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(e compounding approach is used to introduce a new family of distributions called exponentiated Bell G, analogy to expo-
nentiated G Poisson. Several essential properties of the proposed family are obtained. (e special model called exponentiated Bell
exponential (EBellE) is presented along with properties. Furthermore, the risk theory related measures including value-at-risk and
expected-shortfall are also computed for the special model. Group acceptance sampling plan is designed when a lifetime of a
product or item follows an EBellE model taking median as a quality parameter. (e parameters of the proposed model are
estimated by considering maximum likelihood approach along with simulation analysis. (e usefulness of the proposed model is
illustrated by practical means which yield better fits as compared to several exponential related extended models.

1. Introduction

Effective implementation of mathematical and statistical
models enables the actuarial scientists to know as much as
possible about future claims in a portfolio. (ese models
serve as a guide to achieve better business and risk man-
agement decision and policies. Actuaries usually deal with a
complex data such as right skewed, unimodal, and having
heavy tail. (e readers are referred to works of Klugman
et al. [1], Cooray and Ananda et al. [2], Lane [3], Vernic [4],
and Ibragimov et al. [5]. At the same time, they are eager on
some flexible models which are capable of capturing the
behaviours of such data to finding along with information
when the real development deviates from the expected. (e
classical models are limited with their tail properties and
goodness of fit tests. For instance, Pareto, Lomax, Fisk, and
Dagum distribution are excessively used to model statistical
size distributions in economics and actuarial sciences but
often failed to provide better fits for many application. (e
Weibull distribution is appropriate for small losses but fail to
uncover adequate trend, level, and trajectory for large losses
[6]. (e reader are referred to [7] for detail discussion on
statistical size distributions which can be used in economics

and actuarial sciences. To overcome the drawback of classical
models, a substantial progress on persistent base related to
distribution theory is documented in statistical literature.
From the last couple of decades, the emerging trend has been
seen in the generalization of the existing classical models.
(e models are extended by adopting different modes of
adding one or more additional shape parameter(s) in the
distribution. (e basic aim of this whole exercise is to
improve the tail properties as well as goodness of fit test of
the classical models. (ere are several well-known genera-
tors which are documented in the statistical literature; the
readers are referred to the works of Tahir and Nadarajah [8],
Tahir and Cordeiro [9], Maurya and Nadarajah [10], and Lee
et al. [11].

Several new models related to claim data have recently
been reported in statistical literature. Ahmad et al. [12]
proposed a new method to define heavy-tailed distributions
called the exponentiated power Weibull distribution with
application to medical care insurance and vehicle insurance.
Calderin–Ojeda and Kwok [13] presented a new class of
composite model by using the Stoppa distribution and mode
matching procedure and modelling the actuarial claims data
of mixed sizes. Ahmad et al. [14] suggested nine new
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methods to define new distributions suitable for modelling
heavy right-tail data with application to medical care in-
surance and vehicle insurance. Afify et al. [15] proposed a
new heavy-tailed exponential distribution with application
to unemployment claim data. Ahmad et al. [16] introduced a
class of claim distributions useful in a number of lifetime
analyses. A special submodel of the proposed family, called
the Weibull claim model, is considered in detail with claim
data application. Among classical discrete distributions,
Poisson distribution is a most frequently used distribution
for count data. Furthermore, it is extended into G-class and
several transformation and family of distributions have been
proposed. A detail review study on Poisson generated family
of distributions, extensions, and transformation is recently
presented by [10]. Castellares et al. [17] introduced a discrete
Bell distribution from well-known Bell numbers, as a
competitor or counterpart to Poisson distribution which
exhibits many interesting properties such as a single pa-
rameter distribution, and it belongs to one-parameter ex-
ponential family of distributions and the Poisson
distributions. (ey investigated that the Poisson model
cannot be nested into the Bell model, but small values of the
parameter the Bell model tends to Poisson distribution.
Furthermore, the Bell model is infinity divisible and has
larger variance as compared to the mean, which can be used
to overcome the phenomenon of over-dispersion and zero-
vertex for count data. (e characteristics of the Bell model
motivated us to develop a generalized class of distributions
through compounding and to compare its mathematical and
empirical characteristics with compounded Poisson-G class
and its special models.

(e rest of the study is organized as follows. In Section 2,
we define the proposed EBell-G family of distributions.
Section 3 provides the general mathematical and structural
properties of EBell-G family of distributions including linear
representation of density, quantile function, rth moments,
probability weighted moments, analytical shapes of the
density and hazard rate, entropy measures, reversed order
statistics, upper record statistics, stochastic ordering, and
parameters’ estimation by using maximum likelihood esti-
mation. Section 4 illustrates the layout of the special model
called EBellE as well as its essential properties, while Section
5 shows the commonly used actuarial measures, specially
value-at-risk and expected-shortfall. Section 6 are illustrated
group acceptance sampling plane when a lifetime of a certain
product or item follows the EBellEmodel which is presented.
(e simulation analysis is presented in Section 7, and Section
8 contains the application of real datasets. (e concluding
remarks are given in Section 9.

2. Layout and Formulation of EBell-G Family

A single parameter discrete Bell distribution has been re-
cently introduced by Castellares et al. [17], which is an
analogy to discrete Poisson distribution but provides better
fits compared to other discrete models including the Poisson
model. (e following expression given by Bell [18] is

exp e
x

− 1􏼂 􏼃 � 􏽘
∞

n�0

Bn

n!
x

n
, (1)

where Bn denote the Bell numbers and can be derived from
the following mathematical expression:

Bn �
1
e

􏽘

∞

k�0

k
n

k!
. (2)

Pr(X � x) �
λn

e
1− eλ

Bn

n! 1 − e
1− eλ

􏼔 􏼕
, x � 1, 2 . . . . (3)

Remark 1. (e Bell number Bn in (2) is the nth moment of
the Poisson distribution with parameter equal to 1.

By considering equations (1) and (2), Castellares et al.
[17] introduced a single-parameter Bell distribution defined
by the following probability mass function (pmf) as

Pr(X � x) �
λx

e
− eλ+1

Bx

x!
, x � 0, 1, 2 . . . . (4)

Proposition 1. LetXfollow a discrete Bell model with
parameterλ; then, the following expression represents the pmf
of Bell truncated model as

We first give the motivation for the proposed family.
Suppose a system is havingN subsystems that are working or
functioning independently at a given specific time. Here, Yi

denotes the life of ith subsystem and θ parallel units con-
stitutes the subsystem. Furthermore, the system will fail or
remain functioning if all the subsystem fail; this is for the
parallel system. On the contrary, for series system, the failure
of any subsystem yields complete destruction of the whole
system. Let us have a random variable (rv)N that follows
any discrete distribution having pmf P(N � n). Here, we
suppose that a component Zi,1, . . . . . . Zi,θ having failure
time for the ith subsystem are i.i.d. with suitable cdf
depending upon the vector τ, say for X> 0, T[G(x,

τ), θ] � G(x, τ)θ. If we define Y � min Y1, . . . . . . YN􏼈 􏼉, then
the conditional cdf of Y given N is as follows:

F(Y|N) � P min Y1, . . . , YN( 􏼁<y|N􏼂 􏼃

� 1 − 1 − P
θ

Z1,1 ≤y􏼐 􏼑􏽨 􏽩
N

� 1 − 1 − G(y; τ)
θ

􏽨 􏽩
N

.

(5)

(e unconditional cdf of Y corresponding to (5) is given
by

F(y) � 􏽘
∞

n�1
F(y|N)P(N � n)

� 1 − 1 − G(y; τ)
θ

􏽨 􏽩
N

P(N � n).

(6)
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By using the Bell truncated model given in Eq. (4) and
then using Eq. (6), the unconditional cdf of X is defined
below as follows.

F(x) �
1 − exp − e

λ 1 − e
− λGθ(x)

􏼔 􏼕􏼚 􏼛

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
, (7)

f(x) �
λθg(x)G

θ− 1
(x)exp λ 1 − G

θ
(x)􏽨 􏽩􏽮 􏽯exp − e

λ 1 − e
− λGθ(x)

􏼔 􏼕􏼚 􏼛

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
, (8)
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λ 1 − e
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􏼔 􏼕􏼚 􏼛 − exp 1 − e
λ
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1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
,

h(x) �
λθg(x)G

θ− 1
(x)exp λ 1 − G

θ
(x)􏽨 􏽩􏽮 􏽯exp − e

λ 1 − e
− λGθ(x)

􏼔 􏼕􏼚 􏼛

exp − e
λ 1 − e

− λGθ(x)
􏼔 􏼕􏼚 􏼛 − exp 1 − e

λ
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.

(9)

Proposition 2. LetX ∼ EBell-G(λ, θ, ξ), for x> 0 and λ,

θ, ξ > 0; then, its cumulative distribution function (cdf)
having baseline pdf and cdf respectivelyg(x)andG(x)is given
by

Proposition 3. LetX ∼ EBell-G(λ, θ, ξ) for x> 0 and
λ, θ, ξ > 0; then, its probability distribution function (pdf)
having Eq. (8), with baseline pdf and cdf
respectivelyg(x)andG(x), is given by

Proposition 4. LetX ∼ EBell-G(λ, θ, ξ) for x> 0 and
λ, θ, ξ > 0; then, its survival function (sf ) and hazard rate
function (hrf ) are, respectively, given by

3. Properties of the EBell-G Family

(is section provides some mathematical properties of the
EBell-G family of distributions.

3.1. Quantile Function. Quantile function (qf) is an im-
portant measure for generating random numbers and sev-
eral other important uses in quality control sampling plans
and in risk theory; the two important commonly used
measures value-at-risk (VaR) and expected-shortfall (ES)
which depend on qf and is given as follows.

Q(u) � F
− 1 1 − λ− 1 log log 1 − u 1 − exp 1 − e

λ
􏽨 􏽩􏽮 􏽯􏽮 􏽯 + exp(λ)􏽮 􏽯􏽨 􏽩􏽮 􏽯

1/θ
.

(10)

Proposition 5. LetX ∼ EBell-G(λ, θ, ξ)forx> 0andλ, θ, ξ >
0; then, the expression of qf is given below,
whereu ∼ uniform(0, 1), and by replacingu � 0.5, it yields
the median of the EBell-G:

3.2. Analytic Shapes of the Density andHazard Rate Function.
(e analytical shapes of the density and hrf can be yielded for
EBellE, respectively, as follows:

g′(x)

g(x)
+(θ − 1)

g(x)

G(x)
− λθg(x)G

θ− 1
(x)

· 1 + exp λ 1 − G
θ
(x)􏽨 􏽩􏽮 􏽯􏽮 􏽯 � 0,

g′(x)

g(x)
+(θ − 1)

g(x)

G(x)
− λθg(x)G

θ− 1
(x) � 0.

(11)

3.3. Useful Expansions. Here, we show the useful expansion
for EBell-G density can be used to drive several important
properties by taking into account the following two series to
obtain the expansion for EBell-G.

(1 − t)
b

� 􏽘
∞

c�0
(− 1)

c b

c
􏼠 􏼡t

c
. (12)

Proposition 6. "e generalized binomial expansion which
holds for any real noninteger b and |t|< 1 is

(e power series for exponential function is given by
Bourguignon et al. [19] and is given as follows:

exp − α(x)
b

􏽨 􏽩 � 􏽘
∞

k�0
(− 1)

kαkx
kb

k!
. (13)

(erefore, by using Eq. (11) to Eq. (8), we can deduce pdf
and cdf, simultaneously, as
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f(x; λ, θ, ξ) � 􏽘
∞

v�0
wvhθ(v+1)(x), (14)

F(x; λ, θ, ξ) � 􏽘
∞

v�0
wvHθ(v+1)(x), (15)

where
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− 1
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λ
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∞
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(− 1)
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·

k
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v
e
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,

(16)

are constants satisfying 􏽐
∞
v�0 wv � 1. Eq. (12) represents exp-

G, that is, hθ(v+1)(x) and the term θ(v + 1) is treated as the
power parameter. By using Eq. (12), numerous properties of
G-class can be obtained.

3.4. Mathematical Properties. One can derive some im-
portant mathematical properties by considering Eq. (12).
(e rth raw moment of X is given by

μr
′ � 􏽘
∞

v�0
wvE X

r
θ(v+1)􏽨 􏽩, (17)

where E[Xr
θ(v+1)] follows a exp-G with θ(v + 1) treated as the

power parameter, and by taking r � 1, in (14), yields the
mean for X.

(e incomplete moments are important and have many
practical uses. (e expression of sth incomplete moments,
denoted by φs(t), is defined by φs(t) � 􏽒

t

− ∞ xsf(x)dx and
can be obtained by using Eq. (12) as

φs(t) � 􏽘
∞

v�0
wv 􏽚

t

− ∞
x

s
hθ(v+1)(x)dx. (18)

(e first incomplete moment of the EBell-G family can
be obtained as by taking s � 1 in Eq. (15).(e sth incomplete
moment is an important to compute several measures,
namely, mean deviations from mean and median, mean
waiting time, conditional moments, and income inequality
measures among others.

3.5. Probability Weighted Moments. (e (s, r)th probability
weighted moments (PWM) of X following the EBell-G
family, say ρs,r, is formally defined by

ρs,r � E X
s
F(x)

r
􏼂 􏼃 � 􏽚

+∞

− ∞
X

s
F(x)

r
f(x)dx. (19)

By using Eq. (7) and Eq. (8), we can obtain

ρs,r � 􏽘
∞

Q�0
wQE Y

s
θ(Q+1)􏽨 􏽩, (20)

where

wQ �
(− 1)

Qλ1+Q
e
λ

Q!(Q + 1) 1 − exp 1 − e
λ
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· 􏽘
∞

z,v,p�0
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z+v+p
r

z

⎛⎝ ⎞⎠
v

p

⎛⎝ ⎞⎠ (1 + z)e
λ

􏼐 􏼑
v(1 + p)

Q

v!
.

(21)

3.6. EntropyMeasures. (e entropy measures are important
to underline the randomness or uncertainty or diversity of
the system. (e most frequently used index of dispersion in
ecology as well as in statistics is called the Rényi entropy
Iδ(x) and is defined by the following expression:

Iδ(x) � (1 − δ)
− 1log􏽚

+∞

− ∞
f(x)

δdx, (22)

where δ > 0 and δ ≠ 1, which then follows

Iδ(X) � (1 − δ)
− 1log 􏽘

∞

b�0
Qb 􏽚

+∞

− ∞
g(x)

δ
G(x)

θ b+δ(θ− 1)dx⎡⎣ ⎤⎦,

(23)

where

Qb �
θδλ(δ+b)

e
δλ

b! 1 − exp 1 − e
λ

􏼐 􏼑􏽨 􏽩
δ 􏽘

∞

t,s�0

1
t!

(− 1)
t+s+b

t

s

⎛⎝ ⎞⎠ δe
λ

􏼐 􏼑
t
(s + δ)

b
.

(24)

(e Shannon entropy say, Hq(x), can be obtained by the
following expression:

Hq(x) � (1 − q)
− 1log 􏽘

∞

b�0
Qb 􏽚

+∞

− ∞
g(x)

q
G(x)

bdx⎡⎣ ⎤⎦, (25)

where q> 0 and q≠ 1 and

Qb �
θqλ(q+b)

e
qλ

b! 1 − exp 1 − e
λ

􏼐 􏼑􏽨 􏽩
q 􏽘

∞

t,s�0

1
t!

(− 1)
t+s+b

t

s

⎛⎝ ⎞⎠(qe)
t
(s + q)

b
.

(26)

3.7.Order Statistics. Here, we derived the explicit expression
for the ith-order statistics for EBell-G, say fi:n(x). Let a
sample of size be n; then, the pdf of ith-order statistics is
defined by

fi:n(x) �
1

B(i, n − i + 1)
f(x) 􏽘

n− i

l�0
(− 1)

l
n − i

l

⎛⎝ ⎞⎠F(x)
i+l− 1

.

(27)

By using Eq. (7) and Eq. (8), the density for EBell-G can
be written as

fi:n(x) � 􏽘

∞

j�0
Q

(j)
i: nhθ(j+1)(x), (28)
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where

Q
(j)

i: n �
λ(1+j)

(1 + j)
− 1

(− 1)
j
e
λ

j! 1 − exp 1 − e
λ

􏼐 􏼑􏽨 􏽩
i+l

·
1

B(i, n − i + 1)
􏽘

n− i

l�0
􏽘

i+l− 1

p�0
􏽘

∞

z,i

e
λz

z!
(− 1)

p+z+i+l

×

i + l − 1

p
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n − i

l

⎛⎝ ⎞⎠
z

i

⎛⎝ ⎞⎠(1 + p)
z
(1 + i)

j
.

(29)

(e sth moment of order statistic can be obtained as

E X
s
i: n( 􏼁 � 􏽘

∞

j�0
Q

(j)
i: nμ

(s)
θ(j+1), (30)

where μ(s)
θ(j+1) is the sth moment of Exp-G distribution with

power parameter θ(j + 1).

3.8. Reversed Order Statistics. (e reversed order statistics
can be used when x1, . . . . . . , xn are arranged in the de-
creasing order; for more detail, see the work of Jamal et al.
[20]. (e pdf of Xr(re): n, represented by
fr(re): n(x) � fn− r+1: n(x), is defined by

fr(re): n(x) � Cr: nf(x)[F(x)]
n− r

[1 − F(x)]
r− 1

, x ∈ R,

(31)

and

fr(re):n(x) � Cr:nf(x) 􏽘
r− 1

l�0
(− 1)

l
r − 1

l
􏼠 􏼡[F(x)]

n− r+l
. (32)

Consider

I � f(x)
1 − exp − e

λ 1 − e
− λGθ(x)

􏼔 􏼕􏼚 􏼛􏼔 􏼕
n− r+l

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
n− r+l

. (33)

By using Eq. (10), we can obtain

I �
f(x)

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
n− r+l

􏽘

(n− r+l)

p�0
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p

·
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p
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− λGθ(x)
􏼔 􏼕􏼚 􏼛.

(34)

(en, by using Eq. (11), we can have

I �
λθg(x)G

θ− 1
(x)

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
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(35)
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exp − e
λ 1 − e
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z
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e
λ
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z

.

(36)

After simplification, we have shapes:

I �
λθg(x)G

θ− 1
(x)

1 − exp 1 − e
λ
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􏽘

∞
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􏽘
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p
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⎞⎟⎟⎟⎟⎟⎠

×

z

k
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e
λ
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z
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e
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,
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e
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z
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(37)

Finally,
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I �
λe

λ

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
n− r+l+1 􏽘

(n− r+l)
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􏽘

∞

z�0
􏽘

∞
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∞

j�0
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z
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(38)

(e reduced form will be

fr(re): n(x) � 􏽘
∞

j�0
W

(j)
r: nhθ(j+1)(x), (39)

where hθ(j+1) � θ(j + 1)g(x)G(x)θ(j+1)− 1 and

W
(j)
r: n �

λe
λ

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
n− r+l+1Cr: n 􏽘

r− 1

l�0
􏽘

(n− r+l)

p�0
􏽘

∞

z�0
􏽘

∞

k�0
(− 1)

p+z+k+j+l
n − r + l

p

⎛⎝ ⎞⎠
r − 1

l

⎛⎝ ⎞⎠

×

z

k

⎛⎝ ⎞⎠
e
λ
(1 + p)􏽨 􏽩

z

z!j!(j + 1)
[λ(1 + k)]

j
.

(40)

(e pth moment of reversed-order statistic can be ob-
tained as

E X
p
r: n( 􏼁 � 􏽘

∞

j�0
W

(j)

i: nμ
(p)

θ(j+1), (41)

where μ(p)

θ(j+1) is the pth moment of Exp-G distribution with
power parameter θ(j + 1).

3.9. Upper Record Statistics. Record value is an important
measure in many practical areas, for instance, economics
data and weather and athletic events. Let us consider
(Xn)n≥ 1 a sequence of independent rvs having the same
distribution. Let us denote by F(x) and f(x) the related cdf
and pdf of EBellE distribution, respectively, and Xi: n be the
ith-order statistic as described previously. For fixed k≥ 1, the
pdf of kth upper record statistic is defined by

f
Y

(k)
n

(x) �
k!

(n − 1)!
[R(x)]

n− 1
[1 − F(x)]

k− 1
f(x), (42)

where R(x) � − ln[1 − F(x)] correspond to the cumulative
hazard rate function related to F(x). Eq. (20) can also be
expressed for R(x) � eλ[1 − e− λGθ(x)], by using (7), as

f
Y

(k)
n

(x) �
k!e

λ(n− 1)

(n − 1)!
􏽘

k− 1

t�0
(− 1)

t
k − 1

t

⎛⎝ ⎞⎠

· 1 − e
− λG(x)

􏽨 􏽩
n− 1

f(x)F(x)
t
.

(43)

Considering the last terms,

I � 1 − e
− λGθ(x)

􏼔 􏼕
n− 1

f(x)F(x)
t (44)

and after using series, we obtain

I � 1 − e
− λGθ(x)

􏼔 􏼕
n− 1λθg(x)G

θ− 1
(x)exp λ 1 − G

θ
(x)􏽨 􏽩􏽮 􏽯

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
t+1

· 􏽘
∞

z�0
(− 1)

z

t

z

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

× exp − e
λ 1 − e

− λGθ(x)
􏼔 􏼕(z + 1)􏼚 􏼛,

(45)

Using power series given in Eq. (11), we obtain

exp − e
λ 1 − e

− λGθ(x)
􏼔 􏼕(1 + z)􏼚 􏼛

� 􏽘
∞

v�0

(− 1)
v

v!
e
λ
(1 + z)􏽨 􏽩

v
1 − e

− λGθ(x)
􏼔 􏼕

v

.

(46)

Now, the above expression becomes

I �
λθg(x)G

θ− 1
(x)exp λ 1 − G

θ
(x)􏽨 􏽩􏽮 􏽯

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
t+1

· 􏽘
∞

z�0
􏽘

∞

v�0

(− 1)
z+v

v!

t

z

⎛⎜⎜⎝ ⎞⎟⎟⎠ e
λ
(1 + z)􏽨 􏽩

v

× 1 − e
− λGθ(x)

􏼔 􏼕
v+n− 1

.

(47)

By using Eq. (11) again, we obtain
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I �
λθg(x)G

θ− 1
(x)e

λ

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
t+1

· 􏽘
∞

z�0
􏽘

∞

v�0
􏽘

∞

p�0

(− 1)
z+v+p

v!

t

z

⎛⎝ ⎞⎠
v + n − 1

p

⎛⎝ ⎞⎠

× e
λ
(1 + z)􏽨 􏽩

v
e

− λ(1+p)Gθ(x)
.

(48)

Finally, we have

I �
λe

λ
(q + 1)

− 1

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
t+1 􏽘

∞

q�0
􏽘

∞

z�0
􏽘

∞

v�0
􏽘

∞

p�0

(− 1)
z+v+p+q

v!q!

t

z

⎛⎝ ⎞⎠
v + n − 1

p

⎛⎝ ⎞⎠ e
λ
(1 + z)􏽨 􏽩

v
×

[λ(1 + p)]
qθ(q + 1)g(x)G

θ(q+1)− 1
(x).

(49)

(e reduced form becomes

f
Y

(k)
n

(x) � 􏽘
∞

q�0
Wqhθ(q+1)(x), (50)

where hθ(q+1)(x) � θ(q + 1)g(x)Gθ(q+1)− 1(x) and

Wq �
k!e

λnλ(q + 1)
− 1

(n − 1)!
􏽘

k− 1

t�0
􏽘

∞

z,v,p�0

(− 1)
z+v+p+q+t

v!q! 1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
t+1

t

z

⎛⎝ ⎞⎠
v + n − 1

p

⎛⎝ ⎞⎠

×

k − 1

t

⎛⎝ ⎞⎠ e
λ
(1 + z)􏽨 􏽩

v
[λ(1 + p)]

q
.

(51)

A random sample of 50 is generated from the EBellE
model using Eq. (23), and then, take k � 3 and
α � β � λ � 0.5. Table 1 shows a random sample of 50 from
the EBellE model along with upper XU(n) and lower XL(n)

records values. (e plot of lower and upper record values is
illustrated in Figure 1. (e Records package is used in
R-Statistical Computing Environment to computeXU(n) and
XL(n) records’ values.

3.10. Stochastic Ordering. Stochastic ordering is another
important tool in statistics to define the comparative be-
haviour specifically in reliability theory. Suppose the two rvs,
say X1 and X2 and under specific circumstance; let us
consider that rv X1 is lower than X2; the readers can refer to

the work of Khan et al. [21] for detailed illustration on four
stochastic ordering and their well-established relationships.

d
dx

log
f1(x)

f2(x)
􏼢 􏼣 � θg(x)G

θ− 1
(x; ξ)

λ1 − λ2􏼂 􏼃 + λ1e
λ1Gθ(x; ξ)

− λ2e
λ2Gθ(x; ξ)

􏼔 􏼕􏼚 􏼛< 0.

(52)

Theorem 1. LetX1 ∼ EBell-G(λ1, θ; ξ)andX2 ∼ EBell-
G(λ2, θ; ξ). Ifα1 ≤ α2, thenX1 ≤ lrX2:

Proof. First, we have the ratio

f1(x)

f2(x)
�
λ1 exp λ1 1 − G

θ
(x)􏽨 􏽩􏽮 􏽯exp − e

λ1 1 − e
− λ1Gθ(x)

􏼔 􏼕􏼚 􏼛 1 − exp 1 − e
λ1􏽨 􏽩􏽮 􏽯

− 1

λ2 exp λ2 1 − G
θ
(x)􏽨 􏽩􏽮 􏽯exp − e

λ2 1 − e
− λ2Gθ(x)

􏼔 􏼕􏼚 􏼛 1 − exp 1 − e
λ2􏽨 􏽩􏽮 􏽯

− 1. (53)

Now, consider
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d
dx

log
f1(x)

f2(x)
􏼢 􏼣 � θg(x)G

θ− 1
(x) λ2 − λ1􏼂 􏼃 + θg(x)G

θ− 1
(x)

· λ2e
λ2 1− Gθ(x)[ ] − λ1e

λ1 1− Gθ(x)[ ]􏼔 􏼕.

(54)

After simplification, we obtain

d
dx

log
f1(x)

f2(x)
􏼢 􏼣 � θg(x)G

θ− 1
(x)

· λ2 − λ1􏼂 􏼃 + λ2e
λ2 1− Gθ(x){ } − λ1e

λ1 1− Gθ(x){ }􏼔 􏼕􏼚 􏼛.

(55)

If λ1 < λ2, we obtain

d
dx

log
f1(x)

f2(x)
􏼢 􏼣 � θg(x)G

θ− 1
(x) λ2 − λ1􏼂 􏼃 + λ2e

λ2 1− Gθ(x){ } − λ1e
λ1 1− Gθ(x){ }􏼔 􏼕􏼚 􏼛< 0. (56)

Table 1: Upper and lower record values from EBellE generated data.

n � 50; k � 3; α � θ � λ � 0.5 XU(n) XL(n)

0.291681 0.608776 1.872313 0.338539 0.064955 0.083234 0.291681
0.083234 0.399718 0.508271 0.00626 0.042802 0.185290 0.18529
0.18529 0.009471 1.132511 0.022277 0.000141 0.291681 0.083234
0.747575 0.461116 0.118013 2.358966 0.894275 0.509482 0.064443
0.005202 0.120005 0.163145 0.180631 0.052073 0.608776 0.063257
0.041376 0.187393 0.799698 0.983506 0.019917 0.747575 0.041376
0.064443 0.001881 1.599134 1.463232 0.000197 1.132511 0.009471
0.063257 0.059046 0.047385 3.757872 0.259716 1.579419 0.00626
0.509482 0.156173 1.107195 0.719695 0.007713 1.599134 0.005202
0.188353 1.579419 0.118276 0.280922 1.303078 1.872313 0.001881
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Figure 1: Plot of upper (a) and lower (b) record values of the EBellE model at some parametric values.
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(us, f1(x)/f2(x) is decreasing in x, and hence,
X1 ≤ lrX2. (is completes the proof.

3.11. Estimation of Family Parameters. (is section is about
estimation of the unknown parameters estimation of the
EBell-G model by taking into account the popular estima-
tion method known as maximum likelihood estimation

(MLE). (ere are several advantages of MLE over other
estimation methods; for instance, the maximum likelihood
estimates fulfil the required properties that can be used in
constructing confidence intervals as well as maximum
likelihood estimates delivering simple approximation very
handy while working the finite sample. ℓ(.) represent the
vector parameters ϕ � (λ, θ, ξ)⊤; then,

ℓ(ϕ) � n log(λθ) + 􏽘
∞

i�1
log g xi; ξ( 􏼁 +(θ − 1) 􏽘

∞

i�1
log G xi; ξ( 􏼁 + λ􏽘

∞

i�1
1 − G

θ
xi; ξ( 􏼁􏽨 􏽩

− n exp(λ) + 􏽘
∞

i�1
exp λ 1 − G

θ
xi; ξ( 􏼁􏽨 􏽩􏽮 􏽯 − n log 1 − exp 1 − e

λ
􏽨 􏽩􏽮 􏽯,

(57)

zℓ
zλ

�
n

λ
+ 􏽘
∞

i�1
1 − G

θ
xi; ξ( 􏼁􏽨 􏽩 − n exp(λ) + 􏽘

∞

i�1
exp λ 1 − G

θ
xi; ξ( 􏼁􏽨 􏽩􏽮 􏽯 1 − G

θ
xi; ξ( 􏼁􏽨 􏽩

− n exp(λ)
exp 1 − e

λ
􏽨 􏽩

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
,

zℓ
zθ

�
n

θ
+ 􏽘
∞

i�1
log G xi; ξ( 􏼁 − λ􏽘

∞

i�1
G
θ

xi; ξ( 􏼁log G xi; ξ( 􏼁􏼂 􏼃 − λ􏽘
∞

i�1
exp λ 1 − G

θ
xi; ξ( 􏼁􏽨 􏽩􏽮 􏽯

·G
θ

xi; ξ( 􏼁log G xi; ξ( 􏼁􏼂 􏼃,

zℓ
zξ

� 􏽘
∞

i�1

g
ξ
i

g xi; ξ( 􏼁
+(θ − 1) 􏽘

∞

i�1

G
ξ
i

G xi; ξ( 􏼁
− λθ􏽘
∞

i�1
G
θ− 1

xi; ξ( 􏼁G
ξ
i

− λθ􏽘

∞

i�1
exp λ 1 − G

θ
xi; ξ( 􏼁􏽨 􏽩􏽮 􏽯G

θ− 1
xi; ξ( 􏼁G

ξ
i ,

(58)

where g
ξ
i � z/zξg(xi; ξ) and G

ξ
i � z/zξG(xi; ξ) are deriva-

tives of column vectors of the same dimension of ξ, and by
setting ϕλ � 0,ϕθ � 0, and ϕξ � 0, the MLEs can be yielded
by solving the above equations simultaneously.

Proposition 7. A randomly selected sample of sizenis under
EBell-G; then, the score vector(ϕλ,ϕθ, ϕξ)is given by

4. Layout of the EBellE Model

Due to the closed form solution of many real problems and
simplicity, exponential distribution is commonly employed
in lifetime testing as well as reliability analysis. However, the
exponential distribution failed to yield better fits when
hazard rates are nonconstant. However, several studies
showed that extended exponential distribution or when it is
used as baseline model provides better fits [22–24]. In the
present study, we used exponential distribution as a baseline
model which yielded flexibility in both pdf and hrf shapes
given in Figures 2 and 3, respectively. We now define the
EBellE distribution by taking the exponential model as
baseline, with the following expression of densities g(x) �

α exp(− αx) andG(x) � 1 − exp(− αx) for x> 0 and α> 0, by
setting these densities in (7) and (8) yielded the following

expression for the proposed EBellE distribution. (en, the
cdf and pdf are of the EBellE distribution, respectively.

F(x) �
1 − exp − e

λ 1 − e
− λ 1− e− αx[ ]θ

􏼔 􏼕􏼚 􏼛

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
, (59)

f(x) � λθαe
− αx 1 − e

− αx
􏼂 􏼃

θ− 1 exp λ 1 − 1 − e
− αx

􏼂 􏼃
θ

􏼔 􏼕􏼚 􏼛

× exp − e
λ 1 − e

− λ 1− e− αx[ ]θ
􏼔 􏼕􏼚 􏼛 1 − exp 1 − e

λ
􏽨 􏽩􏽮 􏽯

− 1
.

(60)

Proposition 8. LetX ∼ EBellE(λ, θ, α), forx> 0andλ, θ, α>
0; then, its cdf is given by in Eq. (7):

Proposition 9. LetX ∼ EBellE(λ, θ, α), forx> 0andλ, θ, α>
0; then, its pdf is given by in Eq. (8):

(e exponential distribution quantile function becomes
Q(u) � QG(z) � [− 1/αlog(1 − z)]; using (9),

z � 1 − λ− 1[log log 1 − u 1 − exp[1 − eλ]􏼈 􏼉􏼈 􏼉 + exp(λ)􏼈 􏼉]􏽮 􏽯
θ− 1

.
(e quantile function of x can be expressed as
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Q(u) � −
1
α
log 1 − 1 − λ− 1 log log 1 − u 1 − exp 1 − e

λ
􏽨 􏽩􏽮 􏽯􏽮 􏽯 + exp(λ)􏽮 􏽯􏽨 􏽩􏽮 􏽯

θ− 1

􏼒 􏼓􏼔 􏼕. (61)

(e sf and the hrf of the EBellE model can be obtained as

s(x) �
exp − e

λ 1 − e
− λ 1− e− αx[ ]θ

􏼔 􏼕􏼚 􏼛 − exp 1 − e
λ

􏽨 􏽩

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
,

h(x) �
λθαe

− αx 1 − e
− αx

􏼂 􏼃
θ− 1 exp λ 1 − 1 − e

− αx
􏼂 􏼃

θ
􏼔 􏼕􏼚 􏼛exp − e

λ 1 − e
− λ 1− e− αx[ ]θ

􏼔 􏼕􏼚 􏼛

exp − e
λ 1 − e

− λ 1− e− αx[ ]θ
􏼔 􏼕􏼚 􏼛 − exp 1 − e

λ
􏽨 􏽩

.

(62)

4.1. Properties of the EBellE Model. First, we will deduce
linear representation of EBellE density to obtain useful
properties of that model. By using Eq. (12),

f(x) � 􏽘
∞

v�0
wvαθ(v + 1) exp(− αx) 1 − exp(− αx)􏼈 􏼉

[θ(v+1)− 1]
,

1 − exp(− αx)􏼈 􏼉
[θ(v+1)− 1]

� 􏽘

∞

p�0
(− 1)

p
θ(v + 1) − 1

p
􏼠 􏼡exp(− αpx).

(63)

α = 4.7 θ = 9.5 λ = 0.8 α = 0.017 θ = 0.5 λ = 1.8 α = 1.5 θ = 4.2 λ = 0.03
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Figure 2: Plots of EBellE density for some parametric values.
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After applying Eq. (10), it reduces to

f(x) � 􏽘
∞

p�0
wpπ[x; α(p + 1)], (64)

where π[x; α(p + 1)] is a exp-exponential density with
α(p + 1) parameter and

wp � 􏽘
∞

v�0
wv

θ(v + 1)

p + 1
(− 1)

p
θ(v + 1) − 1

p

⎛⎝ ⎞⎠. (65)

It is obvious from Eq. (25) that the EBellE density is a
linear combination of exponential densities, and therefore,
one can obtain several properties using Eq. (25).

4.1.1. "e Expression of rth Moment

μr
′ � 􏽘
∞

p�0
wpΓ(r + 1)[α(p + 1)]

− r
. (66)

Proposition 10. LetX ∼ EBellE(λ, θ, α), forx> 0andλ, θ, α>
0; then, itsrth moment can be written as by taking into ac-
count Eq. (25):

By setting r � 1 yielded the mean of the EBellE model.

4.1.2. "e Expression of sth Incomplete Moment.

φs(t) � 􏽘
∞

p�0
wpc[s + 1, α(p + 1)t][α(p + 1)]

− s
. (67)

Proposition 11. LetX ∼ EBellE(λ, θ, α), forx> 0andλ, θ, α>
0; then, itssth incomplete moment can be written as by taking
into account Eq. (25):

By setting s � 1 yielded the first incomplete moment of
the EBellE model. Table 2 shows the first four raw moments,
central moments, coefficient of variation, coefficient of
kurtosis, and Pearson’s coefficient of skewness for some
parametric values. Six different scenarios of parametric
values are used in order to compute different measures of
dispersion. S-1� [α � 2.5, θ � 1.0, λ � 0.2], S-2� [α �

1.5, θ � 1.4, λ � 1.2], S-3� [α � 0.85, θ � 0.75, λ � 1.2],
S-4� [α � 0.85, θ � 2.5, λ � 0.2], S-5� [α � 4.85, θ �

0.22, λ � 0.12], and S − 6 � [α � 2.5, θ � 3.85, λ � 1]. (e
following relationship is used to obtain the central moments:
μ2 � μ2′ − (μ1′)

2, μ3 � μ3′ − 3μ1′μ2′ + 2(μ1′)
3, and μ4 �

μ4′ − 4μ3′μ1′ + 6μ2′(μ1′)
2 − 3(μ1′)

4. (e moment-based measure
of skewness and kurtosis is obtained by using β1 � μ23/μ

3
2 and

β2 � μ4/μ22, respectively. Pearson’s coefficient of skewness is
simply square root of β1, and coefficient of kurtosis is
computed as β2 − 3. Furthermore, we present the mean,

α = 0.01 θ = 1 λ = 0.8 α = 0.1 θ = 2.2 λ = 1 α = 1.5 θ = 1 λ = 1.1
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Figure 3: Plots of hazard rate of EBellE for some parametric values.
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variance, skewness, and kurtosis of EBellE in Figures 4 and 5,
respectively, utilizing these results. Some plots of Bonferroni
and Lorenz curve are also depicted in Figure 6.

4.1.3. "e Expression of r th Conditional Moment. From
actuarial prospective, conditional moments are important;
let EBellE be (λ, θ, α) for x> 0 and λ, θ, α> 0; then, its r th
conditional moment can be written by using Equation (64):

E x
r
|X> t( 􏼁 �

1
FEBellE(t)

􏽚
∞

t
x

r
f(x)dx,

E x
r
|X> t( 􏼁 �

1
FEBellE

􏽘

∞

p�0
wpc[r + 1, α(p + 1)t][α(p + 1)]

− r
.

(68)

4.1.4. Two Expression of MGF. Let X ∼ EBellE (λ, θ, α) for
x> 0 and λ, θ, α> 0; then, its moment generating function by
using Wright generalization hypergeometric function is
given as

pΨq �

α1, A1( 􏼁, . . . . . . . . . . . . , αp, Ap􏼐 􏼑

β1, B1( 􏼁, . . . . . . . . . . . . , βq, Bq􏼐 􏼑

; x
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 􏽘
∞

n�0

Πp

j�1Γ αj + Ajn􏼐 􏼑

Πq
j�1Γ βj + Bjn􏼐 􏼑

x
n

n!
,

(69)

M(t) � a(p + 1) 􏽘
∞

p�0
wp 􏽚
∞

0
exp(tx)exp[− a(p + 1)x]dx.

(70)

Consider I � 􏽒
∞
0 exp(tx)exp[− a(p + 1)x]dx and

exp(tx) � 􏽐
∞
m�0 tm/m!xm; equation (70) is reduced to

I �
1

[a(p + 1)]
m 􏽘

∞

m�0
Γ(m + 1)

t
m

m!
. (71)

By using (70), Equation (71) yielded as

I �
1

[a(p + 1)]
m 1Ψ0

1, 1

−
; t⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

M(t) � 􏽘
∞

p�0
wp

1
[a(p + 1)]

m1Ψ0
1, 1

−

; t⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(72)

(e other representation of mgf is given by

M(t) � a(p + 1) 􏽘
∞

p�0
wp[a(p + 1) − t]

− 1
. (73)

4.1.5. Order Statistics. (e sth moment of order statistic can
be obtained by using (41):

E X
s
i: n( 􏼁 � 􏽘

∞

j�0
Q

(j)

i: nθ(j + 1) 􏽚
∞

0
x

s
g(x)G

θ(j+1)− 1
(x)dx. (74)

Simplification yielded the expression of sth moments of
order statistics:

E X
s
i: n( 􏼁 � 􏽘

∞

p�0
tpΓ(s + 1)[α(p + 1)]

− s
, (75)

where tp � 􏽐
∞
j�0 (− 1)p θ(j + 1) − 1

p
􏼠 􏼡Q

(j)

i: nθ(j + 1)/(p + 1).

To study the distributional behaviour of the set of ob-
servation, we can use minimum and maximum (min-max)
plot of the order statistics. Min-max plot depends on ex-
treme order statistics, and it is introduced to capture all
information not only about the tails of the distribution but
also about the whole distribution of the data. Figure 7 shows
the min and the max order statistics for some parametric
values and depends on E(X1: n) and E(Xn: n), respectively.

4.1.6. Stochastic Ordering. Let X and Y be the two rvs from
EBellE distribution with the assumption previously illus-
trated in Section 3 given that λ1 < λ2, and for X1 ≤ lrX2,
f1(x)/f2(x) shall be decreasing in x if and the only if the
following results holds:

Table 2: Measures of dispersion of the EBellE model for some parametric value.

Measures S-1 S-2 S-3 S-4 S-5 S-6
μ1′ 0.3591 0.3401 0.3061 1.8307 0.0586 0.4655
μ2′ 0.2722 0.2740 0.4064 5.0198 0.0191 0.3953
μ3′ 0.3181 0.4159 1.1396 18.8237 0.0109 0.4156
μ4′ 0.5022 0.9724 4.8754 90.8662 0.0087 0.5970
μ2 0.1432 0.1583 0.3127 1.6682 0.0157 0.1786
μ3 0.1174 0.2150 0.8237 3.5258 0.0079 0.0654
μ4 0.2061 0.5567 3.6822 20.2673 0.0065 0.1962
β1 4.6922 11.6396 22.1826 2.6779 16.2771 0.7506
β2 10.046 22.2016 37.6498 7.2831 26.3259 6.1551
CS 2.1662 3.4117 4.70980 1.6364 4.0345 0.8663
CK 7.0463 19.2016 34.6498 4.2831 23.3259 3.1551
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d
dx

log
f1(x)

f2(x)
􏼢 􏼣 � θ[α exp(− αx)][1 − exp(− αx)]

θ− 1

× λ2 − λ1􏼂 􏼃 + λ2e
λ2 1− [1− exp(− αx)]θ{ } − λ1e

λ1 1− [1− exp(− αx)]θ{ }􏼔 􏼕􏼚 􏼛< 0.

(76)

4.1.7. Rényi Entropy. (e Rényi entropy for the EBellE
model by using Eq. (22) given under and δ > 0 and δ ≠ 1:

Iδ(X) � (1 − δ)
− 1log 􏽘

∞

p�0
Qp[δ + p]

− 1⎡⎢⎢⎣ ⎤⎥⎥⎦, (77)
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Figure 4: Graphical illustration of mean (a) and variance (b) of the EBellE model.
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where Qp � αδ− 1 􏽐
∞
b�0 Qb(− 1)p θb + δ(θ − 1)

p
􏼠 􏼡, and the

graphical demonstration of Rényi entropy of EBellE at
varying of the parameters is given in Figure 8.

4.1.8. Reliability. Reliability is an important measure, and
several applications are documented in the field of eco-
nomics, physical science, and engineering. Reliability en-
ables us to determine the failure probability at certain point
in a time. Let X1 and X2 be the two random variable fol-
lowing the EBellE distribution. (e component fails if the

applied stress exceeds its strength; if X1 >X2, the component
will perform satisfactory. Reliability is defined by the fol-
lowing expression. Here, we derive the reliability of the
EBellE model when X1 and X2 have independent
f1(x; λ1, θ, α) and F2(x; λ2, θ, α) with identical scale (α) and
shape (θ) parameters. (e reliability is given by

R � 􏽚
∞

0
F2(x)f1(x)dx. (78)

By using equations (14) and (15), we get the pdf and the
cdf of EBellE, respectively, as follows:

f1 x; λ1, θ, α( 􏼁 � 􏽘
∞

v�0
wv λ1( 􏼁αθ(v + 1) exp(− αx) 1 − exp(− αx)􏼈 􏼉

[θ(v+1)− 1]
,

F2 x; λ1, θ, α( 􏼁 � 􏽘
∞

t�0
wt λ2( 􏼁 1 − exp(− αx)􏼈 􏼉

[θ(t+1)]
.

(79)

Hence,

I(α, β, θ, v, t) � 􏽚
∞

0
α exp(− αx) 1 − exp(− αx)􏼈 􏼉

[θ(v+1)− 1]
􏽨 􏽩

× [1 − exp(− αx)]
[θ(t+1)]dx.

(80)

(erefore,

I(α, β, θ, v, t) � α 􏽘
∞

z�0
sz 􏽚
∞

0
exp[− α(1 + z)x]dx. (81)

By using gamma function, the above expression is re-
duced to

I(α, β, θ, v, t) � 􏽘
∞

z�0
sz[1 + z]

− 1
, (82)

where sz � (− 1)z θ[v + t + 2] − 1
z

􏼠 􏼡.

4.2. Estimation. (e log-likelihood function for the vector of
parameters ϕ � (λ, θ, α)⊤ for model given in (60) is given by
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Figure 6: Plot of f Bonferroni (a) and Lorenz (b) curves of EBellE for some parametric values.
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ℓ(ϕ) � n log(λθα) − α􏽘
∞

i�1
xi +(θ − 1) 􏽘

∞

i�1
log 1 − e

− αxi􏼂 􏼃 + λ􏽘
∞

i�1
1 − 1 − e

− αxi( 􏼁
θ

􏼔 􏼕

− n exp(λ) + 􏽘
∞

i�1
exp λ 1 − 1 − e

− αxi( 􏼁
θ

􏼔 􏼕􏼚 􏼛 − n log 1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯.

(83)

(e components of the score vector U(ϕ) are

Min−Max plot for simulated EBellE data
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Uλ �
n

λ
+ 􏽘
∞

i�1
1 − 1 − e

− αxi( 􏼁
θ

􏼔 􏼕 − n exp(λ) + 􏽘
∞

i�1
exp λ 1 − 1 − e

− αxi( 􏼁
θ

􏼔 􏼕􏼚 􏼛 1 − 1 − e
− αxi( 􏼁

θ
􏼔 􏼕

− n exp(λ)
exp 1 − e

λ
􏽨 􏽩

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
,

Uθ �
n

θ
+ 􏽘
∞

i�1
log 1 − e

− αxi􏼂 􏼃 − λ􏽘
∞

i�1
1 − e

− αxi( 􏼁
θlog 1 − e

− αxi􏼂 􏼃

− λ􏽘
∞

i�1
exp λ 1 − 1 − e

− αxi( 􏼁
θ

􏼔 􏼕􏼚 􏼛 1 − e
− αxi( 􏼁

θlog 1 − e
− αxi􏼂 􏼃,

Uα �
n

α
− 􏽘
∞

i�1
xi +(θ − 1) 􏽘

∞

i�1

xi exp − αxi( 􏼁

1 − e
− α xi􏼂 􏼃

− λθ􏽘
∞

i�1
xi exp − αxi( 􏼁 1 − e

− αxi( 􏼁
θ− 1

− λθ􏽘
∞

i�1
xi exp − αxi( 􏼁exp λ 1 − 1 − e

− αxi( 􏼁
θ

􏼔 􏼕􏼚 􏼛.

(84)

By setting Uλ � 0, Uθ � 0 and Uα � 0, the MLEs can be
yielded by solving the above equations simultaneously.

5. Actuarial Measures

5.1. Value at Risk. Value-at-risk or quantile risk or simply
VaR is the extensively used as a standard finial market risk
measure. It plays an important role in many business

decisions; the uncertainty regarding foreign market, com-
modity price, and government policies can affect signifi-
cantly firm earnings. (e loss portfolio value is specified by
the certain degree of confidence say q(90%, 95%or99%).
VaR of random variable X is simply the qth quantile of its
cdf. If X follows the EBellE model; then, its VaR is defined by
the following expression:

Q(u) � −
1
α
log 1 − 1 − λ− 1 log log 1 − q 1 − exp 1 − e

λ
􏽨 􏽩􏽮 􏽯􏽮 􏽯 + exp(λ)􏽮 􏽯􏽨 􏽩􏽮 􏽯

θ− 1

􏼒 􏼓􏼔 􏼕. (85)
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Figure 8: Plot of Rényi entropy of the EBellE model for some parametric values.
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5.2. Expected Shortfall. (e other important financial risk
measure is called an expected-shortfall (ES) introduced in
[25] and generally considered a better measure than value-
at-risk. It is defined by the following expression:

ESq(x) �
1
q

􏽚
q

0
VaRxdx. (86)

For 0< q< 1, using Eq. (85) in Eq. (86), yielded ES for
EBellE. In Figure 9, the graphical representation of VaR and
ES measures for some parameter combinations is presented.

5.3. Tail Value at Risk. (e problem of risk measurement is
one of the most important problems in the risk manage-
ment. From finance and insurance prospective, Tail value-at-
risk (TVaR) or tail conditional expectation or conditional
tail expectation is an important measure and define as the
expected value of the loss, given the loss is greater than the
VaR:

TVaRq(x) �
1

1 − q
􏽚
∞

VaRq

xf(x)dx. (87)

By using (25) in (35) yielded tail value-at-risk as

TVaRq(x) � (1 − q)
− 1

􏽘

∞

p�0
wpc 2, α(p + 1)VaRq􏽨 􏽩[α(p + 1)]

− 1
.

(88)

5.4. Tail Variance. Tail variance (TV) has yet another im-
portant risk measure because it considers the variability of
the risk along the tail of distribution; it is defined as from the
following expression:

TVq(x) � E X
2
|X>xq􏽨 􏽩 − TVaRq􏽨 􏽩

2
. (89)

Consider I � E[X2|X>xq]:

I � TVaRq(x) �
1

1 − q
􏽚
∞

VaRq

x
2
f(x)dx,

I � TVaRq(x) � (1 − q)
− 1

􏽘

∞

p�0
wpc

· 3, α(p + 1)VaRq􏽨 􏽩[α(p + 1)]
− 2

.

(90)

Using (88) and (90) in (89), we obtain the expression for
tail variance for the EBellW model.

5.5. Tail Variance Premium. (e TVP is the mixture of both
central tendency as well as dispersion statistics. It is defined
by the following:

TVPq(X) � TVaRq + δTVq, (91)

where 0< δ < 1. Using expressions (89) and (88) in (91), we
obtain the tail variance premium for the EBellW model.

5.5.1. Numerical Illustration of VaR and ES. Here, we
demonstrate the numerical as well as graphical presentation
of the two important risk measures ES and VaR. (e
comparative study of ES and VaR of the proposed EBellE
model with their counterpart exponentiated exponential
Poisson (EEP) and exponentiated exponential (EE) model is
performed by taking MLEs’ estimates of the parameters for
the models in all datasets. It is worth emphasising that a
model with higher values of the risk measures is said to have
a heavier tail. Table 3 provides the numerical illustration of
the ES and VaR for EBellE and EEP and EEmodel of all three
datasets and yielded that the EBellE model has higher values
of both the risk measures as compared to their counterpart
EEP and EE model. (e graphical demonstration of the
models from Figures 10–12 also revealed that the proposed
model has slightly heavier tail than EEP and EE model. (e
reader should refer to Chan et al. [26] for detail discussion of
VaR and ES and their computation by using an R-Pro-
gramming Language. A sample of 100 is randomly drawn,
and the effect of shape and scale parameters of the proposed
models is underlined for both risk measures. Various
combinations of the scale and shape parameters are executed
I� [α � 2.1, θ � 1.1, λ � 0.22], II� [α � 1.4, θ � 0.5,

λ � 1.2], III� [α � 0.6, θ � 0.5, λ � 0.5], and IV� [α � 0.4,

θ � 2, λ � 2.5] and change in the curve of VaR and ES are
illustrated in Figure 4.

6. Designing of GASP under the EBellE Model

Saving time and cost is attributed to the sampling method.
Certain quality control checks are implemented either
accepting or rejecting a lot under various sampling plans.(is
section based on the illustration of GASP under the as-
sumption when the lifetime distribution of an item followed a
EBellEmodel with known parameter λ and θ having cdf in Eq.
(96). In a GASP, let a random sample of size n be taken and
distributed in such a way; that is, n � r × g and r items for
each group are kept on life testing under predefined time. If
the number of failures in each group are higher than the
acceptance number c, the performed experiment is truncated.
(e reader is referred to the work of Aslam et al. [27] and
Khan and Alqarni [28] for simple illustration of GASP and
application to real data. Designing the GASP reduced both the
time and cost. Several lifetime traditional and extended
models are used [27, 29–32] in designing the GASP by taking
into account the quality parameter as mean or median;
usually, for skewed distribution, median is preferable [27].

(e GASP is simply the extension of ordinary sampling
plan (OSP), i.e., the GASP tends to OSP by replacing r � 1,
and thus, n � g [33].

GASP is based on the following form; first of all, select g

and allocate predefine r items to each group so that the
sample of size of the lot will be n � r × g. Secondly, select c

and t0 representing the acceptance number and the ex-
periment time, respectively. (irdly, do experiment simul-
taneously for g groups and record the number of failure for
each group. Finally, conclusion is drawn either accepting or
rejecting the lot; the lot is accepted if there is no more than c

failure occurring in each and every group; otherwise, reject a
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lot.(e accepting probability of a lot yielded by the following
expression:

pa(p) � 􏽘
c

i�0

r

i
􏼠 􏼡p

i
[1 − p]

r− i⎡⎣ ⎤⎦
g

, (92)

where the probability that an item in a group fail before t0 is
denoted by p and yielded by inserting (61) in (96). Let the
lifetime of an item or product follow a EBellE with known
parameters θ and λ, with cdf given for t> 0:
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Figure 9: Plot of VaR (a) and ES (b) of EBellE distribution for some parametric values.

Table 3: (e detailed summary of ES and VaR of the datasets.

q
Data 1 Data 2 Data 3

EBellE EEP EE EBellE EEP EE EBellE EEP EE
ES
0.50 53.614 52.009 50.251 131.699 97.948 132.350 3.7219 3.3382 2.7068
0.60 54.991 53.384 51.710 133.963 99.956 134.106 4.1545 3.7429 3.0869
0.65 56.385 54.776 53.193 136.192 101.971 135.884 4.6243 4.1816 3.4998
0.70 57.816 56.204 54.716 138.409 104.019 137.706 5.1411 4.6628 3.9517
0.75 59.308 57.691 56.301 140.640 106.130 139.596 5.7192 5.1982 4.4508
0.80 60.895 59.268 57.977 142.919 108.345 141.589 6.3803 5.8056 5.0098
0.85 62.629 60.984 59.786 145.287 110.725 143.734 7.1616 6.5147 5.6484
0.90 64.608 62.927 61.801 147.816 113.379 146.116 8.1359 7.3824 6.4018
0.95 67.058 65.299 64.182 150.656 116.561 148.922 9.4909 8.5496 7.3485
0.99 69.963 68.033 66.726 153.517 120.178 151.909 11.4198 10.1086 8.4328
VaR
0.50 68.734 67.108 66.235 156.895 120.079 151.618 8.3035 7.6248 6.7247
0.60 71.581 69.955 69.327 160.872 124.043 155.273 9.5524 8.7894 7.8348
0.65 74.699 73.063 72.686 165.034 128.320 159.234 11.0126 10.1406 9.1054
0.70 78.208 76.545 76.416 169.485 133.053 163.622 12.7655 11.7457 10.5851
0.75 82.297 80.575 80.673 174.376 138.458 168.619 14.9445 13.7133 12.3490
0.80 87.289 85.450 85.714 179.950 144.904 174.526 17.7899 16.2351 14.5235
0.85 93.819 91.748 92.016 186.649 153.099 181.896 21.7938 19.6942 17.3454
0.90 103.403 100.823 100.649 195.463 164.722 191.974 28.1974 25.0281 21.3472
0.95 121.320 117.303 115.012 209.589 185.624 199.436 41.6908 35.6465 28.2275
0.99 171.119 161.023 147.586 249.567 243.769 235.646 89.1873 69.5513 44.2822
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F(t) �
1 − exp − e

λ 1 − e
− λ 1− e− αt[ ]

θ

􏼔 􏼕􏼚 􏼛

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
. (93)

qf of the EBellE model using (61) is given by, and if p �

0.5 yielded median lifetime distribution for a product or
item,

m � −
1
α
log 1 − 1 − λ− 1 log log 1 − u 1 − exp 1 − e

λ
􏽨 􏽩􏽮 􏽯􏽮 􏽯 + exp(λ)􏽮 􏽯􏽨 􏽩􏽮 􏽯

1/θ
􏼒 􏼓􏼔 􏼕, (94)
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Figure 10: Plot of ES (a) and VaR (b) of EBellE distribution Data-1.
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Figure 11: Plot of ES (a) and VaR (b) of EBellE distribution Data-2.
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By taking η as follows,

η � log 1 − 1 − λ− 1 log log 1 − u 1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯􏽮 􏽯 + exp(λ)􏽮 􏽯􏽨 􏽩􏽮 􏽯
1/θ

􏼒 􏼓.

(95)

Eq. (94) becomes by replacing η; henceforth, α � − η/m and
t � m0a1, m � − 1/αη. (e ratio of a of product mean
lifetime ti and the specified life time m/m0 can be used to
express the quality level of product. By replacing α � − η/m
and t � m0a1 in Eq. (96) yielded the probability of failure
given by

p �
1 − exp − e

λ 1 − e
− λ 1− e− αt[ ]

θ

􏼔 􏼕􏼚 􏼛

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
. (96)

From Eq. (96), for chosen θ and λ, p can be determined
when a1 and r2 are specified, where r2 � m/m0. Here, we
define the two failure probabilities say p1 and p2 corre-
sponding to the consumer risk and producer risk, re-
spectively. For a given specific values of the parameters θ
and λ, r2, a1, β, and c, we need to evaluate the value of c

and g that satisfy the following two equation
simultaneously:

pa p1|m/m0�r1( ) � 􏽘
c

i�0

r

i
􏼠 􏼡p

i
1 1 − p1􏼂 􏼃

r− i⎡⎣ ⎤⎦
g

≤ β,

pa p2|m/m0�r2( ) � 􏽘
c

i�0

r

i
􏼠 􏼡p

i
2 1 − p2􏼂 􏼃

r− i⎡⎣ ⎤⎦
g

≥ 1 − c,

(97)

where the mean ratio at consumer’s risk and at producer’s
risk, respectively, is denoted by r1 and r2 and the proba-
bility of failure to be used in the above expression is as
follows:

p1 �
1 − exp − e

λ 1 − e
− λ 1− ea1η[ ]θ

􏼔 􏼕􏼚 􏼛

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
,

p2 �

1 − exp − e
λ 1 − e

− λ 1− ea1η r2( )− 1
􏼂 􏼃

θ

􏼢 􏼣􏼨 􏼩

1 − exp 1 − e
λ

􏽨 􏽩􏽮 􏽯
.

(98)

From Tables 4 and 5, with β � 0.25, a1 � 0.5, and r2 � 4
and taking r � 5, there are 40 groups or 200 (40 × 5 � 200);
total units are needed for lifetime testing. While on the
contrary, significant reduction can be observed in groups or
number of units to be tested under the identical circum-
stances when r � 10; a total of 3 groups or 30 (3 × 10 � 30)

item are needed for life testing. Here, we prefer the group
size 10. Similarly, when β � 0.25, a1 � 1, and r2 � 4 and
taking r � 5, there are 7 groups or 35 (7 × 5 � 35); total units
are needed for life testing. While, on the contrary, in the
number of units to be tested under the identical circum-
stances when r � 10, a total of 2 groups or 20 (2 × 10 � 20),
items are needed for life testing. Here, we prefer the group
size 10.

7. Simulation Analysis

Simulation analysis is very important tools in statistics
and used to determine the performance of estimates over
predefine replication at varying sample sizes. So, this
section is primarily based on simulation analysis in order
to underline the performance parameter estimates of the
proposed EBellE model. A simulation process is replicated
1000 times with at varying sample sizes, n � 25, 50, 100,
and 500. In Table 6, various combinations of the
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Figure 12: Plot of ES (a) and VaR (b) of EBellE distribution Data-3.
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parameter α, θ, and λ are considered, say scenario I � [α �

1.5, θ � 0.3, λ � 0.5], scenario II � [α � 0.15, θ �

0.5, λ � 0.5], and scenario III � [α � 1, θ � 0.2, λ � 0.17].
(e finding of the simulation analysis yielded that bias,
mean square error (MSE), and average width (AW) of the
confidence interval of the parameters reduced as sample
size increases. On the contrary, the coverage probabilities
(CPs) touch 95% nominal level. So, therefore, the MLEs
and their asymptotic results can be used for estimating
and constructing confidence intervals for proposed EBellE
model parameters. Readers are referred to the work of
Sigal et al. [34] for simple but comprehensive way in
designing Monte Carlo simulation study by using
R-programming language:

MSE( 􏽢Θ) � 􏽘
1,000

r�1

􏽢Θi − Θ􏼐 􏼑
2

1, 000
,

Bias( 􏽢Θ) � 􏽘
1,000

r�1

􏽢Θi

1, 000
− Θ.

(99)

8. Practical Implementation of the Proposed
EBellE Model

8.1.ActuarialData. Here, we demonstrate the flexibility and
usefulness of the proposed EBellE model by practical means.
(ree insurance claim datasets are used; the first two datasets

Table 5: GASP under the EBellE model, θ � 1 and λ � 1.50, showing minimum g and c.

β r2

r � 5 r � 10
a1 � 0.5 a1 � 1 a1 � 0.5 a1 � 1

g c p(a) g c p(a) g c p(a) g c p(a)

0.25

2 – – – – – – – – – – – –
4 41 3 0.9866 7 3 0.9735 3 3 0.9718 2 4 0.9644
6 8 2 0.9824 3 2 0.9578 2 2 0.9584 1 3 0.9761
8 8 2 0.9921 3 2 0.98 2 2 0.9802 1 3 0.9905

0.1

2 – – – – – – – – – – – –
4 68 3 0.9779 12 3 0.955 5 3 0.9535 5 5 0.9854
6 13 2 0.9715 12 3 0.9888 5 3 0.9883 2 3 0.9528
8 13 2 0.9872 4 2 0.9734 3 2 0.9705 2 3 0.9811

0.05

2 – – – – – – – – – – – –
4 88 3 0.9715 95 4 0.9855 17 4 0.9814 7 5 0.9796
6 16 2 0.9651 15 3 0.9861 7 3 0.9836 2 3 0.9528
8 16 2 0.9843 5 2 0.9669 3 2 0.9705 2 3 0.9811

0.01

2 – – – – – – – – – – – –
4 135 3 0.9565 146 4 0.9778 26 4 0.9716 10 5 0.9709
6 135 3 0.9903 23 3 0.9787 10 3 0.9767 5 4 0.9816
8 25 2 0.9755 7 2 0.954 5 2 0.9513 3 3 0.9718

Remark: a large sample size in required cells contains hyphens (–).

Table 4: GASP under the EBellE model, θ � 1 and λ � 1.25, showing minimum g and c.

β r2

r � 5 r � 10
a1 � 0.5 a1 � 1 a1 � 0.5 a1 � 1

g c p(a) g c p(a) g c p(a) g c p(a)

0.25

2 – – – – – – – – – – – –
4 40 3 0.9860 7 3 0.9721 3 3 0.9701 2 4 0.9624
6 8 2 0.9815 3 2 0.9559 2 2 0.9565 1 3 0.9748
8 8 2 0.9917 3 2 0.979 2 2 0.9792 1 3 0.9899

0.1

2 – – – – – – – – – – – –
4 66 3 0.9770 12 3 0.9527 5 3 0.9507 5 5 0.9843
6 12 2 0.9724 12 3 0.9881 5 3 0.9875 2 3 0.9503
8 12 2 0.9875 4 2 0.9721 3 2 0.9689 2 3 0.9800

0.05

2 – – – – – – – – – – – –
4 85 3 0.9705 95 4 0.9845 17 4 0.9798 7 5 0.9781
6 16 2 0.9633 15 3 0.9852 7 3 0.9825 2 3 0.9503
8 16 2 0.9834 5 2 0.9652 3 2 0.9689 2 3 0.9800

0.01

2 – – – – – – – – – – – –
4 131 3 0.9549 146 4 0.9763 26 4 0.9693 10 5 0.9688
6 131 3 0.9899 23 3 0.9774 10 3 0.9751 5 4 0.9803
8 24 2 0.9752 7 2 0.9517 10 3 0.9910 3 3 0.9701

Remark: a large sample size in required cells contains hyphens (–).
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based on unemployment claims from July 2008 to April
2013, reported by the Department of Labour, Licencing, and
Regulation, USA. (e dataset consists of 21 variables; we
used the variable 5 that is new claims filed and variable 12
with total observation for each variable is 58.(e dataset was
also used by [15]. (e third data deal with upheld most
frequent complaints such as nonrenewal of insurance, and
no fault claims commonly against vehicle insurance com-
pany over two-year period as a proportion of their overall
business. (e dataset was also used by Khan et al. [21]. (e
descriptive summary of all three datasets is shown in Table 7
and consists of sample size n, minimum claim x0, maximum
claim xn, lower Q1 and upper Q3, quartile deviations, mean
x, median 􏽥x, standard deviation σ, measures of skewness Sk,
and kurtosis K. Total time on test (TTT) plots of the datasets
is illustrated in Figure 13, revealing that the first two datasets
have increasing hazard rate function, while the third dataset
has decreasing (increasing) hazard rate function.

(e comparative study is carried out with several
modified well-established exponential models, namely,
exponentiated exponential Poisson (EEP) [35], alpha power
exponentiated exponential (APEE) [15], Transmuted gen-
eralized exponential (TGE) [36], gamma exponentiated
exponential (GEE) [37], exponential (E), exponentiated
exponential (EE), Marshal Olkin exponential (MOE) [38],
exponentiated Weibull (EW) [39], odd Weibull exponential
(OWE) [19], Weibull (W), Kumaraswamy exponential (KE)
[40], beta exponential (BE) [41], Tope Leone exponential
(TLE) [42], and Nadarajah Haghigh (NH) [43] distributions.

All statistical computational work is carried out using R-
programming language. Table 8 shows the MLEs and
standard errors (S.E) of the estimates of the fitted models of
the data sets. Table 9 demonstrated the commonly used well-
known model selection information criterion, namely, AIC,
CAIC, BIC, and HQIC with important measures including

Anderson–Darling (A∗), Cramér–von Mises (W∗), and
Kolmogrov–Smirnov (K–S) test and p value of all three
datasets. (e analysis of the datasets revealed the proposed
three-parameter EBellE model, outperforming compared to
several well established models. A model having higher p

values and least information criterion and A∗ and W∗, and
the K-S value is considered as best models among all other
comparative models. TTTplots of the respective datasets are
shown in Figure 13. Likewise, plots of the estimated pdf, cdf,
hrf, and sf for the four datasets are provided in
Figures 14–17. Additionally, PP-plots are presented in
Figure 18.

8.2. GASP. Recently, Almarashi et al. [29] designed a GASP
under Marshall–Olkin–Kumaraswamy exponential distri-
bution by using the data of breaking strength of carbon
fibers. (e data consist the 50 observed values with mean
(1.975) and median (1.190) breaking strength of carbon fi-
bers, respectively. Under the K–S test, the maximum dis-
tance between actual and fitted yielded as 0.0681 with p value
0.9743 under Marshall–Olkin–Kumaraswamy exponential
distribution. We used the same data as data-4, and our
proposed three-parameter EBellE model is slightly better fit
compared to four-parameter Marshal-
l–Olkin–Kumaraswamy exponential distribution [29] as K-S
test as 0.0680 with improved p value as 0.9749. (e esti-
mated parameters (SEs), namely, 􏽢α � 0.3913 (0.1308), 􏽢θ
� 0.9088 (0.2114), and 􏽢λ � 0.3431 (0.5766). Table 10 shows
the GAPS under the EBellE model at MLEs’ values showing
minimum g and c when r � 5 and r � 10, with a1 � 0.5 and
1. (e analysis of the data yielded from Table 10, with
β � 0.25, a1 � 1, and r2 � 4 and taking r � 5, there are 7
groups or 35 (7 × 5 � 35); total units are needed for lifetime
testing. While, on the contrary, significant reduction can be

Table 6: Biases, MSEs, CPs, and AWs for different scenarios.

Scenario I Scenario II Scenario III
n α θ λ n α θ λ n α θ λ
Biases
25 0.282 0.050 0.152 25 0.006 0.063 0.176 25 0.162 0.067 0.375
50 0.098 0.028 0.105 50 0.002 0.038 0.112 50 0.038 0.048 0.289
100 0.046 0.015 0.050 100 0.010 0.017 0.042 100 − 0.007 0.031 0.196
500 0.028 0.005 0.009 500 0.001 0.000 -0.009 500 0.008 0.007 0.043
MSE
25 1.398 0.010 0.162 25 0.007 0.023 0.198 25 0.669 0.009 0.258
50 0.584 0.005 0.122 50 0.004 0.012 0.145 50 0.204 0.005 0.169
100 0.262 0.002 0.073 100 0.001 0.006 0.094 100 0.001 0.006 0.094
500 0.055 0.001 0.021 500 0.000 0.001 0.029 500 0.000 0.001 0.029
CPs
25 0.968 0.955 0.982 25 0.972 0.963 0.959 25 0.957 0.938 0.930
50 0.965 0.960 0.980 50 0.976 0.957 0.971 50 0.925 0.927 0.904
100 0.955 0.953 0.969 100 0.940 0.954 0.972 100 0.928 0.927 0.903
500 0.930 0.945 0.950 500 0.940 0.948 0.964 500 0.881 0.965 0.945
AWs
25 5.001 0.396 2.461 25 0.405 0.627 2.721 25 3.158 0.316 2.375
50 3.123 0.276 1.782 50 0.279 0.455 2.047 50 1.873 0.222 1.751
100 2.078 0.196 1.276 100 0.082 0.327 1.485 100 1.170 0.154 1.271
500 0.887 0.088 0.573 500 0.082 0.149 0.671 500 0.443 0.067 0.607
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Table 7: Descriptive summary of datasets.

n x0 Q1 􏽥x x σ Q3 xn Sk K

Data 1 58 29.000 53.250 63.50 70.670 32.645 74.750 222.00 2.436 10.622
Data 2 58 102.00 133.00 153.00 155.30 31.899 176.00 267.00 0.608 4.0694
Data 3 89 1.0480 2.6160 7.0940 14.079 25.266 15.374 204.17 5.312 37.969
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Figure 13: TTT Plots of EBellE of data 1–4.

Table 8: Estimated parameters and S.Es of insurance data.

Dist. Parameter
Data 1 Data 2 Data 3

Estimates S.E Estimates S.E Estimates S.E

EBellE
􏽢α 0.028 0.007 0.0097 0.002 0.022 0.010
􏽢θ 10.86 3.442 13.67 3.392 1.174 0.124
􏽢λ 1.34 0.325 2.334 0.345 1.510 0.274

EEP
􏽢α 0.032 0.007 0.015 0.002 0.026 0.011
􏽢β 11.65 3.794 18.01 4.357 1.087 0.119
􏽢λ 3.183 1.410 4.326 1.456 4.400 1.496

APEE
􏽢α 0.032 0.007 0.020 0.007 0.026 0.010
􏽢β 0.040 0.057 0.008 0.024 0.012 0.018
􏽢c 11.48 3.714 42.11 32.12 1.087 0.119

TGE
􏽢α 0.041 0.006 0.028 0.007 0.044 0.010
􏽢β 0.620 0.262 0.922 0.383 0.772 0.169
􏽢λ 13.63 4.445 80.09 65.40 0.938 0.117

GEE
􏽢α 0.051 0.013 0.132 0.004 0.055 0.010
􏽢β 11.97 8.136 2.819 0.466 1.502 0.738
􏽢λ 1.354 1.139 19.49 0.875 0.557 0.277

EE 􏽢α 0.048 0.006 0.043 0.017 0.063 0.010
􏽢β 16.08 5.250 405.2 903.6 0.837 0.117

MOE 􏽢α 0.066 0.008 0.035 0.003 0.028 0.011
􏽢a 72.13 41.02 160.9 57.75 0.213 0.106

OWE
􏽢α 0.003 0.001 0.107 0.068 0.003 0.001
􏽢a 14.28 7.280 0.011 0.005 11.11 2.873
􏽢b 1.911 0.180 0.245 0.156 0.763 0.055

W 􏽢α 0.585 0.081 0.642 0.083 0.127 0.028
􏽢β 40.33 19.12 24.49 9.451 0.823 0.061

KE
􏽢α 0.073 0.023 0.127 0.003 0.008 0.005
􏽢a 34.93 27.33 0.081 0.042 0.819 0.074
􏽢b 0.543 0.247 0.049 0.007 6.133 3.409

BE
􏽢α 0.076 0.025 0.020 0.003 0.015 0.017
􏽢a 33.00 24.58 34.708 9.900 0.818 0.107
􏽢b 0.515 0.235 2.146 0.685 3.871 4.198

TLE 􏽢α 0.024 0.003 0.011 0.001 0.031 0.005
􏽢a 15.98 5.190 17.35 4.216 0.838 0.117

NH 􏽢α 0.003 0.001 0.003 0.001 0.229 0.070
􏽢β 3.900 0.874 2.022 0.347 0.549 0.076

E 􏽢α 0.014 0.002 0.006 0.001 0.071 0.008
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Table 9: (e statistics 􏽢ℓ, AIC, CAIC, BIC, HQIC, A∗, W∗, K-S, and p value for datasets.

Dist. − 2􏽢ℓ AIC CAIC BIC HQIC A∗ W∗ K.S P value
Data 1
EBellE 264.79 535.57 536.01 541.75 537.98 0.603 0.108 0.096 0.655
EEP 265.31 536.62 537.06 542.80 539.03 0.701 0.127 0.099 0.619
APEE 265.31 536.62 537.06 542.80 539.03 0.703 0.128 0.100 0.610
TGE 266.36 538.71 539.16 544.89 541.12 0.893 0.164 0.102 0.576
GEE 267.65 541.31 541.75 547.49 543.71 1.132 0.209 0.118 0.395
EE 267.49 538.97 539.19 543.09 540.58 1.090 0.201 0.113 0.448
MOE 274.32 552.64 552.85 556.76 554.24 2.218 0.400 0.140 0.204
OWE 572.33 569.93 570.37 576.11 572.33 3.312 0.608 0.187 0.034
W 291.24 586.47 586.69 590.59 588.08 2.065 0.380 0.332 0.000
KE 266.73 539.46 539.90 545.64 541.86 0.991 0.181 0.115 0.430
BE 266.65 539.30 539.74 545.48 541.70 0.975 0.178 0.113 0.448
TLE 267.49 538.97 539.19 543.09 540.58 1.091 0.202 0.113 0.445
NH 295.63 595.27 595.48 599.39 596.87 2.781 0.511 0.371 0.000
E 304.97 611.93 612.01 613.99 612.74 1.755 0.324 0.387 0.000
Data 2
EBellE 281.25 568.51 568.95 574.69 570.91 0.1887 0.0184 0.0523 0.9973
EEP 284.62 575.24 575.68 581.42 577.64 0.3178 0.0368 0.1089 0.4967
APEE 281.86 569.71 570.15 575.89 572.12 0.4017 0.0497 0.0795 0.8565
TGE 281.56 569.12 569.57 575.30 571.53 0.3841 0.0464 0.0840 0.8078
GEE 281.33 568.66 569.11 574.84 571.07 0.2141 0.0188 0.0545 0.9954
EE 283.74 571.49 571.71 575.61 573.09 0.7022 0.0953 0.1261 0.3146
MOE 291.12 586.24 586.46 590.36 587.85 0.2046 0.0197 0.1687 0.0737
OWE 294.13 594.27 594.71 600.45 596.68 1.3843 0.1875 0.1481 0.1571
W 291.24 586.47 586.69 590.59 588.08 2.0654 0.3799 0.3320 0.0001
KE 357.54 721.08 721.52 727.26 723.49 0.2036 0.0170 0.5291 0.0000
BE 282.53 571.05 571.50 577.24 573.46 0.2880 0.0309 0.0827 0.8220
TLE 293.44 590.88 591.10 595.00 592.49 0.2913 0.0314 0.1756 0.0560
NH 341.65 687.30 687.51 691.42 688.90 0.1982 0.0161 0.4992 0.0001
E 350.62 703.23 703.30 705.29 704.03 0.2091 0.0182 0.4818 0.0001
Data 3
EBellE 313.42 632.85 633.13 640.31 635.86 1.265 0.185 0.113 0.188
EEP 314.86 635.73 636.01 643.19 638.74 1.410 0.205 0.114 0.182
APEE 314.86 635.73 636.01 643.19 638.74 1.410 0.204 0.114 0.182
TGE 318.91 643.81 644.09 651.28 646.82 1.802 0.262 0.118 0.156
GEE 322.69 651.39 651.67 658.85 654.39 2.191 0.323 0.121 0.134
EE 323.55 651.10 651.24 656.08 653.11 2.271 0.335 0.125 0.114
MOE 316.42 636.83 636.97 641.81 638.84 1.156 0.161 0.127 0.104
OWE 322.55 651.10 651.38 658.57 654.11 1.979 0.286 0.138 0.061
W 320.41 644.82 644.96 649.80 646.83 1.861 0.269 0.126 0.110
KE 321.66 649.32 649.60 656.79 652.33 2.030 0.296 0.118 0.152
BE 323.12 652.24 652.53 659.71 655.25 2.226 0.328 0.117 0.162
TLE 323.55 651.10 651.24 656.08 653.11 2.271 0.335 0.125 0.113
NH 315.90 635.80 635.94 640.78 637.81 1.286 0.182 0.122 0.132
E 324.38 650.76 650.80 653.25 651.76 2.232 0.329 0.162 0.017
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Figure 14: Plots of estimated density, estimated cdf, estimated hrf, and failure rate for data 1.
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Figure 15: Plots of estimated density, estimated cdf, estimated hrf, and failure rate for data 2.

EBellE
EBellE EBellE K−M

EBellE

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 P
ro

ba
bl

ity

20 40 60 80 1000
x

0.1 0.2 0.3 0.4 0.50.0
x

0.00

0.02

0.04

0.06

0.08

fa
ilu

re
 ra

te

50 100 150 2000
x

0.0

0.2

0.4

0.6

0.8

1.0

Fn
 (x

)

0.00

0.01

0.02

0.03

0.04

D
en

sit
y

50 100 150 2000

Figure 16: Plots of estimated density, estimated cdf, estimated hrf, and failure rate for data 3.
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Figure 17: Plots of estimated density, estimated cdf, estimated hrf, and failure rate for data 4.
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Figure 18: P-P plots of EBellE of data 1–4.
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observed in groups or number of units to be tested under the
identical circumstances when r � 10; a total of 2 groups or 20
(2 × 10 � 20) item are needed for life testing. Here, we prefer
the group size as 10. When the true median life increases, the
number of groups decreases and the operating character-
istics values increases under the EBellE model.

8.3. Concluding remarks. We introduced and documented
the new flexible family of distributions called exponentiated
Bell-G family. We also derived general mathematical
properties of the proposed family, namely, linear repre-
sentation of the density, random variable generation, reli-
ability properties, ordinary moments, generating function,
probability weighted moment, entropies, order statistics,
reverse order statistics, entropies measures, upper records
values, stochastic ordering, and estimation of parameters.
We also illustrated the important actuarial measures and
design of GASP. We also implemented the new proposed
generator to the four real datasets by taking exponential
distribution as a special case. (e analysis of the data yielded
that the new generator is found to be superior compared to
their counterparts. [44].
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