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Abstract

Entropy based measures have been frequently used in symbolic sequence analysis. A symmetrized and smoothed form of
Kullback-Leibler divergence or relative entropy, the Jensen-Shannon divergence (JSD), is of particular interest because of its
sharing properties with families of other divergence measures and its interpretability in different domains including
statistical physics, information theory and mathematical statistics. The uniqueness and versatility of this measure arise
because of a number of attributes including generalization to any number of probability distributions and association of
weights to the distributions. Furthermore, its entropic formulation allows its generalization in different statistical
frameworks, such as, non-extensive Tsallis statistics and higher order Markovian statistics. We revisit these generalizations
and propose a new generalization of JSD in the integrated Tsallis and Markovian statistical framework. We show that this
generalization can be interpreted in terms of mutual information. We also investigate the performance of different JSD
generalizations in deconstructing chimeric DNA sequences assembled from bacterial genomes including that of E. coli, S.
enterica typhi, Y. pestis and H. influenzae. Our results show that the JSD generalizations bring in more pronounced
improvements when the sequences being compared are from phylogenetically proximal organisms, which are often difficult
to distinguish because of their compositional similarity. While small but noticeable improvements were observed with the
Tsallis statistical JSD generalization, relatively large improvements were observed with the Markovian generalization. In
contrast, the proposed Tsallis-Markovian generalization yielded more pronounced improvements relative to the Tsallis and
Markovian generalizations, specifically when the sequences being compared arose from phylogenetically proximal
organisms.
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Introduction

The statistical analysis of symbolic sequences is of great interest Hipxy]=Hilpx]+ Hilpy]. @)

in diverse fields, such as, linguistics, image processing or biological
sequence analysis. Information-theoretic measures based on
Boltzmann-Gibbs-Shannon Entropy (BGSE) have been frequently
used for interpreting discrete, symbolic data [1]. Using informa-
tion-theoretic functionals makes it unnecessary to map the
symbolic sequence to a numeric sequence. Given a random
variable X with £ possible values ¢, ¢ =1, 2, ..., £, BGSE of the
probability distribution py is defined as,

The central role played by BGSE in information theory has
encouraged the proposals of generalization of this function.
Outstanding in the realm of statistical physics has been the Tsallis
generalization of BGSE [2,3], which was obtained by substituting
natural logarithm by its deformed expression [4],

k
k Hylpl=—_ p(e)'lq p(ey), (3)
i=1
H[p]=— ) p(epInp(e)). (1 ’
i=1 with the deformed definition,
BGSE has an additivity property: Let X and 1" be two 1 _ plm1—-1
statistically independent variables and py and pybe their qp)= 1—a .

corresponding probability distributions so that their joint proba-
bility distribution is the product of their marginal distributions:
Pyy =PxPy- Then,
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.where ¢ is a real number and in the limit ¢g—1, lq—In and BGSE
is recovered. Index ¢ gives a measure of the non-extensivity of the
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generalization as expressed by the pseudo-additivity rule [2,3]:

Hq[Pxpy} =Hq[px} +Hq[py} +(1 —Q)Hq[Px]Hq[PY]' 4)

In the limit g—1, the BGSE additivity as in eqn. 2 is recovered.

Measures based on BGSE have been proposed for measuring
the difference between probability distributions. This includes the
Kullback-Leibler divergence and its symmetrized forms [5]. Lin
introduced the Jensen-Shannon divergence (JSD) as a generaliza-
tion of a symmetrized version of Kulback-Leibler divergence,
assigning weights to the probability distributions involved accord-
ing to their relative importance [5]. Subsequently, different
generalizations of JSD were proposed, either within the framework
of Tsallis statistics [6] or within Markovian statistical framework
[7]. While the former exploits the non-extensivity implicit in the
Tsallis generalization of BGSE, the latter is based on conditional
entropy that facilitates exploiting higher order correlations within
symbolic sequences. Since the latter was obtained within the
framework of Markov chain models, this generalization was
named Markovian Jensen-Shannon divergence (MJSD) and was
shown to significantly outperform standard JSD in its application
to deciphering genomic heterogeneities [7,8].

Because of the importance and usefulness of JSD in
different disciplines, significant advances have been made in
the generalization and interpretation of this measure. Yet a
comprehensive treatise on generalization as well as compara-
tive assessment of the generalized measures has remained
elusive. Here, we have attempted to bridge the gaps by
providing the missing details. Furthermore, we present here a
non-extensive generalization of MJSD within the Tsallis
statistical framework. The flexibility afforded by the integrated
Tsallis-Markovian generalization has spawned new opportu-
nities for (re-)visiting and exploring the symbolic sequence data
prevalent in different domains. In the following section, we
summarize the standard JSD, its properties and its interpre-
tation in different contexts. This was leveraged to demonstrate
in the next sections that certain interpretations are readily
amenable to different generalizations of JSD including the
proposed Tsallis-Markovian generalization. In section 3, we
describe non-extensive JSD generalization, followed by condi-
tional dependence based or Markovian generalization in
section 4. In section 5, we propose a non-extensive general-
ization of the Markovian generalization of JSD. Finally, in
section 6, we present a comparative assessment of the
generalized measures in deconstructing chimeric DNA se-
quence constructs. Note also that in the following sections, for
the sake of simplicity, we obtain the generalizations of
JSD for two probability distributions or symbolic sequences.
The generalization to any number of distributions or
sequences is straightforward (as with the standard JSD, Eqn.
9 in section 2).

Theory and Methods

1. The Jensen-Shannon Divergence Measure

Consider a discrete random variable X (with £ possible values)
and two probability distributions for X, p; and p,. The Kullback-
Leibler information gain or Kullback-Leibler divergence (KLD) is
defined as [1],

k .
Kilpipa= > _pile) lnp; (el.) .

i=1 p (el) '
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KLD is not symmetric and requires absolute continuity (p,(x;) =0
when ps(x) =0). To overcome these shortcomings, Lin [3]
introduced a symmetrized generalization of KLD, namely, the
L-divergence, defined as,

_ Jog— 21
Li(p1.p2) = ZP'(E')logépl(ei)-F ipa(er)
(6)
pa(e)

+ pa(eplogr———————,
Z ipi(e)+ pa(en

which can be expressed in an entropic form, i.e.

Lop) =2 P ey - m@). ()

The generalization of the L divergence is straightforward, defined
as Jensen-Shannon divergence,

D1 [py.py] = Hi[mip) +m2py] — 71 Hi[py] — maHi [, (8)

where H1[.] is BGSE (Eqn. 1). The weights 7; associated with the
probability distributions pi allow assigning differential importance
to each probability distribution. JSD does not require absolute
continuity of probability distributions with respect to each other.
Furthermore, JSD can be readily extended to include more than
two probability distributions,

Di[py,...p,|=H [z": nipi:| - i: mH[p;], )
i—1

i=1

given 7 probability distributions.

Being the natural logarithm of a concave function, JSD is non-
negative, Dj[pi,....p,]=0,as can be verified from Jensen’s
inequality. In addition to non-negativity and symmetricity, JSD
also has a lower and upper bound, 0=JSD=1, and has been
shown to be the square of a metric [6,7,9,10]. Because of these
interesting properties, this measure has been successfully applied to
solving a variety of problems arising from different fields including
molecular biology (e.g. DNA sequence analysis) [9,11-17],
condensed matter physics [18], atomic and molecular physics
[19], and engineering (e.g. edge detection in digital imaging) [20].

Grosse ¢t al. gave three intuitive interpretations of JSD in the
framework of statistical physics, information theory and mathe-
matical statistics [9]. Since we intend to show in the later sections
that some of these interpretations could be readily extended to the
generalized JSD measures, we briefly describe below the three
interpretations of JSD.

Interpretation A (IA): statistical
physics. In the framework of statistical physics, JSD can be
mnterpreted as the intensive entropy of mixing. Considering two
vessels with a mixture of ideal gases, the mixing entropy is
obtained as,

Framework of

2
Hyi=NkgH\[f] — kg n" Hy [fY)], (10)

s=1

where kg is Boltzmann constant, s is the number of vessels, n®
denotes the number of gas particles in  vessel s,

2
N= Zv:l n®denotes the total number of ideal gas particles,
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£ denotes vector of molar fractions of the gases in vessel s, and

=3

gases in thc mixture. Under this interpretation,

(A /N] £ denotes the vector of molar fractions of all

D1=I-Imix/NkB, (11)

identifying 7, =n)/N. Given s subsequences, D1 could thus be
interpreted as the overall difference between the entropy of the
total sequence and the weighted average of the entropies of
subsequences (each subsequence represented by a probability
distribution, see Eqn. 9).

Interpretation B (IB): Framework of
theory. In the framework of information theory, D; can be
interpreted as the mutual information. Consider two subsequences
Sy, Sy of length n; and ny symbols respectively, derived from an
alphabet A = {ey, ..., ¢;}of k symbols. The mutual information of
symbols and the subsequences they belong to (denoted £ and §
respectively, representing all symbols and all subsequences) is given
as,

information

k 2
p(ei’Sj)
L(E;S)= »87) In ——— 12
1(E; S) ;_;p(e 0o (12)

=H[p] - H[p|n],

.which is the reduction in the uncertainty of £ due to the
knowledge of S. Here, p (¢; 5)) is the joint probability of variables ¢;
and S;. The marginal probabilities 7(S;)and p(e;)are defined as,

n(S,
()= Zp(e,,s =23
. (13)
ple)=">_peS)),
=1
and the conditional entropy H [p|n]is defined as,
2
H[p|n] = Zn(S)Zps () In ps;(e), (14)
j=1 i=1

where the conditional probabilitypsj(ei) =p(e;,S;)/n(S;),which is
the probability of finding symbol ei in the given subsequence S;j.
Mutual information can be rewritten as,

pS(t)
pler)

L(E;S)= ZZﬂ(S )ps;(e) In (15)

i=1j=

Recognizing p(e;) =n(S1)ps, (e;) + n(S2)ps, (e;)in this last expres-
sion, we re-obtain (8)

Interpretation C (IC):
In the framework of mathematical statistics, D; can
be interpreted as the log-likelihood ratio. Consider the sequence .S
composed of N symbols as in IB but we now ask for the probability
distribution p that maximizes the likelihood of S. The maximum
likelihood principle suggests.

Framework of mathematical

statistics.

In Liyax = — N Hf] (16)
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with f(e;)=N(e;)/ Zi N(e;), i.e. the relative frequency of symbol
¢; in the sequence S. The probability distribution that maximizes
the likelihood is p =f. A similar calculation can be carried out for
the likelihood of subsequences S; composing the sequence S. Under
this interpretation, we have,

2 s

3= In Lidax — 10 Linax

AL =1

D=5 = ~ . (17)

Here, AL is the log-likelihood ratio which gives a measure of the
increase in the log-likelihood when sequence S is modeled as a
concatenation of two subsequences.

2. Non-extensive Generalization of JSD

Several forms of generalization in terms of non-extensive
entropy (Eqn. 3), introduced by Tsallis in modeling physical
systems with long range interactions [3], have been suggested. The
different JSD generalizations found in the literature can be
interpreted under the schema presented in the previous section as
IA or IB. A key concept in these generalizations is that of mutual
information measure.

Burbea and Rao [21] defined a generalized mutual information
measure via entropy substitution, which may be interpreted as in
IA. The generalized JSD can be obtained by merely substituting
H; by H, in Eqn. 8:

DQA[PbPz] =Hy[mip, +mapy| —miHypy| —maHy[po]- (18)
An alternative generalization was obtained by Lamberti and
Majtey [6] via the non-extensive generalization of KL divergence

proposed by Tsallis [22]:

Kylpy.po] = Zpl(e/)lqm(ej) : (19)

pi(e))

The symmetrized L-divergence, in the framework of Tsallis

statistics, was obtained as,

P +p
[pla 12 2} +K!][p23

p+p
Ly[p1.p] =K, . 2 2] . (20)

The Lg-divergence was shown to generalize to JSq-divergence,
replacing equal weights for the two distributions with any arbitrary
weights w1l and m2 associated with pl and p2. However, this
generalization does not assume full entropic form as D(IIA [6]:

k
DYfpipal=—) 71117[(6’1)+ﬂng(ei)]IQ[nlpl(ei)+7f2172(6’i)}(21)

i=1

—ny Hypy ] —maHy[py)-

e : 1B 14

Jensen’s inequality allows to show that Dj [pl,p2]>Dq [p1-P2]-
We have put the supraindex /B in the former as this generalization
has an interpretation in mutual information. DgB [p;.P2Jcan be

rewritten as,

2 k
D;B[pl,pz] = Z 7 Z q(ez )lap(e:) —lap;(e:)
j=1 i=1 (22)
2 - ple)
—2 ij( ey

j=1 i=1
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Chimeric Order of q=05 q=0.7 E q=1.0 ' q=1.5 20 q=2.5 3.0

sequence  model : E

constructs Mean S.D. Mean S.D. E Mean S.D.; Mean S.D. Mean S.D. Mean S.D. Mean S.D

Ecoli @ — 4119 3102 4092 3079 1 4072 3069 ! 4057 3057 4053 3052 4055 3058 4080 3073 |

S. enterica T 5 Y)Y '3130""2357'4'?'1'17 -y "'310_7:_'_'_'{8{5"' 5 Cor -5 OB - Y- = o M 5 (-5 R 1=o
2 3241 3005 3026 2795 | 2349 2728 -Q_’9:07 2658 2909 2698 2950 2731 3094 2857
3 6239 3807 4157 3460 ! 3237 2918} 2955 2719 2964 2731 3248 2965 4582 3700

T 5 N B R I < N T

Y. pestis  ------ 2‘5!‘!""2730'"2510"'770‘7'?'2395""2593':"2587"'7680' A "="2679"" 2501 YEg L " YEYT """ 2715

2 219 2707 2225 2556 } 2173 2497 2136 2462 21_3_2___;5355 2174 2501 2266 2587

3 4409 4078 2486 3044 } 1955 24951 1791 2300 <1788 1937 2467 2654 3208

Ecoli® |10 Se5 1358 585 1396 | 588 13543 588 1390 | 589 LS e '

H. influenzoe b S ssr“"1315“'559'""1‘357'*'52!5'"“1300'- 547" YRS T BEY T TT1312T 562 YIS ST Y T N1
2 389 1067 388 1063 | 385 1051. 383 1047 388 1057 403 1080 418 1123

3 326 1084 282 900 (371 GiPi274 843 280 857 311 953 367 1127

L ______________

Tsallis generalzation

Markovian generalzation

Figure 1. Error (in base pairs) in detecting the join point in the chimeric sequence constructs for E. coli @ S. enterica, E. coli @ Y. pestis,
and E. coli @ H. influenzae(® denotes concatenation). The proposed Tsallis-Markovian generalization of the Jensen-Shannon divergence measure
was used to obtain the mean and standard deviation of the error from 10,000 replicates for each type of chimeric sequence constructs. The error in
localizing the join point was obtained as the absolute difference between the position where the divergence was maximized and the position of the
join point (at 10 Kbp) in a chimeric sequence construct of size 20 Kbp. Error statistics for the two special cases of the proposed generalized measure is
shown within rectangular boxes — the Markovian generalization (g=1) in dashed green border box and Tsallis non-extensive generalization (model
order=0) in dashed red border boxes. The minimum values of mean and standard deviation of the error for each chimeric construct type are shown

encircled and bold faced.
doi:10.1371/journal.pone.0093532.g001

Expression (22) can be interpreted as mutual information in Tsallis
non-extensive statistics, being a generalization of Eqn. (15):

1,(E; S)=D. (23)
As noted in [22], Iq (E; S) gives a measure of the independence
of two random variables: Iq (E; S)=0 for independent
variables. In this case of statistically independent variables,
the probability distribution of symbols ei is the same for both
sequence segments. Here, S is interpreted as a random variable

with probability distribution given by the weights mj.

3. Markov Model Generalization of JSD

The standard JSD measure assumes each symbol in a
sequence to occur independent of the others. In order to
account for short range interdependence between symbols,
JSD can be generalized by means of conditional entropy. This
generalization can be obtained in the framework of Markov
chain model of order m, where the occurrence of a symbol is
dependent on the m preceding symbols in the sequence. The
JSD corresponding to Markov sources can be obtained
following the steps in the derivation of JSD (Eqn. 6-8) for
the independent and identically-distributed (z.2.d.) sources. For
example, for a Markov source of order m, where the
occurrence of symbol ¢; depends on its just preceding context
w of length m,

DY'[p,.p,)=
pi(eiw)
S T L — i
w i nlpl(n-)ﬂzpz(w)l’l(ei|w)+ n]p](u)+nzpz(u)1’2(e’|w) (24)
paeilw)
T YV ] E—
" ‘ ﬂ1F1(\L)+ﬂ2[’2(H)pl(e[lw)+ ﬂ11’1(H)+n2p2(\0p2(e"|w)
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which leads to, after rearranging,

Di'[p1.po] =
=303 pinpiedw) +mapa(w)pa(eilw)

log (mpl (w)p1(e:|w)+mapa(w)pa(ei|w)
11 p1(w)+ mapa(w)

)—mH;"[pJ—nzHi"[sz,

(25)
= Z [71p1 (W) + mpa(w)]

Z mp1(w)pi(ei|w) -+ map2(w)pa(e;|w)
mp1(w)+ mpr(w)

log ™! (w)p1(ei|w) +mapa(w)pa(e;|w)
m1p1(wW) +mapa(w)

—m H{'[p)] —mHY'[p,).

Therefore,

DY'[py.po| = HY'[m1p; + mapo] —m HY'[py| —maHY'[p]. (26)

Here H'[.]corresponds to entropy function for Markov sources
of order m,

HY'lp|= Zp(w) Zp(el|w) In p(e;|w). (27)

In contrast to Lamberti and Majtey’s generalization within the
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Tsallis-Markovian JSD for model order 3, E. coli + Y. pestis
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Figure 2. Mean values of non-extensive MJSD at each position of the chimeric sequence constructs E. coli @ Y. pestis, for the
parameter setting at which the non-extensive MJSD achieved most pronounced error reduction (g=2, order 3). The chimeric
constructs of size 20 Kbp are comprised of two equal sized sequences, with each component sequence of length 10 Kbp obtained from the genome

of each organism.
doi:10.1371/journal.pone.0093532.g002

Tsallis non-extensive statistical framework [6] (Eqn. 21), this
generalization takes the full entropic form. Thakur et al.
mtroduced “Markov models for genomic segmentation” (MMS)
[7], where they replaced the BGSE with Markovian entropy (Eqn.
27) in the expression of JSD (Eqn. 8), which is amenable to
interpretation IA. They also derived this generalization, which we
call Markovian JSD (MJSD) introduced earlier in [8], using the
likelihood function (interpretation IC).

This generalization could also be interpreted in terms of
conditional mutual information, consistent with interpretation 1B

(Eqn. 15),

PLOS ONE | www.plosone.org

p(ei,thV) (28)

IE; S|W)= e,siw)ln ——>2—~—
U'(E;S|W) ZP( /W) plei|w)n(s;|w)

ij,w

Making use of the conditional entropy definition and after some
algebraic manipulation, one can identify D}’ =I{"according to
interpretation IB.

4. Non-extensive Markovian JSD Generalization

We obtain the generalization of MJSD within the framework
of Tsallis non-extensive statistics. This integrates two different
generalizations of JSD, the Markovian and the Tsallis

April 2014 | Volume 9 | Issue 4 | 93532



Distribution of positions of maximun divergence for model order 3, E. coli + Y. pestis
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Figure 3. Frequency distribution of position with maximum value of non-extensive MJSD for the chimeric sequence constructs £.
coli @ Y. pestis, for the parameter setting at which the non-extensive MJSD achieved most pronounced error reduction (g=2, order
3). The chimeric constructs of size 20 Kbp are comprised of two equal sized sequences, with each component sequence of length 10 Kbp obtained

from the genome of each organism.
doi:10.1371/journal.pone.0093532.g003

generalization, thus yielding a generalization of which many of

the previously described JSD generalizations are special cases.
The non-extensive conditional or Markovian Kullback-Leibler

divergence between two distributions py and pg is defined as:

7 [prop2] = Z Zpl(w e)lg 22 2(6’:3 (29)

Using the above, the symmetrized ZL-divergence in Tsallis-
Markovian framework can thus be obtained as,
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Thus, we get,

p1eilw) +polej|w)

. 2
=3 pilwedlq e

w i (30)

Py le; \W)erz(el\w

- Z sz(w Mgy
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1 1 -4
(§P1(€i|w) + Epz(ei\w))
(p1(ei|w))' 7

S ) D) 11

1 1 =q
(§P1(9i|w)+ §P2(€i|W))

—1
(P2(€i|W)>l_q

+pa(w,e;)

Rearranging,

I l(m(w)Lm(eiw)]q palpatel)

1 1 14
(Epl (eilw)+ Epz(e,- | w)) —p1(w.e;) —pz(w,e,-)} .

Therefore,

=
1 1
= XX [l e a (51 + e )

L<P1(W)[Pl(ei‘w)]q+172(W)[]72(€[‘W)]q>:|
L—=q \ —pi(w)pi(ei|w) — p2(w)pa(eilw)

¥y [ el +prnlpa(eil]la Gp,(e,www %m(mlw))
prowpiedw) ([pr(eiw)~" =1
. ( ) (33)
9\ + pz(nf')pz(e;\n’)(&’z (eilw)?™" — )
== S5 el pronpatel i 5pite -+ 3t

—p1w)[pi(eilw)]*lgpi (e[ w) —p2(w) [pa(es|w)]“lapa (e;|w)).-

The Tsallis-Markovian generalization for equal weights for the

two distributions py and py (n;=0.5, m,=0.5) could thus be
expressed as,

()
22 q

ta(3p1(en+ 3os0e)) = 3P0y (4

== 25 | (Groolpicemlt+ 3ol

= JpaO0paCenapaten|.

The generalization to

1 1
3 m = §> associated to the joint distributions p;(w,e)
and p,(w,e) respectively is straightforward:

any weights m; and m (from

m =
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(50, -

B>

| ( mp1(w)
1 p1(w) +mapa(w)

(mpr1w)[p1(ei|w)]? + mapa(w)[p2(ei|w)]?)

(w) (9
Topa(w
pi(eilw)+ Py oo S—n pz(e,-\W))

—mp1(w)[pi(e;|w)]lgpi (ei|w) — mapa(w)[pa(ei|w))Igpa(ei|w)|.

Note that the above generalization does not take an entropic form
or admit replacement of BGSE with non-extensive conditional
entropy in Eqn. 8 or 11 (interpretation IA), however, it can be
interpreted as mutual information (interpretation IB) as demon-
strated below.

Beginning with the conditional mutual information,

m plei|w)n(S;|w)
I'(E; S|W)=— ZZZp(we,,S)l @S (36)

we identify, as in ¢=1 cases (Eqns. 15 and 28), thatDy’ =Ii".

If conditional probabilities p(e;|w)and p(S;j|w)are independent,
then

plei.S;lw)=pleiw)n(S;[w), (37)

and in this situation, I"]"(E;S|W)=0, so that the conditional

mutual information is a measure of the independence of the
conditional probabilities.
Eqn. (36) can be rewritten as, by means of 1q definition,

- _1). (38)

POSISHR(S) _ plv.S))
P pw)
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By means of Bayes’ theorem,

n(Sjlw) = (39)

We may rewrite,
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And, therefore, the generalization can be obtained as,

D}'[S1.8,)]
=3 D0 pISHmS)peilw, )] (lap(ei|w,S;) —ap(eilw)).

wooi

(41)

Notice that for model order 0, Eqn. 41 reduces to Lamberti and
Majtey’s non-extensive generalization [6] (Eqn. 21), while in the
limit g—1, we recover Thakur et al.’s Markovian generalization
[7]. Note that D"[S),S5] = (Dnl,nz)j (Eqn. 35) and therefore, the
Tsallis-Markovian generalization of JSD has its interpretation in
mutual information.

Experiments and Assessment

To assess the discriminative abilities of JSD and its generalized
forms, we compiled a test set of chimeric sequence constructs by
concatenating DNA sequences from phylogenetically distinct
organisms. Let § be a sequence composed of symbols ¢; from an
alphabet of £ symbols (:=1,...,). Let us further assume that
sequence S is the concatenation of two subsequences S; and S». Let
Ps;(ei) denote the probability of symbol ¢; in subsequence .S, and
P(S), or simply 7, the weight associated with the distribution p;
(= 1,2). Since the actual probabilityps,(e;)is often not known, the
relative frequency of symbol ¢; in subsequence S, fS, (e;), is used as
the estimate of pg,(e;). Thus, Dy [p1, po] or its generalizations for
given subsequences §; and S, is, in effect, a measure of the
difference between the estimates of p; and p,. We use weights 7;
proportional to the length of S, which was earlier found to be most
appropriate for symbolic sequence analysis [9].

Chimeric sequence constructs were obtained by concatenating
two equal size sequence segments selected randomly from the
genomes of two different organisms. We chose four phylogenet-
ically distinct organisms — Fscherichia coli, Salmonella enterica, Yersinia
pestis and Haemophilus influenzae, the first three belongs to the family
Enterobacteriaceae and the fourth is an outgroup belonging to the
family Pasteurellaceae. We obtained the sequence constructs of
20 Kbp by concatenating 10 Kbp genomic segment from . coli
with 10 Kbp segment from one of the other three organisms. The
phylogenetic proximity of these organisms from F. coli is in the
following order: S. enterica > 1. pestis > H. influenzae. We subjected
the non-extensive MJSD to detecting the join point of the two
disparate sequence segments. A cursor was moved along the
chimeric sequence construct and the non-extensive MJSD was
computed for sequence segments left and right to the cursor. The
position where non-extensive MJSD was maximized was noted.
The error in localizing the join point was obtained as the absolute
difference between the position where the non-extensive MJSD
was maximized and the position of the join point in a sequence
construct (for sequence constructs of 20 Kbp, the maximum and
minimum possible error would thus be 10,000 bp and 0 bp
respectively).

For experiments with 10,000 replicates for each, E. coli®S.
enterica, E. coli @ Y. pestis, and E. coi@® H. influenzae (@ denotes
concatenation), the mean errors in detecting the join point for
standard JSD (¢=1, order 0) were 4072, 3400 and 589 bp
respectively, consistent with the order of divergence of E. coli from
the other three organisms, with H. nfluenzae being the outgroup
(Figure 1). For the non-extensive generalization (g varies, order 0;
error statistics shown within three rectangular boxes with dashed
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red borders in Figure 1), the minimum mean errors (in the same
order of divergence from E. coli) were observed to be 4053, 3381
and 588 bp for ¢ in the range 1.5—2.0. Since H. influenzae is
phylogenetically distant from FE. coli, the generalization induces
very minor improvement while for the others, all belonging to the
same family, the generalization induces more improvement
apparently due to more rooms for improvement in these cases.
In contrast, for the Markovian generalization (¢ =1, order varies;
error statistics shown within rectangular box with dashed green
borders in Figure 1), the improvements were substantially more
pronounced with corresponding minimum mean errors being
2949, 1959 and 271 bp at order 2, 3 and 3 respectively. This large
improvement is apparently due to the Markovian generalization
accounting for short-range correlations in the nucleotide ordering
in genomic sequences, which is not considered in the non-
extensive generalization. As expected from the above results,
the non-extensive Markovian generalization induces further
improvement over the Markovian generalization, generating the
respective minimum mean errors of 2907, 1788 and 271 bp at
different combinations of ¢ and model order (shown encircled and
bold faced in Figure 1). Clearly, the non-extensive generalization
reaches saturation in improvement at large phylogenetic distances
between the organisms under comparison while it induces
significant improvements for phylogenetically proximal organisms.
Indeed, the reduction of more than 40 bp in error for E. coli® .
enterica and 170 bp for E. coli @ Y. pestis is remarkable considering
that these organisms are phylogenetically very close and therefore
difficult to differentiate in their genomic composition [13]. The
higher values of standard deviation from the mean are likely
because of the non-homogeneity of the bacterial genomes. A
significant portion (~1-20%) of bacterial DNAs is mobile and
therefore distinct from the ancestral DNAs acquired though the
reproductive processes [23]. The mean values of non-extensive
MJSD at each position of the chimeric sequence constructs F. coli
@ Y. pestis and the frequency distribution of position with
maximum value of non-extensive MJSD for these sequence
constructs are shown in Figure 2 and Figure 3 respectively, for
the parameter setting at which the non-extensive MJSD achieved
most pronounced error reduction (¢=2, order 3). Notably, the
value of MJSD increases monotonically with increase in ¢ or
model order or both (Figure 2). A sharp spike in the distribution
around position 10 Kbp demonstrates the efficiency of the
divergence measure in localizing the join point of E. coli and 1.
pestis sequences (Figure 3), with the best performance at ¢=2 and
order 3 setting (Figure 1). We show in Figures S1—S15 these data
for all three kinds of sequence construct and at all parameter
settings.

In Figure S16, we show the error statistics for cases when the
chimeric sequence constructs of 20 Kbp had 5 Kbp from a non-£.
coli organism (S. enterica, 1. pestis or H. influenzae) and the remaining
15 Kbp from E. coli. The variable length taxonomically distinct
sequences within chimeric constructs present significantly more
challenge for the statistical methods than the chimeric constructs
with similar size sequences. As expected, the mean errors in
detecting the join point increased in all cases. The Markovian
generalization still results in much better performance than the
non-extensive generalization, while the non-extensive Markovian
generalization led to a more pronounced improvement for E. coli
@ Y. pestis (a reduction of 295 bp in mean error compared with
the Markovian generalization). Non-extensive generalization of
MJSD didn’t induce further improvement for E. coli@® . enterica,
likely because of the weakened discriminatory signal as a
consequence of reduction in the size of S. enterica fragments.
Figures S17—S31 provide plots for divergence values at each

April 2014 | Volume 9 | Issue 4 | 93532



sequence position as well as frequency distributions of position
with maximum divergence for all three kinds of sequence construct
and at all parameter settings. The discrimination of DNA
sequences from phylogenetically close relatives such as F. coli
and S. enterica is difficult, yet this study shows that there are still
rooms for improvement with the development of more flexible,
sensitive methods. Overall, the non-extensive Markovian general-
ization results in improved efficiency in discriminating sequences
from phylogenetically proximal organisms.

Conclusions

The proposed generalization of JSD in the integrated frame-
work of Tsallis and Markovian statistics provides a powerful tool
for symbolic sequence analysis. In application to deconstructing
the chimeric bacterial sequences, the Tsallis-Markovian general-
ization achieved remarkable improvement over both — the Tsallis
as well as the Markovian generalization. The superior perfor-
mance of Tsallis-Markovian JSD was most pronounced when the
sequences under comparison arose from phylogenetically proximal
organisms. F. coli, S. enterica and Y. pestis, all belong to the same
Enterobacteriaceae family; previous studies have shown the limitations
of JSD in distinguishing sequences from organisms belonging to
the same family [13]. Therefore, the improvement achieved by the
proposed generalized measure is an important step forward in
interpreting the biological data which often have heterogeneities at
varying levels. While for the first time, to the best of our
knowledge, the theoretically distinct generalizations of JSD
accomplished by different research groups have been brought to
one place for comparison and assessment, this study has also
bridged the gaps in the field by obtaining generalizations
consistent with the original proposal for JSD derivation and by
providing the interpretations in the framework of statistical
physics, information theory and mathematical statistics, where
possible. The proposed divergence measure, generalized in the
mtegrated framework of Tsallis and Markovian statistics, provides
a new exploratory tool, augmented in both power and flexibility,
to mine the symbolic sequence data.

Supporting Information

Figure S1 Mean values of non-extensive MJSD at each position
of the chimeric sequence constructs £. coli @ S. enterica, for model
order m = 0-3. For each model order, plots are shown for different
values of Tsallis statistics’ parameter ¢, in the range 0.5-3. The
chimeric constructs of size 20 Kbp are comprised of two equal
sized sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TIF)

Figure 82 Mean values of non-extensive MJSD at each position
of the chimeric sequence constructs E. coli @ S. enterica, for Tsallis
statistics’ parameter ¢=0.5, 0.7, 1.0, 1.5. For each ¢, plots are
shown for different model orders, in the range 0-3. The chimeric
constructs of size 20 Kbp are comprised of two equal sized
sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TTF)

Figure 83 As in Figure S2, but for Tsallis statistics’ parameter
¢=2.0, 2.5, 3.0.
(TIF)

Figure S4 Mean values of non-extensive MJSD at each position
of the chimeric sequence constructs E. coli @ Y. pestis, for model
order m = 0-3. For each model order, plots are shown for different
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values of Tsallis statistics’ parameter ¢, in the range 0.5-3. The
chimeric constructs of size 20 Kbp are comprised of two equal
sized sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TIF)

Figure S5 Mean values of non-extensive MJSD at each position
of the chimeric sequence constructs E. coli @ 1. pestis, for Tsallis
statistics’ parameter ¢=0.5, 0.7, 1.0, 1.5. For each ¢, plots are
shown for different model orders, in the range 0-3. The chimeric
constructs of size 20 Kbp are comprised of two equal sized
sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TTF)

Figure S6 As in Figure S5, but for Tsallis statistics’ parameter
¢=2.0, 2.5, 3.0.

(TIF)

Figure 87 Mean values of non-extensive MJSD at each position
of the chimeric sequence constructs E. coli @ H. influenzae, for
model order m=0-3. For each model order, plots are shown for
different values of Tsallis statistics’ parameter ¢, in the range 0.5-3.
The chimeric constructs of size 20 Kbp are comprised of two
equal sized sequences, with each component sequence of length
10 Kbp obtained from the genome of each organism.

(TIF)

Figure S8 Mean values of non-extensive MJSD at each position
of the chimeric sequence constructs E. coli @ H. influenzae, for
Tsallis statistics’ parameter ¢=10.5, 0.7, 1.0, 1.5. For each ¢, plots
are shown for different model orders, in the range 0-3. The
chimeric constructs of size 20 Kbp are comprised of two equal
sized sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TTF)

Figure 89 As in Figure S8, but for Tsallis statistics’ parameter
¢=2.0, 2.5, 3.0.

(TIF)

Figure S10 [Irequency distribution of position with maximum
value of non-extensive MJSD for the chimeric sequence constructs
E. coli @ S. enterica, for model order m=0 (A, B) and 1 (C, D). For
each model order, distributions are shown for different values of
Tsallis statistics’ parameter ¢, in the range 0.5-3. The chimeric
constructs of size 20 Kbp are comprised of two equal sized
sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TIF)

Figure S11 As in Figure S10, but for model order m=2 (E, F)
and 3 (G, H).
(TTF)

Figure S12 Frequency distribution of position with maximum
value of non-extensive MJSD for the chimeric sequence constructs
E. coli @ Y. pestis, for model order m=0 (A, B) and 1 (C, D). For
each model order, distributions are shown for different values of
Tsallis statistics’ parameter ¢, in the range 0.5-3. The chimeric
constructs of size 20 Kbp are comprised of two equal sized
sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TTF)

Figure S13 As in Figure S12, but for model order m=2 (E, F)
and 3 (G, H).
(TTF)
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Figure S14 Irequency distribution of position with maximum
value of non-extensive MJSD for the chimeric sequence constructs
E. coli @ H. influenzae, for model order m=0 (A, B) and 1 (C, D).
For each model order, distributions are shown for different values
of T'sallis statistics’ parameter ¢, in the range 0.5-3. The chimeric
constructs of size 20 Kbp are comprised of two equal sized
sequences, with each component sequence of length 10 Kbp
obtained from the genome of each organism.

(TIF)

Figure S15 As in Figure S14, but for model order m=2 (E, F)
and 3 (G, H).
(TIF)

Figure S16 Error (in base pairs) in detecting the join point in the
chimeric sequence constructs for E. coli®S. enterica, E. coi®Y.
pestis, and E. coi® H. influenzae (®denotes concatenation). The
proposed Tsallis-Markovian generalization of the Jensen-Shannon
divergence measure was used to obtain the mean and standard
deviation of the error from 5,000 replicates for each type of
chimeric sequence constructs. The error in localizing the join
point was obtained as the absolute difference between the position
where the divergence was maximized and the position of the join
point (at 5 Kbp) in a chimeric sequence construct of size 20 Kbp
(5 Kbp sequence from non-E. coli organism concatenated with
15 Kbp from E. coli). Error statistics for the two special cases of the
proposed generalized measure is shown within rectangular boxes—
the Markovian generalization (¢=1) in dashed green border box
and Tsallis non-extensive generalization (model order=0) in
dashed red border boxes. The minimum values of mean and
standard deviation of the error for each chimeric construct type
are shown encircled and bold faced.

(TIFF)

Figure S17 Mean values of non-extensive MJSD at each
position of the chimeric sequence constructs F. coli @ S. enterica,
for model order m=0-3. For each model order, plots are shown
for different values of Tsallis statistics’ parameter ¢, in the range
0.5-3. The chimeric constructs of size 20 Kbp are comprised of
two sequences, one component sequence of length 5 Kbp obtained
from the genome of S. enterica and the other of length 15 Kbp from
the genome of E. colt.

(TIF)

Figure S18 Mean values of non-extensive MJSD at each
position of the chimeric sequence constructs F. coli @ S. enterica,
for Tsallis statistics’ parameter ¢= 0.5, 0.7, 1.0, 1.5. For each ¢,
plots are shown for different model orders, in the range 0-3. The
chimeric constructs of size 20 Kbp are comprised of two
sequences, one component sequence of length 5 Kbp obtained
from the genome of . enterica and the other of length 15 Kbp from
the genome of E. coli.

(TIF)

Figure S19 As in Figure S18, but for Tsallis statistics’ parameter
7=2.0, 2.5, 3.0.
(TIF)

Figure S20 Mean values of non-extensive MJSD at each
position of the chimeric sequence constructs E. coli @ 1. pestis,
for model order m=0-3. For each model order, plots are shown
for different values of Tsallis statistics’ parameter ¢, in the range
0.5-3. The chimeric constructs of size 20 Kbp are comprised of
two sequences, one component sequence of length 5 Kbp obtained
from the genome of 1. pestis and the other of length 15 Kbp from
the genome of E. coli.

(TIF)
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Figure S21 Mean values of non-extensive MJSD at each
position of the chimeric sequence constructs E. coli @ 1. pestis,
for Tsallis statistics’ parameter ¢=0.5, 0.7, 1.0, 1.5. For each ¢,
plots are shown for different model orders, in the range 0-3. The
chimeric constructs of size 20 Kbp are comprised of two
sequences, one component sequence of length 5 Kbp obtained
from the genome of 1. pestis and the other of length 15 Kbp from
the genome of E. colt.

(TTEF)

Figure 822 As in Figure S21, but for Tsallis statistics” parameter
¢=2.0, 2.5, 3.0.

(TIF)

Figure 823 Mean values of non-extensive MJSD at each
position of the chimeric sequence constructs E. coli @ H. influenzae,
for model order m=0-3. For each model order, plots are shown
for different values of Tsallis statistics’ parameter ¢, in the range
0.5-3. The chimeric constructs of size 20 Kbp are comprised of
two sequences, one component sequence of length 5 Kbp obtained
from the genome of H. influenzae and the other of length 15 Kbp
from the genome of E. coli.

(TIF)

Figure S24 Mean values of non-extensive MJSD at each
position of the chimeric sequence constructs E. coli @ H. influenzae,
for Tsallis statistics’ parameter ¢= 0.5, 0.7, 1.0, 1.5. For each ¢,
plots are shown for different model orders, in the range 0-3. The
chimeric constructs of size 20 Kbp are comprised of two
sequences, one component sequence of length 5 Kbp obtained
from the genome of H. influenzae and the other of length 15 Kbp
from the genome of E. coli.

(TIF)

Figure 825 As in Figure S24, but for Tsallis statistics’ parameter
¢=2.0, 2.5, 3.0.

(TTF)

Figure 826 Frequency distribution of position with maximum
value of non-extensive MJSD for the chimeric sequence constructs
E. coli @ S. enterica, for model order m=0 (A, B) and 1 (C, D). For
each model order, distributions are shown for different values of
Tsallis statistics’ parameter ¢, in the range 0.5-3. The chimeric
constructs of size 20 Kbp are comprised of two sequences, one
component sequence of length 5 Kbp obtained from the genome of
S. enterica and the other of length 15 Kbp from the genome of E. coli.
(TTF)

Figure 827 As in Figure 526, but for model order m=2 (E, F)
and 3 (G, H).
(TTF)

Figure 828 I'requency distribution of position with maximum
value of non-extensive MJSD for the chimeric sequence constructs
E. coli @ Y. pestis, for model order m=0 (A, B) and 1 (C, D). For
each model order, distributions are shown for different values of
Tsallis statistics’ parameter ¢, in the range 0.5-3. The chimeric
constructs of size 20 Kbp are comprised of two sequences, one
component sequence of length 5 Kbp obtained from the genome
of ¥. pestis and the other of length 15 Kbp from the genome of E.
coli.

(TIF)

Figure S29
and 3 (G, H).
(TIF)

As in Figure S28, but for model order m=2 (E, I)

Figure 830 Irequency distribution of position with maximum
value of non-extensive MJSD for the chimeric sequence constructs
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E. coli @ H. influenzae, for model order m=0 (A, B) and 1 (G, D).
For each model order, distributions are shown for different values
of Tsallis statistics” parameter ¢, in the range 0.5-3. The chimeric
constructs of size 20 Kbp are comprised of two sequences, one
component sequence of length 5 Kbp obtained from the genome
of H. influenzae and the other of length 15 Kbp from the genome of
E. colu.

(TIF)

Figure S31
and 3 (G, H).
(TIF)

As in Figure S30, but for model order m=2 (E, F)
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