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Abstract Multidrug resistance protein 7 (MRP7, ABCC10) is a recently identified member of the ATP-
binding cassette (ABC) transporter family, which adequately confers resistance to a diverse group of
antineoplastic agents, including taxanes, vinca alkaloids and nucleoside analogs among others. Clinical
studies indicate an increased MRP7 expression in non-small cell lung carcinomas (NSCLC) compared to a
normal healthy lung tissue. Recent studies revealed increased paclitaxel sensitivity in the Mrp7� /� mouse
model compared to their wild-type counterparts. This demonstrates that MRP7 is a key contributor in
developing drug resistance. Recently our group reported that PD173074, a specific fibroblast growth
factor receptor (FGFR) inhibitor, could significantly reverse P-glycoprotein-mediated MDR. However,
whether PD173074 can interact with and inhibit other MRP members is unknown. In the present study,
we investigated the ability of PD173074 to reverse MRP7-mediated MDR. We found that PD173074, at
non-toxic concentration, could significantly increase the cellular sensitivity to MRP7 substrates.
Mechanistic studies indicated that PD173074 (1 μmol/L) significantly increased the intracellular
accumulation and in-turn decreased the efflux of paclitaxel by inhibiting the transport activity without
3
l Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ssette; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; HEK293, human
sistance; MRP7, multidrug resistance protein 7; MSDs, membrane-spanning domains; NBDs, nucleotide-binding
cinomas; RTK, receptor tyrosine kinase; TKI, tyrosine kinase inhibitor
0 1432; fax: þ1 718 990 1877.
he-Sheng Chen).

ool, 10 Monteith Drive, Farmington, CT 06032, USA.
itute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

www.elsevier.com/locate/apsb
www.sciencedirect.com
dx.doi.org/10.1016/j.apsb.2014.02.003
dx.doi.org/10.1016/j.apsb.2014.02.003
dx.doi.org/10.1016/j.apsb.2014.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsb.2014.02.003&domain=pdf
mailto:chenz@stjohns.edu
dx.doi.org/10.1016/j.apsb.2014.02.003


PD173074 reverses ABCC10-mediated drug resistance 203
altering expression levels of the MRP7 protein, thereby representing a promising therapeutic agent in the
clinical treatment of chemoresistant cancer patients.

& 2014 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Acquired multidrug resistance (MDR) within the tumor population
has been a huge obstacle towards attaining a successful che-
motherapy. Overexpression of a class of efflux transporters, known
as ATP binding cassette (ABC) transporters, is a vital component
of the several factors contributing immensely to the development
of MDR1. Of the 48 known members of the ABC transporter
family, the C subfamily of proteins, alternatively known as the
ABCC proteins or the multidrug resistance protein (MRP)
subfamily, confers resistance and transports several categories of
chemotherapeutic agents including taxanes, vinca alkaloids, camp-
tothecans, nucleoside analogs, and physiologic substrates includ-
ing leukotrienes and glutathione2. The C group of ABC transporter
subfamily comprises of nine protein members with a common
structural arrangement that includes at least two membrane-
spanning domains (MSDs) and another two nucleotide-binding
domains (NBDs)2. The ABCC subfamily is further classified into
two groups, long MRPs and short MRPs, in which long MRPs
comprise of ABCC1 (MRP1), ABCC2 (MRP2), ABCC3 (MRP3),
ABCC6 (MRP6) and ABCC10 (MRP7), all bearing an additional
N-terminal transmembrane domain, and short MRPs include
ABCC4 (MRP4), ABCC5 (MRP5), ABCC11 (MRP8) and
ABCC12 (MRP9), which lack the additional transmembrane
domain3. In particular, MRP7 consists of three MSDs and two
NBDs and is ubiquitously expressed within the body4.

Membranous MRP7 confers resistance to a wide range of
clinically used drugs, including taxanes, vinca alkaloids, nucleo-
side analogs and epothilone B5. Clinical studies indicated that
MRP7 expression level was increased in non-small cell lung
cancer (NSCLC) when compared to normal lung tissue. A recent
report demonstrated that increased paclitaxel sensitivity in Mrp7� /�

mouse model, compared to their wild-type counterparts, resulted in
neutropenia and bone marrow hypoplasia.

Altering the expression of the transporter proteins or their
functions can surmount ABC transporter-mediated MDR. It was
hypothesized that inhibiting the transporter activity could restore
the cytotoxicity of anticancer drugs against resistant cells. A
substantial number of compounds have been identified to reverse
ABC transporter-mediated MDR6. However, the development of
most of these inhibitors has been hampered due to low binding
affinity, toxicity and detrimental pharmacokinetic interactions.
In addition, very few reversal agents for MRP members have
been discovered or advanced to clinical trials. Therefore, there is a
constant urge for the discovery and identification of potent and
specific inhibitors of MRP transporters. Together, these findings
indicate that the modulation of MRP7 activity may have clinical
significance in management of human cancers, such as NSCLC.

PD173074 is a small-molecule tyrosine kinase inhibitor (TKI)
that disrupts fibroblast growth factor (FGFR) family related
signaling. PD173074, a pyrido[2,3-d]pyrimidine, was synthesized
based on the crystal structure of FGF2-inhibitor complex and was
found to exhibit a high degree of complementarity towards the
tyrosine kinase domain of FGFR17,8. Early studies demonstrated
inhibition of FGFR1 receptor tyrosine kinase (RTK) by
PD173074, leading to inhibition of angiogenesis in preclinical
murine models. Recently, our group reported that PD173074 could
significantly reverse P-gp-mediated MDR9. However, the interac-
tion of PD173074 with MRP7 still remains unknown. In the
present study, we investigated the characteristics of PD173074 to
reverse MRP7-mediated MDR. We found that PD173074 could
significantly increase the cellular sensitivity to MRP7 substrates in
MRP7-overexpressed cells.
2. Material and methods

2.1. Chemicals

[3H]-paclitaxel (23 Ci/mmol) was purchased from Moravek Bio-
chemicals (Brea, CA). Cepharanthine was generously provided by
Kakenshoyaku Co. (Tokyo, Japan). Paclitaxel, vincristine,
dimethyl sulfoxide (DMSO) and 1-(4,5-dimethylthiazol-2-yl)-3,5-
diphenylformazan (MTT) were purchased from Sigma-Aldrich
(St. Louis, MO). PD173074 was purchased from Tocris
Bioscience (Ellisville, MO).

2.2. Cell lines and cell culture

The previously reported MRP7 expression vector and parental
empty vector plasmid were transfected into human embryonic
kidney HEK293 cells by electroporation10. Transfected cells were
selected in DMEM containing 2 mg/mL G418. The parental cell
line transfected with empty vector was represented as HEK293 and
HEK293 transfected with MRP7 expression vector was repre-
sented as HEK293-MRP7. All cell lines were grown as adherent
monolayers in DMEM supplemented with 10% fetal bovine serum
(FBS), 10,000 IU/mL penicillin and 10,000 mg/mL streptomycin
(Hyclone, Logan, UT) in a 5% CO2 incubator at 37 1C.

2.3. Cytotoxicity assay

An MTT colorimetric assay with minor modifications from that
previously described11 was used to detect the sensitivity of cells to
anticancer drugs. Cells were harvested after addition of trypsin and
suspended at a concentration of 6� 103 cells/well. For the reversal
experiment, PD173074 (0.25 or 1 mmol/L, 20 mL/well) or cephar-
anthine (2.5 mmol/L, 20 mL/well) was added, followed by different
concentrations of chemotherapeutic drugs (20 mL/well) into desig-
nated wells. After 68 h of incubation, 20 μL of MTT solution
(4 mg/mL) was added to each well, and the plate was further
incubated for another 4 h, allowing viable cells to convert the
yellow-colored MTT into dark blue formazan crystals. Subse-
quently, the medium was aspirated, and 100 μL DMSO was added
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to each well to dissolve the formazan crystals. The absorbance was
determined at 570 nm by an OPSYS Microplate Reader (DYNEX
Technologies, Chantilly, VA). The degree of resistance was
calculated by dividing the IC50 (concentrations required to inhibit
growth by 50%) for the MDR cells by that of the parental sensitive
cells. The IC50 values were calculated to construct the survival
curves using the Bliss method12.

2.4. Immunoblotting and cell lysate

Total cell lysates were prepared by harvesting the cells and rinsing
three times with ice-cold PBS. Cell extracts were prepared by
incubating cells for 30 min on ice with radioimmunoprecipitation
assay (RIPA) buffer (PBS with 0.1% SDS, 1% Nonidet P-40,
0.5% sodium deoxycholate, and 100 mg/mL p-aminophenyl-
methylsulfonyl fluoride) with occasional rocking, followed by
centrifugation (12,000 rpm, 4 1C for 20 min). The supernatant
containing total cell lysates was stored at 80 1C prior to experi-
ments. Cell lysates containing identical amounts of total protein
(40 μg) were resolved by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred onto polyvinyli-
dene fluoride (PVDF) membranes. After incubation in a blocking
TBST buffer (10 mmol/L pH 8.0 Tris–HCl, 150 mmol/L NaCl,
and 0.1% Tween 20), and 5% non-fat milk for 2 h at room
temperature, the membranes were immunoblotted overnight with
primary antibodies against MRP7 (1:200 dilution) (Santa Cruz
Biotechnology, Santa Cruz, CA) or ß-actin (1:200 dilution) (Cell
Signaling, Danvers, MA) at 4 1C, and then incubated at room
temperature with horseradish peroxidase (HRP)-conjugated secondary
antibody (1:1000 dilution) for 2 h. The protein-antibody complex was
detected by chemiluminescence.

2.5. [3H]-paclitaxel accumulation and efflux

Intracellular paclitaxel accumulation and the time-dependent efflux
of [3H]-paclitaxel were measured in HEK293 and HEK293-MRP7
cells. For the 4 h accumulation assay, cells were trypsinized and
three aliquots (5� 106 cells) from each cell lines were resuspended
in fresh medium. To measure drug accumulation, cells were pre-
incubated in DMEM in the presence or absence of PD173074
(0.25 and 1 mmol/L) or cepharanthine (2.5 mmol/L) for 1 h, washed
and then incubated with 0.01 mmol/L [3H]-paclitaxel with or
without PD173074 (0.25 mmol/L and 1 mmol/L) or cepharanthine
(2.5 mmol/L) for another 2 h at 37 1C. The cells were then pelleted
at 4 1C, washed twice with 10 mL ice-cold PBS, lysed in lysis
buffer, and measured for radioactivity in a liquid scintillation
counter, Packard TRI-CARB 1900CA liquid scintillation analyzer
(Packard Instrument Company, Downers Grove, IL). For the 68 h
accumulation assay, cells were cultured in DMEM in the presence
or absence of PD173074 for 68 h. Cells were then trypsinized and
resuspended with the same cell number in each group, and
incubated with 0.01 mmol/L [3H]-paclitaxel with or without
PD173074 (1 mmol/L) for another 2 h at 37 1C. The cells were
then collected, washed with ice-cold PBS, lysed and measured for
radioactivity in a liquid scintillation counter. For the efflux study,
cells were first pre-incubated with or without PD17304 at 1 μmol/
L for 1 h and later incubated with 0.01 mmol/L [3H]-paclitaxel as
previously described. After washing twice with ice-cold PBS, the
cells were cultured in fresh DMEM with or without 1 mmol/L of
PD173074 at 37 1C. After 0, 30, 60 or 120 min, aliquots of cells
were removed and immediately washed with ice-cold PBS. The
cell pellets were collected for radioactivity measurement as
described earlier.

2.6. Statistical analysis

All experiments were repeated for at least three times. Statistical
differences were determined by the two-tailed student's t-test, and
were deemed significant if Po0.05.
3. Results

3.1. The effect of PD173074 on the drug sensitivity of MRP7-
transfected HEK293 cells

The colorimetric sensitivity assay revealed that HEK293-MRP7
cells, compared to HEK293 cells, displayed significant resistance
to various MRP7 substrates such as paclitaxel (11.7-fold) and
vincristine (5.4-fold), but showed no significant sensitivity differ-
ence to cisplatin (0.9-fold), which is not a substrate of MRP7
(Table 1).

We tested PD173074 in combination with MRP7 substrates to
ascertain if it would reverse MRP7-mediated MDR. The highest
concentration of PD173074 used in the reversal experiments was
1 μmol/L, a concentration that resulted in o10% growth inhibition
in all the cell lines used in the present study (data not shown).
PD173074 at 0.25 and 1 μmol/L, had demonstrated dose-
dependently and significantly decreased the IC50 values of
HEK293-MRP7 cells (Table 1). However, PD173074 at 1 μmol/
L did not significantly alter the sensitivity of the parental HEK293
cells. In contrast, PD173074 did not significantly reverse the
resistance of cells to cisplatin, a non-MRP7 substrate (Table 1).
Previously, we reported that cepharanthine could reverse MRP7-
mediated resistance to paclitaxel in a competitive manner13.
Hence, to compare PD173074, we used cepharanthine as a positive
control in the present experiment, and we demonstrated that the
effect of cepharanthine was comparable to that of PD173074
(Table 1).

3.2. The effect of PD173074 on the intracellular accumulation
of [3H]-paclitaxel

To determine the function of MRP7 in mediating the effect of
PD173074, we evaluated the accumulation of [3H]-paclitaxel in
the presence or absence of PD17307 in HEK293 and HEK293-
MRP7 cells. The intracellular concentration of [3H]-paclitaxel in
HEK293-MRP7 cells was 32% of that in HEK293 cells. After 1 h
treatment, PD173074 at 0.25 and 1 mmol/L significantly enhanced
the intracellular [3H]-paclitaxel accumulation in HEK293-MRP7
cells (Fig. 1, Po0.05) while PD173074 did not alter the
intracellular accumulation of [3H]-paclitaxel in the parental
HEK293 cells, indicating that the action of PD173074 is only
related to MRP7 overexpression.

3.3. The effect of PD173074 on the efflux of [3H]-paclitaxel

To ascertain whether the elevated intracellular [3H]-paclitaxel
accumulation, caused by PD173074, was due to an inhibition
of [3H]-paclitaxel efflux by the MRP7 transporter, we conducted
a time-course study to determine [3H]-paclitaxel efflux in the
presence of PD173074. Our results indicated that HEK293-MRP7



Table 1 PD173074 reverses the ABCC10-mediated drug resistance to paclitaxel and vincristine.

Compound HEK293 HEK293-MRP7

IC507SDa (nmol/L) FRb IC507SDa (nmol/L) FRb

Paclitaxel 10.3770.03 [1.0] 122.1172.24 [11.7]
þPD173074 (0.25 mmol/L) 12.3270.15 [1.2] 19.2770.69 [1.9] **

þPD173074 (1 mmol/L) 11.4370.25 [1.1] 15.7870.15 [1.5] **

þCepharanthine (2.5 mmol/L) 11.1570.91 [1.1] 15.2070.92 [1.5] **

Vincristine 4.9670.35 [1.0] 30.2871.34 [6.1]
þPD173074 (0.25 mmol/L) 4.5570.11 [0.9] 6.7670.12 [1.4] **

þPD173074 (1 mmol/L) 4.4670.28 [0.9] 4.6970.15 [0.9] **

þCepharanthine (2.5 mmol/L) 4.5370.07 [0.9] 4.7870.05 [1.0] **

Cisplatin 3237.677107.05 [1.0] 4307.34728.86 [1.3]
þPD173074 (0.25 mmol/L) 3261.67715.63 [1.0] 4797.437145.77 [1.5]
þPD173074 (1 mmol/L) 3421.21745.03 [1.0] 4425.14751.50 [1.4]
þCepharanthine (2.5 mmol/L) 3257.34739.95 [1.0] 4398.67762.93 [1.4]

Values in table are representative of at least three independent experiments performed in triplicate.
aIC50, concentration that inhibited cell survival by 50% (means7SD).
bFR, fold-resistance was determined by dividing the IC50 values of substrate in HEK293-MRP7 cells by the IC50 of substrate in HEK293 cells in

the absence of PD173074; or the IC50 of substrate in HEK293 cells in the presence of PD173074 divided by the IC50 of substrate in HEK293 cells in
the absence of PD173074.

nnIndicates significantly different from IC50 of HEK293-MRP7 without reversal drug (**Po0.01).

Figure 1 Immunoblot analysis showing the expression of ABCC10.
Immunoblot analysis on the expression of ABCC10 efflux transporter.
(A) Expression of ABCC10 in HEK293 and HEK293-MRP7 cells.
Representative result is shown here and similar results were obtained
in two other trials. (B) Cell lysates of ABCC10 protein overexpressing
HEK293-MRP7 cells exposed to PD173074 at 1 mmol/L were
prepared at different time points (0, 24, 48 and 72 h) and equal
amounts (40 mg) were loaded into each well and subjected to
immunoblot analysis, later they were exposed to the same amount
and the same antibody for ABCC10 as discussed in Section 2.
Representative result is shown here and similar results were obtained
in two other trials.

Figure 2 Effect of PD173074 on the accumulation of [3H]-pacli-
taxel. The accumulation of [3H]-paclitaxel was measured after the cells
(parental HEK293 and HEK293-MRP7) were pre-incubated with or
without PD173074 at 1 mmol/L or cepharanthine for 1 h at 37 1C and
then incubated with 0.1 mmol/L [3H]-paclitaxel for another 2 h at
37 1C. Columns are the mean of triplicate determinations; bars
represent SD. *Po0.05 versus the control group. The figure is a
representative of three independent experiments each performed in
triplicates.

PD173074 reverses ABCC10-mediated drug resistance 205
cells extruded a significantly higher percentage of [3H]-paclitaxel
than HEK293 cells (Fig. 2, Po0.05). When the cells were
incubated with 1 μmol/L of PD173074, the HEK293-MRP7 cells,
but not the parental HEK293 cells, significantly blocked the
intracellular [3H]-paclitaxel efflux at different time periods (0,
30, 60 and 120 min).
Considering the accumulation of [3H]-paclitaxel in HEK293-
MRP7 cells in the absence of PD173074 at 0 min as 100%, the
percentages observed at 30, 60 and 120 min were 44.12%, 27.64%
and 25.24%, respectively. When HEK293-MRP7 cells were incu-
bated with PD173074, the percentages at 30, 60 and 120 min
increased to 78.69%, 69.36%, and 56.77%, respectively (Fig. 3,



Figure 3 Effect of PD173074 on the efflux of [3H]-paclitaxel. Cells
were pre-treated with or without PD173074 at 1 mmol/L for 1 h at 37 1C
and further incubated with 0.1 mmol/L [3H]-paclitaxel at 37 1C for 2 h.
Cells were then incubated in fresh medium with or without the reversal
agents for different time periods at 37 1C. Cells were then collected and
the intracellular levels of [3H]-paclitaxel were determined by scintilla-
tion counting. A time course versus percentage of intracellular [3H]-
paclitaxel was plotted (0, 30, 60 and 120 min). Cepharanthine
(2.5 mmol/L) was used as a positive control. Error bars represent SD.
*Po0.05 versus the control group. The figure is a representative of
three independent experiments each done in triplicates.
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Po0.05 for the same time point comparison). Cepharanthine at
2.5 μmol/L effectively blocked MRP7 efflux function and signifi-
cantly increased the levels of paclitaxel in HEK293-MRP7 cells.

3.4. The effect of PD173074 on the expression of MRP7

In HEK293-MRP7 cells, the reversal of MRP7-mediated MDR
could be achieved by either decreasing MRP7 expression or
blocking the efflux function of the transporter. To evaluate the
effect of PD173074 on MRP7 expression, HEK293-MRP7 cells
were treated with PD173074 and the levels of MRP7 expression
were examined by Western blot analysis. We found that the
protein level of MRP7 in HEK293-MRP7 cells remained unaltered
after treatment with PD173074 at 1 μmol/L for 0, 24, 48 and 72 h
(Fig. 3). These data suggest that PD173074 blocks the function of
the transporter without affecting its expression levels.
4. Discussion

In spite of limited reports indicating the widespread tissue
expression of MRP74, it remains as one of the least characterized
ABC family members. MRP7 expression level is up-regulated in
NSCLC as compared to normal lung tissues, and its higher
expression is correlated to advanced pathological grades in
adenocarcinoma14. In hepatocellular carcinoma, MRP7 expression
level is augmented when compared with normal adjacent healthy
liver tissues15, and MRP7 gene expression levels in colorectal
tumors correlate with tumor grade16. Absence of MRP7 in vivo
sensitizes animals to paclitaxel, with Mrp7� /� mice exhibiting
enhanced sensitivity compared to their wild-type counterparts
following paclitaxel treatment17, entailing that increased MRP7
expression might be a biomarker for and regulator of treatment
response in certain cancers. In a recent study, intermittent and
continuous docetaxel chemotherapy in chemosensitive and che-
moresistant ovarian mice shows that MRP7 gene expression is
increased along with MDR1 in chemoresistant ovarian tumors
during intermittent docetaxel treatment. This implies that
chemotherapy-dosing schedule affects the development, further
worsening, or circumvention of drug resistance in chemosensitive
and chemoresistant ovarian cancer18.

Currently, pre-clinical research and clinical trials are investigat-
ing the combination of EGFR TKIs with other antineoplastic drugs
to ameliorate the therapeutic outcome of cancer patients. Thus, the
interaction of EGFR TKIs, with P-gp and/or MRP7 should be
addressed when exploring the combined use of EGFR, TKIs with
cytotoxic anticancer drugs that are substrates of P-gp, BCRP and/
or MRP7. TKIs have demonstrated to act on the catalytic site of
the tyrosine kinase domain by competing with ATP binding,
thereby blocking the kinase activity. Various in vitro studies have
described TKIs to interact and modulate the function of the ABC
transporters19,20. Nilotinib, an HER2/EGFR inhibitor, approved for
the use of chronic myelogenous leukemia (CML), has been shown
to inhibit P-gp-, BCRP- and MRP7-mediated MDR21. The
4-anilinoquinazoline-derived EGFR TKIs, such as lapatinib
(Tykerbs) and erlotinib (Tarcevas), have been shown to inhibit
the ABCC10-mediated drug resistance22. However, no reports of
any drug have been clinically approved for the reversal of MDR
due to pharmacokinetic interactions or toxicity issues.

PD173074, a selective FGFR TKI, has shown promising results
of blocking the growth of small cell lung cancer (SCLC) both
in vitro and in vivo23. FGFR signaling has been related to
neoangiogenesis24,25, induction of SCLC cell proliferation, and
resistance to cytotoxic drugs26,27. When used in vivo, PD173074
was shown to inhibit FGF-driven neoangiogenesis, while being
exempt of general toxicity8,28. Recently, our group reported that
PD173074 could significantly reverse P-gp (ABCB1)-mediated
MDR9. However, the interaction of PD173074 with other MRP
members remains unknown.

This is the first report demonstrating the effect of PD173074 on
MRP7-mediated MDR. Our data indicated that PD173074 could
potently reverse MRP7-mediated MDR. PD173074 significantly
sensitized MRP7-overexpressing cells to a variety of MRP7
substrates, including paclitaxel, docetaxel and vincristine.
PD173074 at 1 mmol/L was able to reverse MRP7-mediated
MDR completely. In coherence with cytotoxicity data, drug
accumulation studies demonstrated that PD173074 significantly
enhanced the intracellular accumulation of [3H]-paclitaxel in
MRP7-overexpressing cells. The efflux data suggested that
increased intracellular accumulation of [3H]-paclitaxel was con-
tributed by rapid and direct inhibition of MRP7-mediated drug
efflux by PD173074 within a short time period (2–4 h). Therefore,
the reversal of MRP7-mediated MDR by PD173074 in HEK293-
MRP7 cells involved direct inhibition of MRP7 efflux function
without interfering MRP7 protein expression.
5. Conclusions

Our findings indicate for the first time that the FGFR TKI,
PD173074, is able to effectively reverse MRP7-mediated MDR.
The mechanism of MDR modulation by PD173074 is associated
with an increased intracellular drug accumulation by inhibiting drug
efflux from MDR cells. These results suggest that PD173074 could
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be used to augment the clinical response by established chemother-
apeutic agents that are substrates of MRP7. Therefore, the use of
PD173074 along with anti-neoplastic agents that are MRP7
substrates warrants further study.
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