 (30%) 13 (13%)

Stage IV 81 (15%) 12 (11%) 12 (12%)

Unknown 3 (0.6%) 0 (0%) 0 (0%)

Vital status

Alive 357 (67%) 96 (87%) 78 (77%)

Dead 173 (33%) 14 (13%) 23 (23%)

Follow-up
time

40 (19, 64) 23 (14, 36) 51 (34, 81)

Unknown 2 10 0
1Median (IQR); n (%).
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the TCGA-KIRC project were obtained from the GDC data
portal. To calculate the tumor mutation burden (TMB) of
each ccRCC, we considered all nonsynonymous mutations

into account. The top 20 cancer-driving somatic variants
were estimated in high and low MTB groups by employing
the “maftool” R package [41], respectively.
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Figure 2: Classification of ccRCC clusters on the metabolism-associated pathways and immune infiltration patterns among clusters. (a)
Consensus clustering of 100 metabolic signalings in three independent ccRCC groups. Rows serve as metabolic pathways, and columns
serve as individuals. (b) Kaplan-Meier analysis for overall survival (OS) of the integrated dataset in three MTB clusters. The Log-rank p
value was showed < 0.001, HRðC2−C3Þ = 2:3, HRðC1−C3Þ = 1:1. ((c) and (d)) The portion of immune infiltration fractions and four ICI
resistance associated pathways in three MTB clusters. We also plotted the immune score and stromal score of three MTB clusters. ((e)
and (f)) The difference in the stromal score and immune score among distinct MTB clusters. The Kruskal-Wallis test was applied to
determine the statistical difference in three MTB clusters. (g) GSEA analysis unveils discrete enriched upregulated and downregulated
gene sets among three subtypes. Rows are determined by the elected 30 gene sets and columns by consensus summaries for all subtype.
All gene sets are marked by distinct colors. (∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001; ∗∗∗∗p < 0:0001).
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Figure 3: Continued.
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Figure 3: Continued.

10 Oxidative Medicine and Cellular Longevity



Bp
Cc

M
f

0 10 20 30 40 50

Collagen metabolic process
Epidermal cell differentiation

Keratinocyte differentiation
Keratinization

Skin development
Epidermis development

Extracellular matrix organization

Intermediate filament cytoskeleton
Complex of collagen trimers

Intermediate filament
High-density lipoprotein particle

Banded collagen fibril
Fibrillar collagen trimer

Collagen trimer

Collagen-containing
Extracellular matrix

Serine hydrolase activity
Peptidase inhibitor activity

Serine type peptidase activity
Signaling receptor activator activity

Receptor ligand activity
Serine type endopeptidase activity

Extracellular matrix 

1e–05
2e–05
3e–05
4e–05

P.adjust

Extracellular structure 

Structural constituent
Odorant binding

GO analysis of MTB signature genes A

(c)

BP
CC

M
F

0 20 40 60

Organic acid biosynthetic process
Carboxylic acid biosynthesis

Α-amino acid metabolic process
Carboxylic acid catabolic process

Organic acid catabolic process
Small molecule catabolic process

Organic acid transport
Carboxylic acid transport

Peroxisomal matrix
Basolateral plasma membrane

Cell projection membrane

Cluster of actin
Based cell projections

Brush border membrane
Brush border

Apical plasma membrane

Apical part of cell

Solute:sodium symporter activity
Symporter activity

Organic acid transmembrane transporter
Activity

Carboxylic acid transmembrane
Transporter activity

Active transmembrane transporteractivity

Organic anion transmembrane
transporter activitySecondary active transmembrane
transporter activity

Anion transmembrane transporter activity

GO analysis of MTB signature genes B

(d)

0

5

10

T_cel
ls

CD8_
T_cel

ls

Cyto
toxic

_lym
phocyt

es

B_lin
eag

e

NK_cel
ls

Monocyt
ic_

lin
eag

e

Neu
tro

phils

Endothelia
l_cel

ls

Fibroblas
ts

Co
m

po
sit

io
n

A
B
C

Myel
oid_den

driti
c_cel

ls

–5

⁎

⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎
⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

(e)

Figure 3: Continued.
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Figure 3: Classification of metabolic gene subclasses. (a) Consensus clustering of shared DEGs among three MTB cluster groups to classify
cases into three combinations: gene clusters A–C. (b) Kaplan-Meier analysis for overall survival (OS) of the integrated dataset in three MTB
gene clusters. The Log-rank p value was < 0.001, HRðB−AÞ = 2:3, HRðC−AÞ = 1:2. ((c) and (d)) Gene Ontology (GO) enrichment analysis of the
two MTB-relevant signature genes: MTB signature genes A and B. The x axis represents the number of genes within per GO term. BP:
biological process; CC: cellular component; MF: molecular function. ((e) and (f)) The portion of immune infiltration fractions and four
ICI resistance-associated pathways in three MTB gene clusters. We also plotted the immune score and stromal score of three MTB gene
clusters. ((g) and (h)) The difference in the stromal score and immune score among distinct MTB gene clusters. The Kruskal-Wallis test
was applied to determine the statistical difference in three MTB gene clusters. (∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001; ∗∗∗∗p < 0:0001).
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Figure 4: Continued.
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Figure 4: Continued.
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2.6. Comparing the Response of Different MTB Groups from
ICI or TKI Therapy. To assess the clinical value of the
MTB scores, the IMvigor210 cohort with 348 metastatic
urothelial carcinoma cases treated with atezolizumab was
downloaded freely from http://research-pub.gene.com/
IMvigor210CoreBiologies [42]. And another two datasets,
E-MTAB-3267 with 53 metastatic ccRCC cases treated by
sunitinib and E-MTAB-3218 with 56 metastatic ccRCC
cases treated with nivolumab, were downloaded from the
AED. The above three independent cohorts that received
ICI or TKI therapy were investigated to validate the MTB
scores. Further, we estimated the TKI agent response for
each individual based on the Genomics of Drug Sensitivity
in Cancer (GDSC). Three regularly used TKI drugs in RCC
treatment—sorafenib, pazopanib, and axitinib—were
picked. And the samples’ half-maximal inhibitory concen-
tration (IC50) of the samples was calculated via ridge regres-
sion and was 10-fold cross-validated using the R package
“pRRophetic.”

2.7. Statistical Analysis. All the calculations and statistical
analyses were conducted in the R language environment (R
version 4.0.3). The Kruskal-Wallis examination was employed
for comparisons larger than two groups, and the Wilcoxon t
-test was applied for comparisons with two collections. Cate-
gorical variables were analyzed using the Chi-square test or
Fisher’s exact test when the theoretical frequency was <5. To
divide patients into high and low MTB scores, respectively,
the survival R package was applied to reach the maximum
select rank statistic (MSRS). Survival analysis was conducted
by Kaplan–Meier procedures, and statistical significance was
examined by the log-rank test. Correlation analysis was per-
formed using the Spearman method. Statistical significance
was defined as a two-tailed p value < 0.05.

3. Results

3.1. Identifying Three MTB Subtypes and Their Distinct
Immune Infiltration Patterns. The overall design of the study

Log rank test P = 0.004
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Figure 4: Pathway interactions and construction of the MTB score. (a) Enrichment map analysis of KEGG pathways among three gene
clusters. The size of the circle represents the count of genes. (b) Comparison of enriched KEGG pathways between two MTB gene
signatures. The size of the circle represents the count of genes. (c) Alluvial chart of MTB gene cluster division within groups with
different MTB clusters, MTB scores, and survival endings. (d) Variation of immune checkpoint genes (CD274, CTLA4, HAVCR2, IDO1,
LAG3, and PDCD1) and immune function genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, PRF1, TBX2, and TNF) in high and low
MTB score subgroups. (e) Survival analysis for patients with high and low MTB scores in the TCGA RCC cohort. HRðlowMTB scoreÞ = 2:7,
Log-rank p value < 0.001. (f) Survival analysis for patients with high and low MTB scores in the CTPAC-3 RCC cohort. HRðlowMTB scoreÞ
= 5:7, Log-rank p value < 0.001. (g) Survival analysis for patients with high and low MTB scores in the Tokyo RCC cohort. H
RðlowMTB scoreÞ = 3:8, Log-rank p value = 0.004.
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is presented in the flowchart (Figure 1), and the baseline
characteristics of all ccRCC cases from different groups are
displayed in Table 1. To form the integrated dataset (TCGA;
CTPAC-3; Tokyo), the SVA R package was applied to rectify
the batch effect (Figure S1A and S1B). ssGSEA scores of the
previously recorded 100 metabolic pathways were adopted
as the basis for consensus clustering analysis (Figure S1C
and S1D).

In total, 729 samples of kidney cancer were initially
available for analysis, and three distinct MTB subtypes with
varied overall survival (OS) patterns were identified (log-
rank p value < 0.001; Figures 2(a) and 2(b)). Within three
MTB clusters, the C1 cluster is marked by higher level of
norepinephrine biosynthesis and vitamin B6 metabolism
and possesses a better prognosis with a median follow-up
time of 50.7 months (median survival time (MST) not
reached). The C2 cluster is symbolized by a lower level of
biosynthesis of adrenaline and amino acid metabolism and
harbors an awful OS (MST: 57.1 months). No specific meta-
bolic pathways were identified in the C3 cluster according to
the differential analysis, and the OS was relatively better
(MST: 118.5 months). Given that cells in the TME closely
interact with tumor metabolism, we compared the immune
and stromal cell composition in TME among different
MTB clusters. We found the C1 cluster demonstrated a sig-
nificantly higher density of monocytic lineage cells and neu-
trophils and while the C3 cluster showed higher levels of
endothelial cells and natural killer (NK) cells (Figure 2(c)).
A higher density of NK cells in tumor samples reflected
enhanced cytotoxic capabilities in RCC which may give clues

to its better prognosis [43]. And the C2 cluster was associ-
ated with higher counts of total T cells, B lineage cells, and
fibroblasts, as well as higher immune and stromal scores,
respectively (Figures 2(c), 2(e), and 2(f)). Similar to previous
research, elevated infiltration level of fibroblasts and stromal
scores was proved to suppress antitumor immunity and
weaken the immunotherapy response in various cancers
[44–46]. Furthermore, differences in ICI-resistance associ-
ated pathways were also observed, with C1 displaying a sig-
nificantly higher score on glycolysis and PI3K-Akt-mTOR
axis and C2 showing elevated composition on hypoxia and
Wnt/Beta-catenin signaling (Figure 2(d)). To identify gene
sets enriched within individual subtypes, we next conducted
GSEA analysis. We then selected the top 10 most significant
gene sets for each subtype to build a pathway heat map,
which explained discrete gene sets enriched in each subclass
(Figure 2(g)).

3.2. Discovering Metabolic Gene Subtype. To interpret the
potential biological features of distinct metabolic subtypes,
the LIMMA package in R was applied for differential analy-
ses to discover the transcriptome alterations among these
subclasses. In the ensuing investigation, we focused mainly
on the TCGA RCC cohort, which possessed the most com-
prehensive genomic and clinical message. We conducted
the consensus clustering of 1,201 differentially expressed
genes (DEGs) (Figure S2D), collected from differential
analysis among three MTB clusters, which then organized
the TCGA group into three cohorts: gene clusters A–C
(Figure S2A, S2B and S2C). Therefore, we defined 533
gene signatures positively related to the gene cluster as the
MTB gene signature A, and the remainder of the DEGs
were defined as the MTB gene signature B (Table S1).
Subsequently, to further reduce the redundancy of genes,
we adopted the Boruta algorithm for feature selection in
the MTB gene signatures A and B, and the heat map
described 206 most representative genes at the end
(Figure 3(a) and Table S2). Enriched gene ontology terms
including biological process (BP), cellular component
(CC), and molecular function (MF) are presented in
Figures 3(c) and 3(d).

For survival analysis among the three gene clusters, cases
in gene cluster A demonstrated favorable outcomes with a
median follow-up time of 50.8 months (MST not reached)
and exhibited higher levels of neutrophils, endothelial cells,
and PI3K-Akt-mTOR axis and lower stromal and immune
scores than those in cluster C (Figures 3(b) and 3(e)–3(h)).
And cases in gene cluster B showed a median OS (MST:
118.5 months) and were associated with higher counts of
total T cells, CD8+ T cells, cytotoxic lymphocytes, B lineage,
NK cells, monocytic lineage, and myeloid dendritic cells
(Figures 3(b) and 3(e)). As for cluster C, which harbors the
poorest OS (MST: 57.1 months) exhibited an increased stro-
mal fibroblasts infiltration and higher scores in ICI-
resistance associated pathways including hypoxia and Wnt/
Beta-catenin signalings (Figures 3(b) and 3(e)–3(h)). Inter-
estingly, we found gene cluster A showed an increased score
on the PI3K-Akt-mTOR axis though possessing a compara-
tively better OS (Figure 3(f)).

Table 2: Clinical characteristics between MTB score subgroups
(TCGA, CTPAC-3, and Tokyo).

Characteristic
MTB score, high,

N = 4211
MTB score low,

N = 3201

Age 61 (52, 71) 61 (53, 70)

Gender

Female 155 (37%) 85 (27%)

Male 266 (63%) 235 (73%)

Stage

Stage I 245 (58%) 139 (43%)

Stage II 47 (11%) 33 (10%)

Stage III 88 (21%) 81 (25%)

Stage IV 40 (9.5%) 65 (20%)

Unknown 1 (0.2%) 2 (0.6%)

Vital status

Alive 346 (82%) 185 (58%)

Dead 75 (18%) 135 (42%)

Follow-up time 40 (23, 66) 34 (16, 58)

Unknown 6 6

Project

CTPAC-3 72 (17%) 38 (12%)

TCGA 302 (72%) 228 (71%)

Tokyo 47 (11%) 54 (17%)
1Median (IQR); n (%).
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3.3. Pathway Interactions and Installation of the MTB Score.
To further explore the interconnections among gene clusters
and MTB signature genes, we used enrichment map which is
a functional grouping network diagram where each node
represents a KEGG pathway (Figures 4(a) and 4(b)). And
to collect quantitative pointers of the metabolic aspect in

each case, we performed PCA to calculate the MTB scores,
which were defined as the subtracting of the first principal
component scores between MTB signature gene A and
MTB signature gene B (Table S3). To generate the optimal
cut-off value of the MTB scores, we used the survival R
package to reach maximally selected rank statistics [47],
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Figure 5: The association between the MTB score and somatic mutation. (a) Variation of the MTB score among MTB gene clusters
(Kruskal-Wallis test p < 0:001). (b) Scatterplots describing the positive association in the MTB scores and TMB in the TCGA set
(Spearman correlation R = 0:12, p = 0:022). (c) Survival analysis for patients with high and low TMB in the TCGA RCC cohort. H
Rðhigh TMBÞ = 2:8, Log-rank p < 0:001. (d) Pairwise survival analysis of four groups (group 1: low TMB and low MTB score, group 2: high
TMB and low MTB score, group 3: low TMB and high MTB score, group 4: high TMB and high MTB score). HR was generated by the
Cox regression was group 1 as the base. ((e) and (f)) The oncoPrint plot was created with low MTB scores on the left (red) and high
MTB scores on the right (red). Individual cases are depicted in the column.

20 Oxidative Medicine and Cellular Longevity



which then categorized cases in the TCGA cohort into high
or low MTB score groups. The allocation of patients among
gene clusters, MTB score subgroups, and clinical
characteristics is summarized in Figure 4(c) and Table 2.
We then examined the differences in immune action and
tolerance status between high and low MTB score groups
where CD274, CTLA4, HAVCR2, IDO1, LAG3, and
PDCD1 were chosen as immune check points and CD8A,
CXCL10, CXCL9, GZMA, GZMB, PRF1, TBX2, and TNF
as antitumor activity-related genes [48, 49]. We observed
that the majority of the immune checkpoints and
antitumor activity-related genes except CTLA4, LAG3,
PDCD1, GZMB, and TNF were highly expressed in the
high MTB group, as determined by the Wilcoxon test
(Figure 4(d)).

Subsequently, we analyzed the prognostic value of the
MTB score in the TCGA cohort, CTPAC-3, and Tokyo
cohorts independently. Via K-M survival analysis, we
observed that cases in the high MTB score group possessed
significantly better OS in all three cohorts determined by
the log-rank test (TCGA: p < 0:001, CTPAC-3: p < 0:001,
Tokyo: p = 0:004, Figures 4(e)–4(g)). In comparison to ear-
lier molecular subtype classifications [50, 51], we found that
the high MTB score group mainly coincided with TCGA
cluster I and ccA subtype which possessed better clinical
outcomes whereas the low MTB score group was more in
line with TCGA cluster III and ccB subtype which signified
poor prognosis (Figure S3A).

3.4. The Association amid the MTB Scores and Somatic
Mutations. Tumor mutational burden (TMB) has been
viewed as a reliable indicator for immunotherapy response
and OS in several solid cancers, and patients with high
TMB tend to have better ICI treatment response [52–54].
However, in ccRCC, TMB seems unimpactful for immuno-
therapy response [55, 56]. And Zhang et al. found that
higher TMB levels were associated with poor OS, conferring
higher tumor grades and clinical stages in ccRCC patients
[57]. Regarding the prognostic indications of TMB, we
attempted to investigate the correlation between the TMB
and the MTB scores to illustrate the genetic characteristics
of each MTB subgroup. As displayed in Figures 5(a) and

5(b), cases in the different MTB gene clusters revealed vari-
ous MTB scores (Kruskal—Wallis test, p < 0:001), and
Spearman correlation analysis showed a positive correlation
between the MTB scores and TMB (coefficient: R = 0:12, p
= 0:022). To explore the prognostic value of TMB in RCC,
we classified 365 TCGA RCC patients into high TMB and
low TMB groups using the previous mentioned method
[47]. We observed that patients with low TMB exhibited a
more satisfying OS than those with high TMB group (log-
rank p value < 0.001; Figure 5(c)). To consider the predictive
value of TMB and the MTB score together, we next stratified
cases in the TCGA cohort into four groups (group 1: low
TMB and low MTB score; group 2: high TMB and low
MTB score; group 3: low TMB and high MTB score; group
4: high TMB and high MTB score). And the Cox regression
was applied to quantify the hazard ratio (HR). Pairwise sur-
vival analysis revealed that the prognostic value of the MTB
score was not intervened by TMB status of individuals
(group 1, HR = 1 versus group 2, HR = 4:336, p = 0:0063;
group 3, HR = 4:389 versus group 4, HR = 12:515, p <
0:0001). Although stratified by different TMB groups, the
high MTB score group held better OS than low MTB score
group and the predictive value remained stable. In summary,
these findings suggest that the MTB score can serve as a
robust prognostic indicator independent of TMB.

In addition, we studied the occurrence of somatic muta-
tions in RCC driver genes within the high and low MTB
groups. The top 20 driver genes with the largest mutational
frequency were acquired from the maftools [41] and ana-
lyzed (Figures 5(e) and 5(f)). Analysis of the nonsynon-
ymous mutation exposed that the mutational frequency of
gene PBRM1and TTN was significantly different between
the high and low MTB score groups (Pearson’s Chi-
squared test; Fisher’s exact test; Table 3. These results might
render different approaches for studying the mechanism of
tumor metabolic structure and gene mutation in ICI
therapy.

3.5. Distinct Sensitivity to Immunotherapy and Targeted
Therapies for MTB Subclasses. TKI targeted therapy and
ICI therapy are more and more becoming mainstream treat-
ments for RCC patients who are naive to initial therapy. Still,
the selection of suitable candidates remained intractable
trouble because of the low effective rate [23, 58]. Thus, to
explore the role of the MTB score in therapeutic benefit,
we analyzed three independent cohorts receiving various
therapies including E-MTAB-3267 treated with a TKI agent
(sunitinib), IMvigor210 cohort treated with anti-PD-L1
agent (atezolizumab), and E-MTAB-3218 treated with anti-
PD-1 agent (nivolumab). All cases were allocated into high
or low MTB scores applying previously mentioned MSRS
method independently. Distinctly, we found patients acquir-
ing high MTB scores better outlived patients with low MTB
scores in the TKI treated cohort (log-rank p value < 0.001;
Figure 6(b)). And the treatment response occupation of
TKI therapy was higher in the high MTB score class than
in the low MTB class (Figure 6(a)). Similar results were
obtained in the IMvigor210 cohort (log-rank p value =
0.004; Figures 6(c) and 6(d)) and were further validated in

Table 3: Connection between MTB scores and somatic variants.

Characteristic High, N = 1841 Low, N = 1001 p value2

VHL 111 (60%) 55 (55%) 0.4

PBRM1 103 (56%) 37 (37%) 0.002

TTN 31 (17%) 28 (28%) 0.027

SETD2 23 (12%) 19 (19%) 0.14

BAP1 20 (11%) 15 (15%) 0.3

MTOR 11 (6.0%) 11 (11%) 0.13

MUC16 15 (8.2%) 7 (7.0%) 0.7

KDM5C 13 (7.1%) 7 (7.0%) >0.9
HMCN1 11 (6.0%) 7 (7.0%) 0.7

DNAH9 12 (6.5%) 5 (5.0%) 0.6
1n (%). 2Pearson’s Chi-squared test; Fisher’s exact test.
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Figure 6: Continued.
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the E-MTAB-3218 cohort (Log-rank p value < 0.001;
Figures 6(e) and 6(f)). Interestingly, in the E-MTAB-3218
cohort, we found the MTB score remained stable between
pre- and post-ICI treatment (Wilcoxon p = 0:85;
Figure S3B and S3C). To investigate its value in other TKI
agents, we quantified the ridge regression model based on
the GDSC cell line data and estimated the IC50 for each
individual in the TCGA RCC cohort. The results, as shown
in Figure S4 A-C, indicated that the low MTB score class
showed higher sensitivity than the high MTB score class in
sorafenib (p < 0:001), but not in pazopanib (p = 0:999), or
axitinib (p = 0:757). These findings collectively suggest that
the MTB score can serve as a novel prognostic symbol and
indicator of immunotherapy response as well as some TKI
therapy response.

4. Discussion

Immunotherapy has proven to be a powerful tool in eradi-
cating human cancers and has remodeled the treatment par-
adigm of advanced renal cancer as well as earlier strategies,
including antiangiogenic agents like sunitinib, sorafenib,

pazopanib, and axitinib. Therefore, in the past few years,
several immune checkpoint inhibitors (ICI) have been
approved by the US Food Drug Administration and the
European Medicines Agency for the treatment of mRCC,
including nivoliumab as a single agent or in combination
with ipilimumab, pembrolizumab in combination with axi-
tinib, and avelumab in combination with axitinib [22,
59–61]. Though immunotherapy has benefited numerous
RCC patients, a vast majority still suffer from disease pro-
gression. Hence, screening of patients, predicting the efficacy
of targeted therapy, and guiding clinical drug use are becom-
ing increasingly important. In the current study, we built a
method to quantify the complete tumor metabolism milieu
in RCC. Our study’s results showed that the MTB score is
a valuable prognostic biomarker as well as a predictive indi-
cator for estimating immunotherapy and targeted therapy
effectiveness.

There is a growing body of literature that recognizes the
dysfunction of metabolic pathways within tumors boosted
cancer cell proliferation and affected drug treatment [62].
It is now well established that RCC is driven by dysregulated
metabolism due to the highly mutated genes that manage
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Figure 6: Evaluating the value of MTB scores in targeted therapy and immunotherapy. (a) Distribution of clinical response (CR: complete
response; PR: partial response; and SD: stable disease; PD: progressive disease) to TKI therapy in high or low MTB score groups in the E-
MTAB-3267 cohort. (b) Survival analysis for patients with high and low MTB score in the E-MTAB-3267 RCC cohort. HRðlowMTB scoreÞ = 3:6
, Log-rank p value < 0.001. (c) Distribution of clinical response to anti-PD-L1 therapy in high or low MTB score groups in the IMvigor210
cohort. (d) Survival analysis for patients with high and low MTB score in the IMvigor210 cohort. HRðlowMTB scoreÞ = 1:5, Log-rank p = 0:004.
(e) Distribution of clinical response to anti-PD-1 therapy in high or low MTB score groups in the E-MTAB-3218 RCC cohort. (f) Survival
analysis for patients with high and low MTB score in the E-MTAB-3218 RCC cohort. HRðlowMTB scoreÞ = 5:8, Log-rank p value < 0.001.
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various metabolic characteristics, including mutated VHL in
the hypoxia pathway, mutation of MTOR and PTEN in
PI3K–Akt–mTOR axis, and genes such as FH and SDH
respond to nutrient stimulation [63]. These aberrant
metabolism-related pathways do not only nurture tumor
proliferation and orchestrating TME but also act on drug
treatment response as well [16]. Prior studies from Zhao
et al. have noted the importance of fatty acid metabolism
in ccRCC progress and focused on certain multiple fatty acid
metabolic enzymes including CPT1A, HADHA, HADHB,
and ACAT1 while no extra multiomics data or clinical treat-
ment cohorts were incorporated [12]. A strong relationship
between metabolites (succinate, beta-alanine, purines, glu-
cose, and myo-inositol) and clinical outcomes in ccRCC
has been reported in previously mentioned literature which
integrated transcriptomic and metabolomic analyses while
their predictive value in drug treatment remained unex-
plored [13]. The present study was designed to explore the
broad picture of metabolic pathways of ccRCC patients
and discover molecular subtypes which could serve as robust
prognostic biomarkers and treatment indicators as well. We
investigated the metabolic pathways in a metadata set of 729
RCC individuals and classified them into three separate
MTB subtypes. Among the four ICI-resistance-associated
pathways, MTB cluster C2 with unfavored prognosis dem-
onstrated elevated score of hypoxia and Wnt/Beta-catenin
signalings which were consistent with existing studies that
HIF-2α played a key role in tumor hypoxia environment
and Wnt/Beta-catenin signalings produced protumourigenic
activities [64, 65]. And gene cluster A with better OS mani-
fested declined score of hypoxia and Wnt/Beta-catenin sig-
naling which may be more likely to benefit from ICI therapy.

RCC holds one of the most immune cell-infiltrated
tumors among all solid cancers, and hallmarks of the TME
massively modify cancer biology and may influence
responses to various therapies [66]. And cancer metabolism
closely interacts with immune activities in the TME [15].
Our report showed that MTB cluster C2 exhibited the high-
est immune score and stromal score which may contribute
to its poor outcomes, and this result is in line with previous
findings [67, 68]. Gene cluster C displayed decreased mye-
loid dendritic cell enrichment, which was associated with
previously reported “immune exhausted phenotype” [69].
And for further study, we collected potential biomarkers
and built the MTB score to calculate the metabolic pattern
of individuals using the Boruta algorithm. And we found
immune checkpoints and antitumor activity-related genes
were lower in low MTB score groups which may contribute
to the unsatisfactory OS of patients and various MTB scores
and expression patterns of immune checkpoints, and their
function-related genes among RCC subclasses showed that
the probability of responding to ICI therapy calls for further
investigation. Moreover, recent clinical trials have recog-
nized a connection between the genetic variations and clini-
cal response for immunotherapy [70]. Here, we found the
mutation frequency PBRM1 was significantly higher in the
high MTB score group which had been proven to be a pre-
dictive biomarker for ICI treatment in ccRCC [71]. TTN,
which has highly mutated in the low MTB score group,

was discovered to be associated with prognosis and immu-
notherapy efficacy in multiple cancers [72]. Additionally,
we discovered that TMB was significantly correlated with
the MTB score (r = 0:1227). The pairwise survival analysis
disclosed that the predictive value of MTB scores was free
from TMB. In this investigation, we assumed that the com-
prehensive quantification of metabolic profiles and
metabolism-related genes in RCC patients would be an
innovative strategy for choosing optimal therapy for a spe-
cific patient.

Likewise, fluctuations in metabolic status exert major
effects on immunotherapy among several solid cancer types.
With respect to melanoma, Harel et al. discovered lipid
metabolism can enhance tumor antigen presentation and
thus improve response to ICI therapy [73]. Interestingly, a
metabolic-tumor-stroma score (MeTS) system has recently
been proposed, which may guide cancer immunotherapy
across cancer types. Based on varied cellular and metabolic
heterogeneity, cancers including breast cancer, pancreatic
cancer, and colon cancer are classified into four subtypes
although the sample size is quite limited [74]. Further,
through metabolomic profiling, Gong and her team were
able to classify triple-negative breast cancer patients into
three subgroups which showed different sensitivity to cur-
rent therapy [75]. These findings further proved that the
intrinsic metabolic status of tumors could be utilized for
therapeutic guidance.

The IMvigor210, E-MTAB-3218, and E-MTAB-3267
datasets were assessed for patients receiving ICI therapy
and anti-VEGF therapy. We noticed that the MTB score
was significantly raised in patients who responded to ICI
therapy and anti-VEGF therapy and proved its predictive
utility. Overall, this implies that ICI therapy and anti-
VEGF agents might be helpful in cases with high MTB
scores. Therefore, deepening the understanding of cancer
immunotherapy, perfecting existing biomarkers, and devel-
oping new tumor markers are important development direc-
tions for immunotherapy in the future. We look forward to
further research or optimization of different combination
schemes through the exploration of advantageous popula-
tions and biomarkers.

5. Conclusions

In conclusion, we comprehensively investigated the meta-
bolic aspects of ccRCC, presenting a clear understanding of
the immune response and metabolic variations in the TCGA
RCC cohort. Variations in MTB scores were associated with
cancer heterogeneity, treatment regimen, and clinical out-
comes. Hence, the evaluation of tumor MTB scores con-
ducted by our research has critical clinical indications. In
addition, the results will help in the classification of fitting
applicants for personalized medical treatment and improve
the clinical benefits of patients with ccRCC.
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