
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11751  | https://doi.org/10.1038/s41598-022-15679-5

www.nature.com/scientificreports

Novel 3‑D action video game 
mechanics reveal differentiable 
cognitive constructs in young 
players, but not in old
Tomihiro Ono1,2*, Takeshi Sakurai2,3, Shinichi Kasuno2 & Toshiya Murai4

Video game research predominantly uses a “one game‑one function” approach—researchers deploy 
a constellation of task‑like minigames to span multiple domains or consider a complex video game to 
essentially represent one cognitive construct. To profile cognitive functioning in a more ecologically 
valid setting, we developed a novel 3‑D action shooter video game explicitly designed to engage 
multiple cognitive domains. We compared gameplay data with results from a web‑based cognitive 
battery (WebCNP) for 158 participants (aged 18–74). There were significant negative main effects 
on game performance from age and gender, even when controlling for prior video game exposure. 
Among younger players, game mechanics displayed significant and unique correlations to cognitive 
constructs such as aim accuracy with attention and stealth with abstract thinking within the same 
session. Among older players the relation between game components and cognitive domains was 
unclear. Findings suggest that while game mechanics within a single game can be deconstructed to 
correspond to existing cognitive metrics, how game mechanics are understood and utilized likely 
differs between the young and old. We argue that while complex games can be utilized to measure 
distinct cognitive functions, the translation scheme of gameplay to cognitive function should not be 
one‑size‑fits‑all across all demographics.

Background. Psychiatry has historically relied on subjective observation for diagnosis, evaluation, and 
research. With technological advancement, the field has incorporated more biological measurements, including 
brain imaging and electroencephalography, as a part of a broader effort by researchers and psychiatrists to move 
towards data driven and evidence-based  psychiatry1. Recent advancements have opened the possibility of using 
digital devices to collect measurements of biological responses that may in turn serve as digital  biomarkers2–5.

In addition, the ongoing Covid-19 pandemic has made urgent the longstanding need for new methods of 
remotely monitoring cognitive performance and mental states due to extended periods of social isolation and 
 uncertainty6–11. Remote monitoring via electronic devices can close the gap between the difficulty and costs of 
in-person evaluation and the restrictive realities of responding to the ongoing  pandemic6,12.

Video games have garnered attention as a possible vehicle for digital mental health intervention due to the 
potential that video games’ entertainment qualities have for encouraging voluntary compliance and engage-
ment compared to traditional interventions digital and otherwise. Because video games’ entertainment value is 
partly dependent on providing a challenge difficulty that matches the skill level of the player, video games also 
hold promise as effective inducers of cognitive training and  growth13–15. A noteworthy first was achieved when 
Akili Interactive’s Endeavor obtained FDA (U.S. Food and Drug Administration) clearance for treatment of 
attention-deficit hyperactivity disorder through gameplay that challenges players’  impulsivity16–18, and long-term 
memory gains have been observed in adults in their sixties and seventies after playing a virtual-reality navigation 
 game19. Couple the engagement and difficulty matching with the capability to accurately and precisely record 
behavioral data for analysis, and it is no surprise that extensive research has gone into utilizing the video game 
experience for cognitive measurement and training, with mixed results on whether improvement carries over 
to tasks different in form from the one practiced (known as “far transfer”)19,20. Off-the-shelf action video games 
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have received particular attention for their potential to engage and affect a multitude of cognitive functions 
simultaneously. A genre having certain cognitive demands does not always translate to improvements in those 
 domains21, especially when the game is not very similar to the benchmark cognitive task or when intensity is 
 lacking22,23, but under certain game design constraints video games have improved even high-level cognitive 
functions like  neuroplasticity24. Some studies have linked specific in-game maneuvers or conditions to observed 
improvement in cognitive function after extensive  training24,25, but such reports have been relatively rare. Com-
mercial video games satisfy the “engagement” quality that people seek in serious games, but it’s hard to interpret 
what exactly is happening cognitively in a video game: since they are not originally made for cognitive research, 
researchers cannot select the target cognitive functions at will, and interpretation is complicated by the fact that 
certain games resonate more with certain demographics than others in ways that are not well-documented. 
Presently, the profile of cognitive abilities affected by action video games is built upon decades of difficult and 
often conflicting reports of empirical trials, often logistically unable to quantify cognitive engagement in a video 
game beyond hours played or stages cleared.

Video games as cognitive measurement tools. Researchers have also attempted to employ custom 
video games for measurement as well as training. Similar to how cognitive tests measure cognitive abilities inso-
far as performance on tests is dependent on successful use of the target  abilities26, games can measure cognitive 
abilities since performance in a video game depends on successful use of the cognitive abilities most relevant to 
the game’s  design27–34. Prior research has suggested that a constellation of video games can be employed to obtain 
measures that approximate general problem-solving skills (e.g. fluid intelligence g)32,33, while other applications 
have demonstrated that gameplay can be designed around a single cognitive function to extract biomarker-like 
information about a player’s cognitive  abilities35,36, in line with age-based35,37 and gender-based38 expectations 
of differences in cognition. In doing so, researchers need to account for prior gaming expertise since seasoned 
gamers can outperform novice gamers even if the game in question is novel for all  participants38–40.

Design constraints and ecological validity. When devising built-for-purpose serious games, in both 
measurement and training, researchers rely on designing so that in-game success hinges on successful use of 
a focal cognitive function. In order to broaden the scope beyond single cognitive functions, some studies have 
employed a suite of mini-games and tasks, where individual games and tasks in the set are each designed to 
target a certain cognitive ability (e.g. memorization, fast reaction)18,41. However, such design constraints for 
interpretability come at a creative cost; simple and isolated game mechanics make for interpretable but often 
shallow gaming experiences, in which it’s difficult to maintain engagement for hours on end. Not only is such a 
creative constraint unappealing for the players, but it also makes the serious game endeavor much less appealing 
for game creators, hampering the development of the field.

Additionally, restricting game design around a single cognitive domain limits the ability of the game to probe 
cognitive domains as relevant in ecologically valid situations. Traditional cognitive tests can  overestimate42–46 or 
 underestimate47–49 cognitive decline due to them not being valid indicators of cognitive abilities as relevant to 
day-to-day functioning and being subject to significant practice effects. Common features of tasks made to be 
more ecologically valid include the use of concrete over abstract  entities43 and allowing for a relatively complex 
task structure that allows for the use of compensative strategies to offset reductions in processing  speed42,46. By 
constructing complex tasks in video games that involve concrete entities and multiple cognitive domains, we 
can profile cognitive functions in a more ecologically valid setting.

A potential boon for the serious-game field, then, is to demonstrate that interpretability and complex game-
play need not be mutually exclusive. Showing that a purpose-built serious game can be deconstructed into distinct 
cognitive activities while retaining complex and non-test-like gameplay will provide one roadmap for researchers 
and game designers alike who are burdened by sacrificing interpretability or engagement.

Cognitive activity in a 3‑D action game. Broadly, we considered two possible categories of cognitive 
functions that could reasonably be expected measured from an individual’s gameplay in a 3-D action game: (1) 
cognitive functions required for action video games in general, (2) cognitive functions specific to performing 
tasks in this specific game.

In their meta-analysis of action video game training, Bediou et al. include the following as characteristic fea-
tures of action video games: (a) a fast pace of events, (b) high load on perception, motor skills, working memory, 
and planning skills, (c) the need to shift attention back and forth between focused attention and distributed atten-
tion, and (d) a high amount of visual  distraction21. As such, an “overall performance” metric (such as a high score) 
in any action video game would be expected to partly depend on cognitive metrics that correspond to the above 
features, such as visual and auditory reaction, motor skills, working memory, planning, and attention control.

In addition to the cognitive functions required for playing any generic action video game, there may also be 
cognitive demands placed by features not universal to all video games. Among action games, there is a subgenre 
called stealth games where the game’s incentives are structured to reward avoiding direct confrontation with 
enemies, and to penalize failure to circumvent enemy detection, much like in the real-life game “hide and seek”. 
To our knowledge there are no studies examining stealth-related behaviors as expressed in video games and 
baseline cognitive abilities, but studies of hide and seek and other deception-based games point to higher-order 
cognitive functions such as abstract thinking and theory of mind as being crucial to  performance50,51.

Effects of age, gender, and prior video game experience. For each cognitive ability mentioned 
above, prior reports suggest the existence of demographic differences in performance, some due to biological 
reasons and others due to sociological reasons.
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A performance advantage has been reported for younger participants over older participants and for male 
participants over female participants in reaction  time52,53, motor  skill54,55, visuospatial working  memory56,57, 
 planning58–60, and attentional  control61–63. As such we expect overall action video game performance—which 
combines demands from all these cognitive functions—to be higher in men than in women, and lower in older 
adults compared to younger adults.

One additional consideration is the effect of prior training. In classical cognitive tests, researchers seldom 
worry that a significant number of participants may be highly trained in similar cognitive tests before their first 
visit. However, because video games from the same genre share a substantial number of features (such as the 
features broadly shared among action video games listed above), with video games there is the possibility that 
research participants have differing prior exposure to and training in similar tasks, and that therefore perfor-
mance differences may represent near transfer within the same  genre40 rather than or in addition to baseline 
differences in cognitive ability. As men tend to play video games more frequently than women and also report 
stronger preference for action video  games64, to the extent such prior training influences results, the effect is 
expected to compound rather than counteract the expected male advantage in action video game performance 
due to cognitive function differences.

Concerning stealth behavior, to our knowledge there are no studies examining gender-related or age-related 
differences.

Objectives. It is our contention that a “one video game, one cognitive function” paradigm for utilizing video 
games in cognitive function measurement limits how engaging the gameplay experience can be. We hypoth-
esized that a single gameplay experience could be utilized to quantify a wide range of cognitive functions, lead-
ing to a more ecologically valid cognitive evaluation setting than prior projects. For this, we developed a novel 
3-D action shooter video game. More broadly, we aimed to demonstrate the potential for richer, more immersive 
serious game design and a possible novel tool for quantifying how different cognitive functions work in concert 
towards a given task.

Based on that objective, we specifically asked these research questions:

1. How can we parametrize data from an individual’s 3-D action video game play to yield both differentiable 
and interpretable metrics about the individual’s cognitive function?

2. Prior reports suggest the influence of age, gender, and prior familiarity with video games on video game per-
formance. Both underlying differences in cognitive function and differing familiarity with features common 
to 3-D action video games predict higher performance for younger players over older, and male players over 
female. To what extent does gameplay reflect these demographic variables, and how might interpretation be 
complicated by such factors?

Here we report results from a comparative study between selected subtests from University of Pennsylvania’s 
Web-based computerized neurocognitive scanning battery (WebCNP) and multiple in-game metrics from a 
smartphone-based 3-D action video game developed by BonBon Inc., a startup company headquartered in Kyoto, 
Japan. Items from a survey that asked about prior video game exposure and experience were also employed.

Results and analysis
A total of 158 participants were a part of the study, all from Western Japan (residing in or near Kyoto). Participant 
ages ranged from 18 to 74 years old, with the average being 39 years old (± 15 years, s.d.). Eighty-one participants 
identified as being female (51.3%). The highest educational attainment of participants was as follows: two had 
completed middle school (1.26%), 67 had completed high school (42.1%), 20 had graduated from a 2-year col-
lege (12.6%), 47 had graduated from a 4-year college (29.6%), and 23 had completed some sort of postgraduate 
degree (14.6%). For video game exposure, the average hours per week reported playing video games in the past 
6 months was 3.67 h ± 6.32 h (s.d.), with a heavy skew towards zero hours per week. Thirty-two participants had 
never played action video games before (20.2%). The age at which participants first played video games ranged 
from 5 to 74 years old (if the player had never played video games before, they responded with their current age) 
with an average age of 19.6 years old (± 18.6 years, s.d.). All participants successfully completed the cognitive 
battery and no issues arose from translating the instructions into Japanese. We excluded four participants due 
to incomplete gameplay data.

Results from the cognitive test were condensed through factor analysis into six parameters: Input Preci-
sion (based on The Motor Praxis Test “MPRACT” efficiency), Visual Discrimination (based on The Penn Line 
Orientation Test “VSPLOT24” correct responses and The Penn Emotion Discrimination Test “MEDF36” cor-
rect responses on subtle pairs), Recall Accuracy (based on the number of correct responses in The Penn Facial 
Memory Test “CPF”, The Short Visual Object Learning Test “SVOLT”, The Short Visual Object Learning Test 
Delayed “SVOLTD”, and Short Letter N-Back 2 “SLNB2”), Recall Confidence (based on how confident the 
participant was in CPF, SVOLT, and SVOLTD), Abstract Reasoning (based on the number of correct responses 
in The Penn Conditional Exclusion Test “PCET”, The Penn Matrix Reasoning Test “PMAT24”, and The Abstrac-
tion, Inhibition, and Memory Test “AIM”), and Sustained Attention (based on their performance in The Penn 
Continuous Performance Test “PCPT”). The right-hand side of Fig. 1 depicts the structural equation model used 
to aggregate the cognitive test data. We describe the contents of each test in the Supplementary Information. 

In-game metrics were rescaled to be z-scores and then examined for similarity, both through Euclidean dis-
tance and conceptual grouping into five parameters: Performance (from the time-based performance in the final 
stage, number of enemies defeated in the final stage, and the average best performance in each of the 10 main 
stages), Projectile Accuracy (the number of projectiles landed against the common enemy types divided by the 



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11751  | https://doi.org/10.1038/s41598-022-15679-5

www.nature.com/scientificreports/

number of projectiles shot, see Fig. 2d), Input Multi-tasking (the square root of the proportion of multi-finger 
maneuvers over the total maneuvers, representing how the player moved around while rotating the viewport; 
see Fig. 2a), Stealth-oriented Behavior (the rate at which the player utilized hiding in grass against enemies, see 
Fig. 2b), and Bias Towards Aiming Over Movement (from how much time the player spent aiming as opposed 
to simply moving, and whether or not the player moved while aiming, see Fig. 2c). The left-hand side of Fig. 1 
depicts the structural model used to aggregate the in-game data. Figure 2 depicts actions often taken in gameplay.

We expected that the multiple measures obtained from various facets of gameplay would be distinct from each 
other and each significantly correlated to different cognitive components as measured by the cognitive exam.

However, there were significant covariances in the combined in-game metrics, the largest in magnitude 
being the one between Projectile Accuracy and Performance (b = 0.383, se = 0.066, p < 0.001). Since successfully 
completing the tasks in the game requires hitting the enemy with released projectiles, it is not surprising that 
Performance and Projectile Accuracy are related. Performance also covaries with Input Multi-tasking (b = 0.227, 
se = 0.059, p < 0.001), with Stealth-oriented Behavior (b = 0.110, se = 0.054, p < 0.05) and with Bias Towards Aim-
ing Over Movement (b = −0.154, se = 0.055, p < 0.01). Projectile Accuracy, in turn, covaries with Input Multi-
tasking (b = 0.156, se = 0.073, p < 0.05), with Stealth-oriented Behavior (b = 0.255, se = 0.075, p < 0.001), and with 
Bias Towards Aiming Over Movement (b = −0.151, se = 0.072, p < 0.05). Input Multi-tasking covaries with neither 
Stealth-oriented Behavior nor Bias Towards Aiming Over Movement, and Stealth-oriented Behavior covaries 
with Bias Towards Aiming Over Movement (b = −0.195, se = 0.081, p < 0.05).

As for how the in-game parameters correlate with cognitive test values, performance (conceptually, the metric 
that should be the closest to an aggregate reflection of cognitive abilities) is significantly correlated to all except 
Sustained Attention. Projectile Accuracy, which is an intermediate measure of success, is like performance but has 
no significant correlation to recall confidence. Input Multi-tasking (finger multi-tasking), conversely, only shows 
a significant correlation with Recall Confidence. The cognitive test correlations of Stealth-oriented Behavior are 
like those of Projectile Accuracy, but the correlation coefficient is noticeably less. Finally, the Aiming metric is not 
significantly correlated to any cognitive test metric. Table 1 lists the correlations, p-values, and significance levels 
between the five in-game metrics and the six cognitive test components, with significance denoted in asterisks.

Although Projectile Accuracy and Stealth-oriented Behavior reflect similar cognitive abilities, all other met-
rics have different correlations to cognitive test metrics and are distinct from each other as previously noted, 
demonstrating that it is possible to extract distinct metrics from various facets of gameplay that each contain 
different information about the player’s cognitive processes.

Figure 1.  Diagram depicting the individual components used in computing latent variable metrics from 
video-game-based metrics (left side) and cognitive battery-based metrics (right side). All path coefficients were 
significant (*p < 0.05, **p < 0.01, ***p < 0.001). Standardized path coefficients shown such that the latent variable’s 
variance is 1.00. Dashed lines in the center between latent factors depict significant correlations (Pearson’s r) 
between video-game-derived metrics and cognitive-battery-derived metrics among those in the younger group 
of participants (N = 100). Older group (N = 54) correlations did not meet the significance threshold (p < 0.05). 
Whole-group (N = 154) inter-factor correlations not depicted; see Table 1 for values.
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Next, we examined whether gameplay performance significantly differs based on sociodemographic data, 
specifically across age and gender. We found that there is a pronounced gender disparity in Performance (with 
male players scoring higher than female players) both in the average Performance level and within each age group, 
and that the trend seen in Performance with increasing age group differs by gender. Specifically, the performance 
of female players is comparable between those in their teens, twenties, and thirties, with a sharp drop-off in 
performance in their forties, while for men, the sharp drop-off in performance happens between players in their 
forties and fifties, approximately a decade later than the trend with female players. A similar trend was found 
in participant’s self-rated affinity for action games and recent video game exposure. For men, we categorized all 
those under the age of 50 into the younger group, whereas for women we categorized all those under the age of 
40 into the younger group, resulting in N = 100 participants in the younger group and N = 54 participants in the 
older group. Figure 4 displays the model-fitted performance for each gender and age group, computed from the 
final model (Model 8) as seen in Table 2. Post-hoc generalized linear model tests indicated significant difference 
between genders (t = 4.241, p < 0.001) and age group (t = 2.242, p = 0.026). The difference between young men 
and old women was significant (t = 5.595, p < 0.001), but not between old men and younger women (p = 0.951).

Figure 3 depicts the distribution of performance scores for players in each age group.
Regressing performance to age (Model 1), then to both age and gender (Model 2) confirms that being younger 

and being male, both had substantial main effects on performance (adjusted  R2 = 0.633 for Model 2 with age and 
gender). Table 2 shows the regression coefficients for each model (Fig. 4).

Having demonstrated that there is a clear difference in performance between groups separated by age and 
gender, we examined whether the difference in performance was due to differing levels of familiarity with the 
video game medium or due to an underlying decline in cognitive ability. To examine this, we utilized the par-
ticipants’ first age of exposure to video games and hours per week playing video games in the past 6 months, and 
their affinity towards action video games, all items from the post-game questionnaire. Additionally, we examined 
to what extent player input tendencies predicted overall performance.

The “Input Multi-tasking” metric from gameplay behavior is a measure of how often the player played using 
both thumbs at once. This allows players to both move the avatar and swing the viewport around simultaneously. 
The game is entirely playable and completable without using this feature (especially because altering the viewport 

Figure 2.  Diagram depicting common actions taken during gameplay, through screenshots of the prototype 
being played. How the player uses the user interface to move around and rotate the viewport to look in a specific 
direction (A) are used to calculate Input Multi-tasking. How the player utilizes stealth-assisting tall grass (B) 
is used to calculate Stealth Oriented Behavior. How long the player spends aiming (C) is used to calculate Bias 
Towards Aiming. Whether or not the player is successful in landing hits (D) is used to calculate Projectile 
Accuracy. These actions indirectly and directly aggregate into the player’s gameplay session Performance.
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is also possible by tilting the device). However, using both fingers at once is also how players accustomed to play-
ing similar 3-D action video games maneuver their controls. Because this behavior of utilizing both controls at 
once does not fundamentally advantage the player in this game’s strategy, we took this to be an empirical proxy 
of prior exposure to similar videogames rather than a strong indicator of one of the tested cognitive abilities.

Table 2 (Models 3–6) shows the model-building process for evaluating metrics related to game familiarity. 
Regressing in-game performance reveals that all three of these metrics are separately predictive of in-game 
performance in Model 3, from action game genre affinity (b = 0.222, se = 0.078, p < 0.01) to Input Multi-tasking 
(b = 0.400, se = 0.074, p < 0.001), to recent video game exposure (b = 0.149, se = 0.071, p < 0.05). However, upon 
introducing player age in Model 4 (Table 2), recent video game exposure ceases to be a significant predictor of 
performance (b = 0.082, se = 0.056), and upon further introduction of player gender as a variable in Model 5, 
action game preference ceases to be a significant predictor as well (b = 0.073, se = 0.060). Removing the non-sig-
nificant parameters, we arrive at Model 6; only Input Multi-tasking remains as a significant predictor (b = 0.236, 
se = 0.047, p < 0.001) of player performance while controlling for player age and gender.

However, we see that even when controlling for Input Multi-tasking differences, age and gender remain con-
siderable predictors of in-game performance, thereby refuting our hypothesis that age-related and gender-related 
differences are predominantly explained by differences in familiarity with the video game medium rather than 
other age-related qualities (such as cognitive decline) and gender-related qualities (such as differences in average 
spatial abilities unrelated to video  games33). It appears that though familiarity with the touchscreen device and the 
video game paradigm (as measured by optional dual finger for input) is a vital component of overall performance, 
it is by no means enough to explain the clear gender differences and age-related decline seen in performance.

Table 1.  Table of correlations (Pearson’s correlation) between in-game metrics and cognitive test metrics 
(significance *p < 0.05, **p < 0.01, ***p < 0.001, significant cells with bold values) for the entire player sample 
for which metrics could be computed (N = 154 for entire sample, N = 100 for younger group, N = 54 for older 
group).

In-game metrics

Overall 
performance Projectile accuracy Input multi-tasking

Stealth-oriented 
behavior Bias towards aiming

Cognitive test 
metrics

Entire sample 
(N = 154)

Input precision 0.452***
p = 4.04 × 10–9

0.379***
p = 1.23 × 10–6

−0.035
p = 0.665

0.288***
p = 0.000291

−0.084
p = 0.298

Visual discrimina-
tion

0.442***
p = 9.22 × 10–9

0.432***
p = 2.27 × 10–8

−0.015
p = 0.857

0.386***
p = 7.87 × 10–7

−0.088
p = 0.282

Recall accuracy 0.486***
p = 1.72 × 10–10

0.427***
p = 3.30 × 10–8

0.106
p = 0.192

0.288***
p = 0.000285

−0.019
p = 0.818

Recall confidence 0.243**
p = 0.00236

0.149
p = 0.065

0.218**
p = 0.00670

−0.024
p = 0.765

−0.027
p = 0.135

Abstract reasoning 0.552***
p = 1.19 × 10–13

0.492***
p = 9.69 × 10–11

0.051
p = 0.533

0.392***
p = 4.88 × 10–7

−0.071
p = 0.381

Sustained attention 0.043
p = 0.598

0.109
p = 0.180

0.028
p = 0.729

0.088
p = 0.277

−0.084
p = 0.298

Younger subset 
(N = 100)

Input precision 0.105
p = 0.298

0.003
p = 0.975

−0.114
p = 0.258

−0.058
p = 0.565

−0.025
p = 0.803

Visual discrimina-
tion

0.141
p = 0.161

0.215*
p = 0.032

−0.004
p = 0.971

0.336***
p = 0.000623

−0.025
p = 0.803

Recall accuracy 0.295**
p = 0.00289

0.139
p = 0.167

0.132
p = 0.191

0.186
p = 0.063

0.000
p = 0.997

Recall confidence 0.346***
p = 0.000419

0.095
p = 0.349

0.298**
p = 0.00260

−0.119
p = 0.238

0.082
p = 0.415

Abstract reasoning 0.275**
p = 0.00571

0.189
p = 0.060

0.070
p = 0.489

0.301**
p = 0.00237

0.026
p = 0.799

Sustained attention 0.074
p = 0.465

0.225*
p = 0.024

0.064
p = 0.524

0.163
p = 0.104

0.086
p = 0.397

Older subset (N = 54)

Input precision 0.107
p = 0.443

0.037
p = 0.791

−0.097
p = 0.485

0.169
p = 0.223

0.071
p = 0.608

Visual discrimina-
tion

0.262
p = 0.055

0.121
p = 0.382

−0.223
p = 0.104

0.062
p = 0.655

0.000
p = 0.998

Recall accuracy 0.180
p = 0.194

0.269
p = 0.050

−0.057
p = 0.680

0.050
p = 0.719

0.194
p = 0.160

Recall confidence 0.097
p = 0.486

0.232
p = 0.091

−0.002
p = 0.988

0.105
p = 0.448

0.225
p = 0.103

Abstract reasoning 0.217
p = 0.115

0.185
p = 0.180

−0.161
p = 0.245

0.096
p = 0.492

0.067
p = 0.632

Sustained attention 0.178
p = 0.198

0.041
p = 0.769

−0.134
p = 0.335

−0.125
p = 0.369

0.090
p = 0.517
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Table 2.  Table of multiple linear regression models with in-game performance as the dependent variable 
(significance shown on regression coefficients with standard error in parentheses below; *p < 0.05, **p < 0.01, 
***p < 0.001). Model 1 suggests that performance and age are associated, while Model 2 suggests that there 
is a gender gap in performance separate from age-related variance. Models 3–6 examine which measures—
both in-game and external—provide information about prior video game exposure while controlling for age 
and gender. Models 7–8 suggest that the relationship between multitasking input and performance is vastly 
different between younger and older players. *p < 0.05; **p < 0.01; ***p < 0.001.

Model

Dependent variable: performance

(1) (2) (3) (4) (5) (6) (7) (8)

Current Age
−0.049*** −0.049*** −0.043*** −0.046*** −0.047*** −0.044*** −0.034***

(0.004) (0.003) (0.005) (0.005) (0.003) (0.006) (0.006)

Gender (0 = Not 
female, 1 = female)

−0.707*** −0.532*** −0.613*** −0.567*** −0.462***

(0.098) (0.118) (0.092) (0.109) (0.109)

Action video game 
affinity (7-point 
Likert scale)

0.222** 0.160* 0.073

(0.078) (0.061) (0.060)

Input Multitask-
ing (z)

0.400*** 0.274*** 0.237*** 0.235*** 0.238*** -0.057

(0.074) (0.059) (0.055) (0.046) (0.047) (0.093)

Recent Video 
Game Exposure 
(z)

0.150* 0.082 0.041

(0.071) (0.056) (0.052)

Generation 
(0 = older; 
1 = younger)

0.149 0.445*

(0.188) (0.199)

Input multitasking 
* generation

0.408***

(0.112)

Intercept
1.913*** 2.253*** 0.171* 1.758*** 2.099*** 2.156*** 1.883*** 1.251**

(0.161) (0.147) (0.075) (0.189) (0.191) (0.138) (0.371) (0.397)

Adjusted  R2 0.509 0.633 0.295 0.575 0.637 0.685 0.684 0.708

F statistic 159.834*** (df = 1; 
152)

133.116*** (df = 2; 
151)

17.578*** (df = 3; 
116)

41.271*** (df = 4; 
115)

42.692*** (df = 5; 
114)

111.744*** (df = 3; 
150)

83.758*** (df = 4; 
149)

75.147*** (df = 5; 
148)

Figure 3.  Box plot of player performance grouped by age group and separated by gender. Bold lines indicate 
median value; box bounds represent first and third quartile, while dots represent outliers based on interquartile 
range. In both genders average performance is comparable across younger age groups but is noticeably lower 
beginning with a specific age group (40 s for women, and 50 s for men).
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Recalling that performance displayed a discontinuity depending on whether the participant belonged to below 
or above a divide (Fig. 3), we examine whether the relationship between performance and Input Multi-tasking 
(while controlling for age and gender) differs between the two generational groups.

Adding the grouping variable to the performance model in Table 2 (Model 7) yields no new useful informa-
tion, as the grouping alone does not predict performance any better than the combination of Input Multi-tasking, 
age, and gender. However, allowing Input Multi-tasking and grouping to interact in Model 8 reveals that the 
main effect of Input Multi-tasking becomes non-significant (b = −0.058, se = 0.093, p = 0.09), and the interaction 
becomes significant (b = 0.410, se = 0.112, p < 0.001). Meanwhile, age and gender continue to have significant 
(p < 0.001) main effects, and the grouping appears to have a significant main effect (b = 0.445, se = 0.199, p = 0.026) 
separate from the other parameters.

Plotting model-fitted Input Multi-tasking by performance reveals that the relationship between Input Multi-
tasking and performance is quite different for those below and those above the divide, as seen in Fig. 5. For the 
younger group, a higher z-score on Input Multi-tasking tendencies predicts higher performance, suggesting that 
the increased propensity to maneuver with both fingers at once reflects their accumulated expertise with similar 
games; for the older group, no such relation exists.

If finger multi-tasking (Input Multi-tasking) and game performance are related in quite different ways depend-
ing on the age group, what does this imply about the relationship between other measurements of the player 
and in-game metrics?

Going back to comparing the associations between game metrics and cognitive test metrics for the whole 
group and for the younger group (Table 1), we find that the relations between game-derived factors and cogni-
tive test-derived factors differs depending on who is included in the set. While the whole-group comparisons 
suggested that in-game metrics were related to almost all cognitive tests, the younger group comparisons suggest 
that Performance is significantly correlated with just abstract reasoning (p < 0.01), recall accuracy (p < 0.001), and 
recall confidence (p < 0.01); that Projectile Accuracy is reflective of Sustained Attention (p = 0.024) and Visual 
Discrimination (p = 0.032), and that Input Multi-tasking is related to Recall Confidence (p < 0.01, as before). 
Stealth-oriented Behavior is related to Abstract Reasoning (p < 0.001) and Visual Discrimination (p < 0.01) and 
aiming is unrelated to the various cognitive parameters. With the older group, however, all links between cogni-
tive tests and in-game performance vanish, as do a few of the within-game and within-cognitive test correlations 
(data not shown). Figure 1 shows the significant correlations between game-derived and cognitive-test-derived 
metrics for the younger subset only as dashed lines in between latent variables (in the older subset, there were 
no significant correlations between the game-derived and cognitive-test-derived metrics).

Amongst younger players, different metrics drawn from different facets of gameplay each correspond to a 
combination of cognitive tests (except for bias towards aiming over moving) and are statistically distinct (at the 
very least, less interrelated than the cognitive test components). This suggests that a different analysis approach 
is necessary for older versus younger players of video games, and possibly that the same video game cannot reli-
ably reflect the same cognitive abilities across generational divides.

Figure 4.  Model-fitted in-game performance as a function of age group and gender, controlling for input multi-
tasking and actual age (age was set to 40, the mean, for the comparison). Final model (model 8) used.
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Discussion
The results demonstrate that in-game behavior metrics correlate to distinct tests contained within the traditional 
cognitive battery employed here, with the cognitive ingredients of each game metric being more defined and 
unique among younger players. Our findings are cause for optimism regarding using different facets of a single 
gameplay to characterize distinct cognitive behaviors in players, but simultaneously caution against a one-size-
fits-all approach, as the relation between game mechanics and cognitive tests becomes unclear in older players.

Having demonstrated that the various facets of gameplay are tied more closely to cognitive measures in the 
younger generation (henceforth the digital generation), further examination of the individual correlations reveals 
that the connections are (for the most part) sensible based on what ought to be happening in those gameplay 
moments. Performance being related to abstraction, recall confidence, and recall accuracy is sensible as suc-
cessfully completing the in-game task requires accurately comprehending environmental cues and strategizing 
towards optimizing one’s movements based on what enemies are remaining and nearby. Projectile Accuracy 
being related to sustained attention and visual discrimination are also sensible, considering that successfully 
aiming the projectile at an enemy (especially from afar) requires minute adjustments in reticle positioning and 
possibly extended waiting until the enemy moves or orients in a certain way. Input Multi-tasking being related 
to recall confidence is interesting, but the conceptual relation is not immediately obvious. Stealth-oriented 
Behavior being related to abstraction and visual discrimination are sensible as well since the enemy’s detec-
tion radius is not visually obvious and must be extrapolated from the player’s experience with other enemies; 
visually discerning the orientation and distance of enemies from afar requires detecting minute differences in 
the displayed avatar. The aiming parameter in-game remained independent from all other metrics, in-game or 
otherwise, and may represent a cognitive activity or tendency that we were unable to capture in the metrics we 
employed in the present study.

As expected from previously reported underlying differences in cognitive function as well as differences in 
prior gaming exposure, on average young male players marked the highest performance while older female play-
ers recorded the lowest performance metrics (Fig. 4). This in itself is not surprising: On average, men perform 
better than women on 3-D navigational tasks in video  games38, and younger players perform better than older 
players on fast-paced action  games35. We used input multitasking as a measure of prior exposure to gaming—
which seems reasonable, given that it predicted in-game performance much better than self-reported hours spent 
gaming and self-reported affinity towards action video games—and significant main effects from age and gender 
remained (Table 2, models 7–8). This suggests that while in-game performance reflected prior gaming experi-
ence to some extent, the difference in performance between the demographic groups also represents differences 
in underlying cognitive ability to an extent. Demonstrating that both are present in the overall performance 
metric is important because video game exposure also differs by demographic, it can be difficult to separate 
performance differences from prior exposure and from differences in relevant cognitive domains. Much about 
the relationship between prior gaming experience and performance in a new video game remains to be known: 
past video game experience (alongside traditional cognitive abilities) has been shown to selectively predict 
learning and performance in novel video game experiences within the same game  genre40, but further research 
is needed to elucidate the mechanism by which prior video game experience influences learning in new video 
games and whether it is possible to distinguish experience-aided learning from general cognitive ability-aided 
learning. There is also research to suggest that age of first exposure to video games, rather than recent exposure 

Figure 5.  Performance as a function of Input Multi-tasking, separated by grouping (as previously computed).
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to video games, is a more accurate predictor of certain cognitive abilities, possibly due to the influence of video 
games being introduced during a period of developmental neural  plasticity39.

Furthermore, our present study demonstrated that even links between gameplay and cognitive ability promi-
nent in those able to navigate the game (younger generation in our case) are not guaranteed in those unfamiliar 
with the game (older generation in our case). If video-game-based biomarkers are to become feasible, proposed 
applications will need to be validated with specific demographic groups. The present study’s game was designed 
to be sufficiently complex to prevent ceiling effects among younger players, but this resulted in the performance 
of older players being restricted to a lower, narrower range. Conversely, we can easily imagine a video game that 
is simple enough to be approachable for video-game-novice older adults that is too simple to pick up on the dif-
ferences between experienced younger video game players. Just as we would not advise overlooking differences 
in video games even within the same genre, we would not advise taking it for granted that a video game has the 
same cognitive profiling ability against all demographic groups.

Complex video games are correspondingly more difficult to design and validate, requiring close collaboration 
between scientists and game engineers; and unless they are built to-purpose, commercial video games will often 
be dilute in their cognitive  targeting15 and/or not allow for the type of granular data collection needed to examine 
game mechanics separately. Despite those difficulties, we assert that complex video games have their place in 
evaluating cognitive behaviors and abilities, especially when characterizing cognitive abilities not in isolation but 
in concert. Real-life tasks do not necessarily have rigid structures that employ a single cognitive ability. Complex 
video games have the potential to capture cognitive processes and decision making amidst uncertainty much 
more realistically than tasks with artificially reduced complexity can.

Limitations. As has been noted by  others15, this first-pass exploration of video game play components and 
whether they can be used to model cognitive constructs ought not be considered complete in terms of validating 
this serious game. The present study had several limitations, of which we list some notable ones below.

In terms of study design, the present report was limited in at least three aspects. First, because we did not 
shuffle the activity sequence, we cannot rule out the possibility that the order of activities influenced the results. 
More specifically, there is the possibility that mental exhaustion (and variance in it) affected performance in the 
subsequent video game; a future area of focus could be to examine the degree to which mental depletion affects 
video game play. Second, we drew our entire sample from people in Western Japan, so the racial-ethnic and 
linguistic diversity of the participants was near nonexistent. It remains to be seen whether these associations 
between gameplay and cognitive tests hold across different cultural demographics than that of our sample. Third, 
we did not perform psychiatric screening on our participants, so there is the possibility that an unreported, 
unobserved psychiatric condition lurked in the results, particularly in the older group.

In terms of game design, there were also three limitations as well. First, because the tutorial stage was relatively 
short and did not explain every intricacy of the game, we cannot rule out the possibility that certain mechanisms 
in the game remained undiscovered by certain players, affecting their overall performance. For example, there 
are enemy types that appear in the main stages but not in the tutorial. The general principle of how to deal with 
enemies is explained, but the peculiarities of each enemy are not, and so a player not versed in video games may 
not figure out how to deal with a particularly tough enemy within the short 10-stage cycle of the experiment. 
Second, the game did involve the concept of limited health for the player but there was no penalty for being dam-
aged beyond that capacity apart from being sent back to the initial position on the outskirts of the stage. Since 
it was possible to repeatedly fail and try again, certain players may have not perceived the threat that enemies 
pose as well as we would have liked. Third, because we used an action video game, there was likely an advantage 
to people who have played similar games before. Prior action video game experience is predominantly found in 
younger generations, so older adults were effectively placed on a steeper learning curve by default. Studies have 
suggested that there are significant cognitive gains to be reaped in populations thought to experience difficulties 
in a certain domain, such as visually impaired youth, dyslexic patients, individuals with Down Syndrome, and 
older  adults19,65–67, so the fact that video-game-novice older adults yielded more unpredictable data is unsurpris-
ing: we cannot say for sure where they were on their learning trajectory when the game ended, and for some 
players the learning may not have even begun.

Lastly, in terms of analysis, we recognize two key limitations.
In grouping cognitive tests or in-game measurements into latent variables, we prioritized interpretability 

based on the cognitive functions that the component metrics were thought to represent. This resulted in some 
of the constructs in the structural model not having the strongest relations to their underlying metrics, such as 
Visual Discrimination on the cognitive test side having only a 0.41 and 0.37 factor loading with the line orienta-
tion test and the emotion discrimination test, respectively. Further studies and analyses may be warranted to 
determine if relating these tests in isolation to game elements would yield stronger interpretations.

Additionally, the present study only involved quantitative comparisons and focused on overall averages 
or measurements at certain points in game play. This limited our ability to examine how players of different 
expertise levels and demographics may employ different strategies or exhibit different behaviors and emotional 
states during game play. Similarly, by focusing on accuracy scores rather than efficiency or reaction time in the 
cognitive tests, we leave out characterizations of participant strategy when performing cognitive tasks. Cogni-
tive strategies and emotional states might both affect the results highlighted in this study and be informative 
outcomes themselves; this makes them worthy targets of further research.
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Conclusion
Video games hold promise for bringing the best of entertainment and psychometrics together; past studies have 
explored characterizing single cognitive abilities using a game or several games. Here, we explored the feasibil-
ity of characterizing multiple cognitive components through metrics from different facets of a single gameplay 
experience. The metrics collected from different processes within the game were shown to be distinct and each 
uniquely related to metrics aggregated from a traditional cognitive battery administration. We found that age 
and gender both have significant effects on overall performance, with a striking difference between those born 
after the advent of video games and those born approximately before. Furthermore, we found that the connec-
tion between in-game metrics and cognitive measures was more organized and defined in the younger group but 
unreliable in the older group. Thus, our game was useful in characterizing a constellation of cognitive abilities in 
younger players, but we failed to define what the same parameters meant in older players.

Given this tension between video game design and which cognitive abilities it will activate in whom, why did 
we opt to design a complex video game with multiple moving parts instead of a more strictly defined and analyti-
cally simple gamified cognitive test? We see the cognitive research potential of video games not just in strictly 
defined tasks but also in complex richness of professionally designed gameplay. We thus believed it worthwhile 
to explore the feasibility of characterizing the cognitive processes involved in complex, multi-faceted gameplay. 
Our hope is that the present study informs and motivates further collaboration between researchers and profes-
sional video game designers in utilizing complex games in cognition research.

Methods
Participants. Eligible participants were over 18 years of age, and capable of playing the 30-min video game 
session. We excluded those who did not meet the age threshold, reported being sensitive to flashing lights, 
reported being prone to motion sickness, or were otherwise unable to complete the tasks in the study. The par-
ticipants resided in Kyoto, Japan or in its vicinity.
Materials. We obtained game-based metrics from a novel 3-D action video game software developed by 
BonBon Inc. of Kyoto, Japan. We describe the game design in detail in the Supplementary Information. We 
defined the in-game measurements to be collected and compared based on extensive discussions with the game 
designers and developers, to balance interpretability and feasibility, and then further narrowed metrics down 
based on whether they yielded distributions tolerable for regression in an internal study prior to the present 
experiment.

In order to profile participants’ cognitive abilities for comparison against game metrics, we used WebCNP, 
a web-based computerized neurocognitive  scanning26. We excluded tests centered around verbal memory, as 
the test was with English words and English was not the primary language for our participants. Additionally, we 
examined the tests in terms of accuracy rather than efficiency or response time, as the first test of motor praxis 
score was functionally a reciprocal response time, and with one exception the response time measurements for 
the other tests could all be explained by one latent variable, which in turn was essentially the “Input Precision” 
factor we note in our structural equation model. In the Supplementary Information we provide a brief description 
of the subtests used, as well as a description of the response time factor in relation to the Input Precision variable.

Institutional review. The study protocol received approval from The Kyoto University Psychological Sci-
ence Unit Ethics Committee (Identifier 2-P-30) and was performed in accordance with relevant guidelines and 
regulations.

Procedure. We called for participants via social media and by word-of-mouth in the local community, with 
specific emphasis on video game experience not being a prerequisite. The initial call included a description of 
the study protocol, aims, and conditions. Once on-site, the participant received a verbal explanation of the terms 
and gave their written informed consent. The cognitive exam portion took about 60 min for twelve subtests. 
Trained staff verbally translated the on-screen instructions into Japanese according to a predetermined script 
and answered any questions concerning the subtests before beginning. After the cognitive exam portion, par-
ticipants received a 5-min break, and then played the video game for one tutorial stage and ten data-collecting 
stages, which took 20–30 min. Staff answered questions about gameplay only during the tutorial stage. After 
gameplay, the participant responded to a short questionnaire about their demographics and prior video gaming 
experience. After confirming their participation consent, participants received a gift card compensating them 
for their time and ended their participation. All participants provided written informed consent at the beginning 
and confirmed their consent at the end.

Analysis. We checked in-game metrics for ceiling and floor effects, and for any bimodality. We combined 
both in-game metrics based on common conceptual features and results for exploratory factor analysis, and 
then checked their covariance to confirm that they were differentiable factors. Metrics from the Penn Comput-
erized Neurocognitive Battery were summarized into factors through confirmatory factor  analysis68,69. Finally, 
we explored the relationships between in-game metrics and sociodemographic data as well as prior video game 
experience.

We performed all statistical analysis using the R statistical programming  language70. Statistical significance 
tests were conducted with an alpha level of 0.05 and all tests where applicable were two-tailed. Plots visualizing 
the data were created with the ggplot2  package71.
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