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Simple Summary: Skin cancers are the most diagnosed type of cancer worldwide. Cutaneous
squamous cell carcinoma—a type of skin cancer—usually affects older people who have chronic
sun exposure, as well as people with weakened immune systems. There has been significant recent
progress in the treatment of this type of cancer with immune checkpoint inhibitors that utilize the
immune system to target cancer. In concert with advances in treatment, our understanding of the
biology of skin cancer has also deepened. The authors have reviewed the risk factors, biology, and
advances in treatment in this publication.

Abstract: Cutaneous squamous cell carcinoma (CSCC) is the second most common skin cancer
diagnosed worldwide. CSCC is generally localized and managed with local therapies such as excision
and/or radiotherapy. For patients with unresectable or metastatic disease, recent improvements
in our understanding of the underlying biology have led to significant advancements in treatment
approaches—including the use of immune checkpoint inhibition (ICI)—which have resulted in
substantial gains in response and survival compared to traditional cytotoxic approaches. However,
there is a lack of understanding of the biology underpinning CSCC in immunocompromised patients,
in whom the risk of developing CSCC is hundreds of times higher compared to immunocompetent
patients. Furthermore, current ICI approaches are associated with significant risk of graft rejection in
organ transplant recipients who make up a significant proportion of immunocompromised patients.
Ongoing scientific and clinical research efforts are needed in order to maintain momentum to increase
our understanding and refine our therapeutic approaches for patients with CSCC.

Keywords: cutaneous squamous cell carcinoma; CSCC; treatment; advances; biology; immunocom-
promised; immune checkpoint inhibition; immunotherapy

1. Introduction

CSCC is the second most common skin cancer diagnosed worldwide [1]. Important
risk factors for CSCC include ultraviolet (UV) radiation and immunosuppression. Most
patients have curable, localized disease, but a small proportion (2–5%) develop unresectable
locally advanced or metastatic disease [2,3]. Historically, systemic therapy options for
these patients were limited; however, there have been advances in our understanding of
the biology of CSCC—particularly, an appreciation of the high tumor mutational burden
(TMB) observed in most cases of CSCC, and the role of the immune system in tumor
prevention and control. This led to a pivotal study of an immune checkpoint inhibitor
(ICI) in patients with metastatic or locally advanced, unresectable CSCC, and changed the
treatment paradigm for these patients. Efforts are now underway to assess the benefit of
ICI in patients with high-risk localized disease, where the chance for cure with improved
neoadjuvant or adjuvant approaches is greater. This review discusses the epidemiology, risk
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factors, and genomic alterations underlying CSCC, and summarizes treatment advances
for CSCC.

2. Epidemiology

Non-melanoma skin cancers (NMSCs) comprise of basal-cell carcinomas (BCCs; ~80%),
CSCC (~20%), and rarer skin cancers. The incidence of CSCC is likely underestimated,
as accurate figures are difficult to ascertain, with significant variation in cancer registry
practices between countries as a result of the high incidence, relatively low mortality,
and multiplicity of CSCC [4,5]. However, it is clear that NMSCs are the most common
types of cancer diagnosed in many regions—including Australia, North America, and
Europe—and their associated public health burden is significantly underestimated [4–8].
The incidence of CSCC in patients aged 75 years or older is 5–10 times higher than in
their younger counterparts. Men are at higher risk of CSCC than women, which was
traditionally hypothesized to be a reflection of higher occupational exposure, but there
is some suggestion that differences in sexual biology may be a factor in the observed
disparity [9–13]. As UV exposure is the strongest risk factor for CSCC, most cases arise in
the head and neck region, where UV exposure is highest.

3. Risk Factors

The pathogenesis of CSCC is multifactorial. Chronic UV exposure plays an important
role, but other risk factors include immunosuppression, environmental exposures, chronic
inflammation, and drugs (Figure 1).
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3.1. Ultraviolet Radiation

Chronic UV exposure is the most important risk factor for CSCC [14]. Sunlight pro-
duces three main types of UV radiation: UVA, UVB, and UVC. UVA radiation exposure
increases the risk of CSCC, but is less mutagenic than UVB. UVA radiation causes indirect
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DNA damage by facilitating the formation of reactive oxygen species, which can inter-
act with DNA, lipids, and proteins to form pre-mutagenic adducts [15]. UVB radiation
directly damages DNA and RNA by causing the formation of cyclobutane-pyrimidine
dimers (CPDs) and 6-4 photoproducts (6-4PPs), which distort the DNA helix, impeding
transcription and replication [15]. Particular genomic positions, as a result of their struc-
ture, are more vulnerable to UVB-induced DNA damage—for instance, the TP53 gene,
which is the most frequently mutated gene in CSCC [16]. In vivo studies show that mice
exposed to chronic UV radiation develop inactivating TP53 mutations as early as 1 week
post-exposure [17]. UVC has the shortest wavelength, and is completely absorbed by the
Earth’s ozone layer.

There is marked global variation in CSCC incidence, reflecting not only varying levels
of UV exposure, but also genetic propensity to UV damage. The amount of melanin pigment
in the skin can be categorized using the Fitzpatrick skin type scale, and is correlated with
UV susceptibility and skin cancer risk [18]. Pale or white skin that burns easily and does not
tan, classified as Fitzpatrick type 1, has a higher risk of developing skin cancers compared
to people with Fitzpatrick type 6 skin, who have very pigmented skin that rarely or never
burns [18]. As such, Australia, as a consequence of its location, relative lack of ozone, and
high proportion of Anglo-Saxon population, has one of the highest incidences of NMSCs,
including CSCC [4,19].

3.2. Immunosuppression

The role of the immune system in the development of CSCC has long been recognized
from the significantly increased risk of CSCC observed in immunosuppressed patients [20].
Furthermore, the success of ICI (discussed in detail below) highlights the anticancer potency
of an intact immune system.

Immunosuppression can be a result of host factors—such as chronic lymphocytic
leukemia (CLL) or HIV—or extrinsic factors, such as drugs. This review will address the
most common causes of immunosuppression, such as CLL and immunosuppressive drugs.

3.2.1. Chronic Lymphocytic Leukemia

CLL is a low-grade lymphoproliferative malignancy characterized by clonal prolifer-
ation of functionally incompetent B cells; it is the most common leukemia in developed
countries, accounting for up to 35% of all leukemias [21]. CLL was the most common cause
of immunosuppression (34%, n = 20/59) in a multicenter retrospective study of patients
with CSCC receiving immune checkpoint inhibition [22]. Patients with CLL are 5–8 times
more likely to develop CSCC compared to patients without CLL [23–25]. Furthermore, the
risk of recurrence and CSCC-specific mortality is increased in patients with CLL [26,27].
The risk of metastasis at 5 years has been reported to be 18%, with a standardized mortality
ratio of 17.0 (95% CI 14.4–19.8) [27].

CLL is typically diagnosed in older people, with a median age of 70 years. Older
age, a higher incidence in men, and the associated immunosuppressive effects of CLL all
contribute to the higher risk of CSCC. The strongest risk factor for developing CSCC in the
setting of CLL is prior history of any skin cancer, but other CLL risk factors associated with
a higher risk of developing CSCC include CLL international prognostic index, Rai stage,
and lymphocyte doubling time [28].

The biology underlying the increased risk of CSCC is not fully understood. B cells
are traditionally known for antigen presentation, antibody production, and the release of
effector cytokines that modulate T-cell responses. There is growing evidence, however,
that a newly identified, heterogeneous group of B cells—called regulatory B cells—can
modulate the immune response to tumors [29]. In the setting of CLL, monoclonal B cells
have been shown to promote an immunosuppressive environment via the downregulation
of CD154 in activated T cells in preclinical models. CD154 plays a critical role in stimulating
B cells, monocytes, and dendritic cells to differentiate and proliferate [30]. Additionally, in
clinical tumor samples, higher levels of interleukin-2 (IL-2) receptors have been detected
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in patients with CLL compared to patients without CLL. IL-2 receptors are thought to be
secreted from T-regulatory cells, and bind free IL-2, thus decreasing its availability [31].
Suppression of IL-2 has been shown to induce CD8+ T-cell anergy [32]. Other immune
deficits have been identified in patients with CLL, such as impaired phagocytosis and
functional defects in helper B cells [33]. It has also been hypothesized that in addition to the
immunosuppressive effects of CLL, shared genetic risk factors between CLL and NMSC
can contribute to the association between the two diseases [28,34].

3.2.2. Drugs

A number of drugs are associated with an increased risk of CSCC via different mecha-
nisms, ranging from immunosuppression, to the paradoxical activation of pathways that
lead to keratinocyte proliferation and loss of apoptosis.

Immunosuppressive Drugs

Long-term immunosuppressive drug regimens are most commonly utilized in organ
transplant recipients (OTRs), and involve multiple classes of drugs to minimize graft
rejection. As a result, their immunosuppressive effects can be profound, and increase
the risk of CSCC by hundreds-fold. In one long-term observational study, approximately
30% of OTRs developed NMSCs, the majority of which were CSCC. The mean time
from transplant to first CSCC was 9.9 years, and overall cumulative incidence increased
over time to 10.6%, 24.8%, 53.9%, and 73.9% at 5, 10, 20, and 30 years post-transplant,
respectively [20]. Patients who have undergone heart or lung transplantations are more
susceptible to CSCC formation than renal transplant recipients, likely reflecting the more
potent immunosuppressive regimens required for those organs [35,36]. CSCCs developing
in OTRs have a higher risk of recurrence, metastases, and cancer-specific death compared
to non-transplant patients [37].

Calcineurin inhibitors such as cyclosporine and tacrolimus are a commonly used
class of immunosuppressive drugs. They reduce IL-2 production and IL-2 receptor ex-
pression, leading to reduced T-cell activation. Cyclosporine, however, also impedes the
UV-induced DNA repair mechanisms and keratinocyte apoptosis, by counteracting p53
through ATF3 [38,39]. Furthermore, there is in vitro evidence that cyclosporine can in-
duce epithelial–mesenchymal transition via the upregulation of TGF-β, thus altering the
phenotype to a more invasive and aggressive tumor type [40].

Tacrolimus is a more modern calcineurin inhibitor, which has been increasingly used
since the 1990s [41]. Interestingly, studies have shown that tacrolimus is not associated with
an increased risk of CSCC [42,43], and does not confer resistance to UV-induced apoptosis
in keratinocytes—unlike cyclosporine [44].

Since the early 2000s, there has been increasing use of mechanistic target of rapamycin
(mTOR) inhibitors—such as rapamycin and sirolimus—as immunosuppressants. mTOR is
a protein kinase that plays a role in cell proliferation and survival, as well as modulation of
the innate and adaptive immune system [45,46]. Interestingly, however, in vivo studies of
mice show that sirolimus—an mTOR inhibitor—significantly delays CSCC development
and reduces its multiplicity, even if co-administered with cyclosporine, through inhibition
of the transcription factor ATF3 [47–49]. ATF3 downregulates expression of TP53, which
is one of the most commonly mutated genes in CSCC [38,50]. Furthermore, randomized
controlled trials (RCTs) also show a significantly reduced incidence of CSCC in patients
receiving mTOR inhibitors compared to cyclosporine [51], as well as in patients who were
prescribed sirolimus after three months of treatment with cyclosporine (1.2% vs. 4.3%,
p < 0.001) [43,52].

Oral glucocorticoids are a frequently used immunosuppressant, but data regarding
the risk associated with the development of CSCC are inconsistent. Two studies—a case–
control study, and a planned sub-study of an RCT—found no association between oral
steroid use and risk of CSCC [53,54]. In contrast, a cohort study found that patients on
prolonged courses of oral glucocorticoids were at higher risk of developing CSCC (stan-
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dardized incidence ratio 2.45; 95% CI 1.37–4.04) [55]. Another study of OTRs found that
higher cumulative immunosuppression from a combination of cyclosporine, azathioprine,
and oral prednisolone increased the risk of CSCC by fourfold compared to lower cumula-
tive doses [56]. However, there was no association between the cumulative doses of each
drug alone and risk of CSCC. This highlights the possibility that the overall level and dura-
tion of immunosuppression, regardless of agent, is a factor impacting the risk of developing
CSCC. Ultimately, it will be difficult to ascertain the true risk of CSCC arising in patients
taking a commonly used drug such as oral glucocorticoids. There are many indications
for oral glucocorticoids, thus increasing potential confounders and biases. Furthermore,
accurate information regarding duration of therapy—which can vary widely, from a few
days, to many months or years—is difficult to gather at a population-based level.

BRAF Inhibitors

A number of targeted therapies are associated with cutaneous side effects. Squamo-
proliferative lesions such as actinic keratoses and CSCC are most commonly seen with
BRAF inhibitors such as vemurafenib, dabrafenib, and encorafenib, which can be used as
monotherapies for patients with metastatic melanoma harboring BRAF V600E mutations.
A meta-analysis of seven randomized trials found that 18% (95% CI 0.12–0.26) of patients
on vemurafenib develop CSCC [57]. In patients taking dabrafenib, CSCC develops in
6–26% of patients [58,59]. BRAF-inhibitor-associated abnormal squamous proliferation
is thought to be induced by the paradoxical activation of the mitogen-activated protein
kinase (MAPK) pathway, and subsequent ERK-mediated transcription in wild-type BRAF
keratinocytes—particularly in the presence of oncogenic RAS mutations [60–63]. CSCC
arising from BRAF inhibition typically occurs within the first 3 months of treatment, and
age has been identified as an independent risk factor [64]. Following the establishment of
efficacy of BRAF inhibition in metastatic melanoma, overall survival and response with
the combination of BRAF with MEK inhibition was found to be superior compared to
BRAF monotherapy. Dual blockade of BRAF and MEK is now the standard of care for pa-
tients with metastatic BRAF V600E mutations. Fortunately, the risk of squamoproliferative
lesions—including CSCC—significantly decreased with the addition of MEK inhibition,
with a reported incidence of 0–2% [65–67].

JAK1/2 Inhibitors

Janus kinase (JAK)1/2 inhibitors such as ruxolitinib are used to treat myelofibrosis
or polycythemia vera. A number of cases have been reported wherein the initiation of
JAK1/2 inhibitors is associated with the development of multiple, rapidly progressing
CSCCs [68–70]. The incidence of newly diagnosed non-melanoma skin cancer was 17.1% in
patients receiving ruxolitinib compared to 2.1% in those receiving best available therapy for
myelofibrosis in the long-term follow-up of a phase III RCT [71]. The exact mechanism of
tumorigenesis is unknown, but JAK1/2 aberrant hyperactivation has been associated with
tumor proliferation and survival in different cancer types [72]. Interestingly, ruxolitinib
was shown to reduce tumor progression in in vitro experiments of cyclosporine-induced
CSCC cell lines [73].

3.3. Marjolin’s Ulcers

Marjolin’s ulcers describe a rare form of CSCC that arises from areas of chronic inflam-
mation such as burn scars, venous stasis ulcers, and pressure sores [74]. Marjolin’s ulcers
are more aggressive than spontaneous CSCC, with the risk of recurrence or metastases
reported to be approximately 30% in case series [75,76]. There is a long latency period
from initial injury to the development of CSCC, with an average time of 30 years re-
ported [74,77,78]. The relationship between inflammation and tumorigenesis has long been
appreciated, with examples of cancers arising from patients’ inflammatory bowel disease
and Helicobacter-induced gastritis [79]. Inflammatory mechanisms ensure appropriate re-
sponses to infections, and promote wound healing, but can also create a microenvironment
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that promotes tumorigenesis via the recruitment of immune cells and subsequent release
of cytokines and growth factors [80].

3.4. Environmental Exposure

Other environmental risk factors include chronic arsenic exposure, which most com-
monly occurs from contaminated drinking water [81]. Arsenic-induced CSCC can develop
even in non-sun-exposed sites. Ionizing radiation via environmental, therapeutic, or di-
agnostic exposure is also a known risk factor, although the risk of BCC is higher than
that of CSCC, as the basal layer of the epidermis is more affected than more superficial
layers [82–84]. Occupational exposure to aromatic hydrocarbons such as benzene and
mineral oil have also been identified as risk factors for the development of CSCC, and are
of particular importance in occupations such as firefighting and petroleum work [85,86].

3.5. Inherited Bone Marrow Failure Sydromes (IBMFSs)

IBMFSs comprise of rare diseases typically characterized by genetic mutations result-
ing in bone marrow failure. These syndromes include Fanconi anemia and dyskeratosis
congenita as the most common disorders, which are associated with defects in DNA repair
and telomere function, respectively. Patients with these conditions are at increased risk of
hematological and solid malignancies due to multiple factors that arise from the genetic dis-
ruption, resulting in genomic instability and bone marrow failure. The risk of CSCC is more
notable in patients with Fanconi anemia and dyskeratosis congenita. Skin cancers make up
approximately 10–20% of cancer cases in patients with Fanconi anemia and dyskeratosis
congenita, and typically occur at a median age of approximately 30 years [87–89].

3.6. Beta Human Papillomavirus

HPV comprises several heterogeneous subgroups; α-papillomavirus (α-HPV) subtypes
are associated with mucosal SCCs, such as cervical and oropharyngeal cancer, but it is the β-
papillomavirus (β-HPV) subtypes that are hypothesized to be a risk factor for CSCCs. β-HPV
was first discovered in the context of patients with a rare skin disorder—epidermodysplasia
verruciformis. Patients develop pre-cancerous wart-like lesions that progress to CSCC in
UV-exposed areas. Multiple β-HPV types were found in these lesions, thus raising the
possibility of the carcinogenic role of β-HPV. Complicating matters, however, is the relative
ubiquitousness of β-HPV in the skin. β-HPV DNA is detected in the skin of 39–91% of
immunocompetent patients—particularly in hair follicles, which are considered to be a
natural reservoir [90,91]. There are, however, multiple factors that suggest that β-HPV may
be a risk factor for the development of CSCC.

Firstly, immunocompromised patients have an increased risk of CSCC, and have
significantly higher rates of β-HPV infection and higher viral loads, suggesting a potential
causal relationship between β-HPV and CSCC [92]. Second, observational studies have
shown an association between β-HPV DNA and/or serum antibodies and CSCC in both
immunocompromised and immunocompetent patients [93]. A meta-analysis of over
3000 immunocompetent patients found an overall association of β-HPV and CSCC (OR
1.42; 95% CI 1.18–1.72) [94]. Notably, some of these studies incorporated BCC cases, and no
associations were observed between β-HPV and BCC [95–97]. Thirdly, there are increasing
preclinical data supporting the role of β-HPV in tumor initiation, but not necessarily in
tumor maintenance [98]. β-HPV DNA is detected at high levels in pre-cancerous lesions
such as actinic keratoses, whereas lower levels are detected in CSCC lesions [99,100].
In vitro and in vivo studies have shown that the HPV oncoproteins E6 and/or E7 from
HPV types 5, 8, and 38 can increase susceptibility to UV-induced oncogenesis via alterations
in p53 and Notch1 signaling [101–108]. β-HPV is also thought to infect and expand adult
tissue stem cells, thus enabling cells to persist and accumulate mutations [109]. It is
hypothesized that once cells have accumulated mutations such as TP53 and Notch, which
allow for ongoing cell proliferation, expression of viral oncogenes becomes redundant, and
they are no longer positively selected.
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4. Biology and Pathogenesis

There have been significant advances in our understanding of the biological pathways
in CSCC development, with multiple genes identified as playing a critical role in tumor
initiation and persistence. CSCC, however, has one of the highest median TMBs of any
tumor type; thus, hundreds of mutations can be found per megabase [110]. One of the
challenges in understanding the biological pathways involved in CSCC is separating true
oncogenic mutations from passenger mutations. Here, we discuss the oncogenic roles
of selected commonly mutated genes such as TP53, Notch, and CDKN2A. No specific
oncogenic drivers of CSCC have been identified.

p53 functions predominantly as a transcription factor, and can activate or repress a
large number of target genes. In particular, p53 plays an important role in modulating
nucleotide excision repair (NER) and other DNA repair pathways that are essential in the
repair of UV-induced DNA damage [111]. Mutations in TP53 allow for ongoing, unrepaired
UV-induced DNA damage. As an example, the risk of CSCCs is significantly higher if there
are genetically impaired DNA repair mechanisms, such as in patients with xeroderma
pigmentosum who develop NMSCs during childhood [112].

Mutations in TP53 occur early in CSCC development, and are often found in normal
keratinocytes [113–115] and pre-malignant lesions [116]. Whole-exome sequencing of
CSCC has identified bi-allelic TP53 mutations in nearly all tumors, again suggesting
that the loss of wild-type TP53 is an early step in carcinogenesis [117–119]. This is in
contrast to other solid malignancies, where TP53 gene mutations occur later in tumor
evolution [120–122]. Further evidence of the oncogenic role of TP53 in CSCC has been
shown in in vivo studies, where homozygous p53-knockout mice rapidly developed CSCC
after UV exposure [123,124]. p53-mutant cells are more resistant to UV-induced apoptosis,
and have a proliferative advantage over wild-type keratinocytes [125].

The Notch signaling pathway is commonly affected, and Notch mutations are found in
60–80% of CSCCs [118,119,126]. Notch is a highly conserved intercellular signaling mech-
anism that plays a critical role in the development and maintenance of tissue homeosta-
sis [127]. Genes of the Notch family encode four transmembrane receptors (Notch1–4). In the
epidermis, Notch signaling is involved in the terminal differentiation of keratinocytes [128].
Interestingly, Notch can have oncogenic or tumor-suppressive functions depending on the
cell context [129]. Constitutive Notch1 signaling as a result of activating mutations is the
initiating step in almost all T-cell acute lymphoblastic leukemia (T-ALL) cases [130,131].
In contrast, loss of Notch signaling—particularly Notch1 and Notch2—is associated with
carcinogenesis in keratinocytes [118,132,133]. Preclinical studies have shown that Notch1
is a downstream positive target of p53 in keratinocytes; thus, inactivating TP53 mutations
can further lead to reduced Notch1 expression [134]. Several in vivo experiments have
shown Notch1 deficiency or Notch1 inhibition in mice can result in the spontaneous devel-
opment of CSCC [135]. A possible mechanism is via upregulation of the Wnt/β-catenin
pathway [132]. Intriguingly, Notch deficiency or loss does not purely exert its effect au-
tonomously on cells, but can also create a pro-tumorigenic microenvironment. Loss of
Notch signaling disrupts skin barrier function, creating a chronic wound-like environ-
ment [136]. As a result, mesenchymal components are recruited for repair, which also
stimulates a vascularized and growth-factor-rich stroma, providing an ideal environment
for tumor formation [136]. There is also clinical evidence of Notch inactivation resulting
in increased CSCC risk. Semagacestat, a γ-secretase inhibitor, was developed as a drug
for Alzheimer’s disease. A phase III RCT of semagacestat was halted early due to lack of
efficacy as well as an increased risk of CSCC. γ-Secretase, in addition to converting amyloid
precursor protein to amyloid-β is also responsible for cleaving and activating Notch1; thus,
its inhibition indirectly inactivates Notch1 [137].

The cyclin-dependent kinase inhibitor 2A (CDKN2A) gene encodes two tumor-
suppressor genes: p16INK4a and p14ARF. Both genes regulate cell cycling: p16INK4A binds to
CDK4 and CDK6, thus preventing Rb protein phosphorylation and G1-S phase progression,
while p14ARF binds to MDM2, preventing p53 degradation and Rb inactivation, causing
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cell arrest. Methylation of the promoter region is the most common mechanism of p16 and
p14 inactivation in CSCC, followed by point mutations and loss of heterozygosity [138].
Alterations in CDKN2A are found in up to 80% of CSCCs [119]. Inactivating mutations of
CDKN2A result in uncontrolled cell cycling and proliferation. A recent analysis, however,
consistently found upregulation of CDKN2A in gene expression profiles and cell lines, in
contrast to the pre-existing literature; the authors hypothesized that ERK signaling in CSCC
may upregulate CDKN2A as a stress response to induce senescence rather than stimulating
cell cycling [139].

RAS gene mutations are among the most common activating mutations found in
human cancers, and also present a significant therapeutic challenge due to their molec-
ular characteristics. The RAS gene encodes four RAS proteins: HRAS, NRAS, and two
splice variants of KRAS. RAS proteins belong to a family of small GTPases that cycle
between “off” and “on” states [140]. Activating RAS mutations can result in oncogenic
constitutive activation of the RAF-MEK-ERK and PI3K-AKT pathways, leading to cell
proliferation [141]. In CSCC, HRAS mutations are most common, and are found in 3–20%
of CSCCs [118,133]. In keratinocytes, upregulated expression of RAS alone is not sufficient
to induce tumorigenesis [142]. Concomitant Notch1 deletion, IκBα co-expression, or CDK4-
mediated bypass of Rb cell cycle restraints increase CSCC formation in the presence of
activated RAS [132,143,144].

5. Tumor Mutation Burden

As a result of the chronic nature of UV exposure and the mechanism of DNA damage,
there are cumulative DNA aberrations in CSCCs. In a study examining TMB in over
100,000 tumor samples, CSCC had the highest median TMB (45.2 mutations/Mb) com-
pared to other tumor types [110]. High TMB is predictive of response to ICI, although
prospective validation is lacking [145]. The impressive and durable responses observed
with ICI in CSCC are thought to be due to high TMB representing a large number of
immunostimulatory neoantigens.

6. Tumor Mutational Signatures

Somatic mutations in cancer cells can create a characteristic mutational signature,
which reflects the mutational process involved in carcinogenesis. The UV mutation
signature—the first characterized signature—is found in the great majority of CSCCs,
and even in immunocompromised hosts. UV radiation damage most commonly results
in cytosine to thymine or cytosine–cytosine to thymine–thymine changes—i.e., C > T or
CC > TT—at dipyrimidine sites [146,147]. Recent studies have also identified signatures
in CSCC associated with azathioprine exposure [139] and hyperactivity of endogenous
cytidine deaminases (APOBEC)—specifically in patients with epidermolysis bullosa [148].

7. Treatment Advances
7.1. Localized Resectable High-Risk Disease

Most CSCCs are small, indolent, and surgically resectable, and adjuvant therapy is
often not required. Post-operative radiotherapy, however, is considered for patients with
resected high-risk localized disease—usually defined as tumors showing involved resection
margins, depth of invasion of more than 2–6 mm, extensive perineural invasion, or large
nerve involvement [2,149]. Other indications include lymph node involvement and large
primary tumors [150,151].

7.1.1. Post-Operative Chemoradiotherapy

Platinum chemotherapy agents such as cisplatin and carboplatin are often used concur-
rently with postoperative radiotherapy in patients with mucosal head and neck squamous
cell carcinoma (HNSCC), as several studies have shown a survival benefit [152–155]. The re-
sults of these trials have been extrapolated and applied to patients with cutaneous SCC. Until
recently, there was no definitive prospective study supporting its use in this population.
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A phase III trial randomized patients with high-risk resected CSCC to postoperative
radiotherapy alone, or with concurrent weekly carboplatin chemotherapy [156]. Concurrent
cisplatin is considered the gold standard in HNSCC, but its significant toxicity profile often
precludes its use in patients with CSCC who are generally older, and with significant
comorbidities. Thus, carboplatin is more frequently used. High-risk disease was defined as
patients with primary tumors > 5 cm or T4 disease, resected intra-parotid nodal disease,
two or more cervical nodal diseases, or with a node ≥ 3 cm or extranodal extension.
Contrary to the results of mucosal HNSCC, no benefit was observed in freedom from
locoregional relapse, nor in disease-free or overall survival, in patients with CSCC receiving
concurrent chemotherapy. Based on the results of this trial, and the lack of evidence with
other regimens, concurrent chemotherapy is generally not recommended in the adjuvant
treatment of CSCC outside of clinical trials [151].

7.1.2. Neo/Adjuvant Immunotherapy

The success of ICI in patients with advanced disease has driven efforts to incorporate
treatment into earlier stages of disease in order to reduce (a) the morbidity associated with
resections of large tumors, and (b) the risk of locoregional relapse or metastasis.

Neoadjuvant immunotherapy is particularly appealing for clinical and translational
purposes. Immune activation may be potentiated by the presence of neoantigens and intra-
tumoral immune cells within the unresected cancer, and changes in the tumor and stroma
can be compared between pretreatment biopsies and the resection specimen [157–159].
Furthermore, neoadjuvant studies allow for earlier assessment, using pathologic response,
compared to adjuvant studies, where survival data can take many years to mature. A pilot
phase II study of two doses of neoadjuvant cemiplimab for patients with locally advanced,
curable CSCC resulted in 14/20 patients (70%; 95% CI 45.7–88.1) with a pathological
complete response (n = 11) or major pathological response (n = 3) [160]; this was despite
only 30% (95% CI 11.9–54.3) showing a partial response by RECIST, highlighting the
challenges of assessing ICI response using current radiological criteria. Neoadjuvant
studies of other ICIs, as well as combination neoadjuvant treatment with dual anti-PD(L)1
with anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockade, are ongoing
[NCT04154943] [161,162]. Furthermore, there are two large phase III adjuvant studies of
pembrolizumab or cemiplimab [163,164].

7.2. Unresectable Locally Advanced or Metastatic Disease

Historically, no standard of care for systemic therapies existed for patients with
unresectable or metastatic CSCC. Cytotoxic chemotherapies such as platinums, fluoropy-
rimidines, and taxanes have shown activity in retrospective analyses. Response rates
are generally low, and the toxicity profiles of therapies often preclude their use in elderly
patients with CSCC [165]. ICI with monoclonal antibodies against PD1 and PD-L1 has trans-
formed the treatment landscape for many solid tumors, including CSCC. Other treatment
approaches include targeting the epidermal growth factor receptor (EGFR) pathway.

7.2.1. Immunotherapy

A practice-changing phase II study demonstrated the efficacy of cemiplimab—an anti-
PD-1 monoclonal antibody—in patients with unresectable or metastatic CSCC [166,167].
Responses were observed in 54.4% (95% CI 47.1–61.6) of patients (both previously treated
and untreated) [167]. In patients with initial response, 76% (95% CI 64.1–84.4%) had
ongoing response at 24 months, demonstrating the excellent durability of disease response;
estimated overall survival at 24 months was 73.3% (95% CI 66.1–79.2) [167–169]. As a result
of this study, cemiplimab was approved by the FDA, and became the standard treatment
for patients with locally advanced or metastatic CSCC who are not candidates for curative
surgery or radiation.

Other ICIs, such as pembrolizumab, have shown comparable activity. Two studies—
CARSKIN, and KEYNOTE-629—assessed the efficacy of pembrolizumab in advanced
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CSCC. The objective response rate was 34.3% (95% CI 25.3–44.2%) in KEYNOTE-629 in a
heavily pretreated population, and median overall survival has not been ascertained [170].
Based on KEYNOTE-629, pembrolizumab has also been approved by the FDA for ad-
vanced CSCC.

The CARKSIN study enrolled treatment-naïve patients with unresectable or metastatic
CSCC to receive pembrolizumab [171]. Response rate (RR) at 15 weeks was the primary
objective of the study, and was 41% (95% CI 26–58%), including 13 partial and 3 complete
responses. Similarly, nivolumab has shown robust results in a phase II first-line study of
patients with advanced CSCC [172]. Recently, real-world data regarding the use of ICIs in
245 patients—including immunocompromised patients—were reported to be comparable
to trial data [22]. The estimated 12-month OS was 63% (95% CI 51–70); 50% of patients
achieved a complete response or partial response (95% CI 44–57), and there were no
unexpected toxicities. In univariate and multivariate analysis, ECOG score > 2 was the only
clinical factor that was significantly associated with poor OS and PS in the first 6 months.

More aggressive approaches are also being considered for select patients with unre-
sectable localized disease where cure may be possible. A phase II study of neoadjuvant
avelumab, followed by curative-dose radiotherapy with concurrent avelumab, is ongo-
ing [173].

Combination strategies of ICIs with cetuximab and oncolytic viruses are being investi-
gated in order to address the challenges of resistance and improve durability of response.
CSCC and melanoma share similar features, such as chronic UV exposure and high TMB.
Studies of immunotherapy have been established longer in melanoma than in CSCC; thus,
approaches that are efficacious or promising in melanoma are being tested in patients
with CSCC. Talimogene laherparepvec (T-VEC) is a modified attenuated oncolytic herpes
simplex virus containing the granulocyte macrophage colony-stimulating factor (GM-CSF)
gene. Production of intratumoral GM-CSF can induce cellular immunity, and the direct
oncolytic effect from viral infection of tumor cells can cause an antitumor response. Early-
phase studies in metastatic melanoma show that intralesional injections of T-VEC combined
with immune checkpoint blockade resulted in an objective response rate of 39% and 50%
with concurrent ipilimumab and pembrolizumab, respectively [174–176]. Currently, there
are studies in CSCC combining oncolytic viruses such as T-VEC and RP1 with ICI or EGFR
antibodies [177,178]. EGFR antibodies, which are discussed in more detail below, are
also being investigated in combination with anti-PD(L)1 antibodies. A phase II trial will
randomize immunocompetent patients with unresectable/metastatic CSCC to avelumab
alone, or in combination with cetuximab [179].

7.2.2. EGFR Pathway Inhibition

EGFR is a transmembrane glycoprotein with an extracellular binding domain, along
with an intracellular tyrosine kinase domain that regulates cell proliferation via pathways
such as MAPK and PI3K. The EGFR protein is highly expressed in CSCC [180–182]. EGFR
monoclonal antibodies such as cetuximab and panitumumab have shown activity in
CSCC in small phase II trials. In a phase II trial of cetuximab in patients with locally
advanced unresectable or metastatic CSCC, 28% achieved a response, while 41% had stable
disease [183]. An ORR of 31% was observed in a study of panitumumab [184].

Cetuximab has also been used in the neoadjuvant setting. Five out of nine patients
receiving neoadjuvant cetuximab alone had a response that allowed for surgical resection
and, of these, three had a complete pathological response [185].

Oral tyrosine inhibitors such as gefitinib and dacomitinib, which target the intracellular
tyrosine kinase domain, are typically used in patients with EGFR-driven non-small-cell
lung cancer, where responses are seen in approximately 75% of patients. These agents have
activity in CSCC, with overall response rates of 16% and 28% observed in early phase trials
of gefitinib and dacomitinib, respectively [186–188].

Combination therapies with drugs known to target common EGFR resistance mecha-
nisms such as fibroblast growth factor receptor (FGFR) signaling are also being investigated.
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A phase I study of cetuximab with lenvatinib—a multitarget tyrosine kinase inhibitor that
has activity against FGFR—in patients with metastatic CSCC or HNSCC is underway [189].

7.2.3. Other Approaches

The risk of BRAF-induced CSCC is abrogated with the addition of MEK inhibition,
forming the rationale for investigating the potential role of MEK inhibition in the treatment
of CSCC. In vivo studies have shown that MEK induces CSCC cell senescence, but not
apoptosis. Interestingly, MEK inhibition also significantly delayed or prevented CSCC
development in murine models [190]. Currently, there is a phase II study investigating the
efficacy of cobimetinib—an MEK inhibitor—with atezolizumab [191].

Future therapeutic approaches may include novel small molecule inhibitors of both
PI3K and mTOR. The oral dual PI3K/mTOR inhibitors—GDC-0084 and LY3023414—have
been shown to inhibit proliferation and promote apoptosis in CSCC cell lines [192,193].
GDC-0084 and LY3023414 have been shown to be safe and tolerable in early-phase studies
in patients with solid tumors, and there were promising signals of activity [194,195].

8. Therapeutic Options for Immunocompromised Patients

Immunocompromised patients have historically been excluded from clinical trials,
but with the success of ICI for immunocompetent patients with CSCC, it became ap-
parent that high-level data to guide treatment for immunocompromised patients were
lacking. There are several ongoing studies investigating approaches in different groups
of immunocompromised patients. A major concern with the use of ICIs in solid organ
transplant patents is graft rejection. Case reports and case series have reported up to
a 40% risk of graft rejection with the use of anti-PD(L)1 antibodies [196,197]. To poten-
tially ameliorate that risk, two studies are investigating the combination of tacrolimus—
an immunosuppressant—with ipilimumab plus nivolumab, and sirolimus with cemi-
plimab [198]. Tacrolimus and sirolimus—both mTOR inhibitors—may reduce the risk of
CSCC development, as discussed earlier in the review. Cemiplimab is also being investi-
gated in patients with CLL, HIV, or allogenic hematopoietic stem cell transplants [199,200].

Recently, real-world data of patients with CSCC receiving cemiplimab included a
cohort of immunocompromised patients. Somewhat surprisingly, given the poor prognosis
of immunocompromised patients with CSCC compared to immunocompetent patients,
ORR and OS did not differ between immunocompetent and immunocompromised patients.
Several patients experienced graft rejection as expected. The causes of immunosuppression
in this cohort were heterogeneous, ranging from CLL to OTRs and patients with HIV.

Given the increased risk of developing CSCC and its increased lethality in immuno-
compromised patients, there is an urgent need to better understand the underlying biology
driving this disparity, and to identify potential novel treatment approaches for this cohort.

9. Conclusions

Our understanding of the underlying biology of CSCC—such as the mechanisms and
sequelae of UV-induced DNA damage—has resulted in significant advances in the manage-
ment of patients with CSCC. ICI is established as the first-line management of advanced
CSCC, but focus has now shifted to more challenging questions. Can we reduce the risk
of patients with localized disease developing recurrent or metastatic disease? How can
we improve current treatment paradigms, particularly in immunocompromised patients,
where the risk of treatment-related adverse events—particularly graft rejection in OTRs—is
high? Finally, what do we do for patients who do not respond to—or have progressed
despite—immunotherapy? Current and future scientific research efforts towards identi-
fying predictive biomarkers and understanding the biology behind clinically disparate
groups will hopefully address these clinical challenges.
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