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Plasma proteomic and polygenic profiling
improve risk stratification and personalized
screening for colorectal cancer

Jing Sun1,2,9, Yue Liu1,3,4,5,9, Jianhui Zhao1,2, Bin Lu6, Siyun Zhou1,2, Wei Lu1,3,4,5,
Jingsun Wei1,3,4,5, Yeting Hu1,3,4,5, Xiangxing Kong1,3,4,5, Junshun Gao7,8,
Hong Guan7,8, Junli Gao7,8,10, Qian Xiao 1,3,4,5,10 & Xue Li 1,2,10

This study aims to identify colorectal cancer (CRC)-related proteomic profiles
and develop a prediction model for CRC onset by integrating proteomic
profiles with genetic and non-genetic factors (QCancer-15) to improve the risk
stratification and estimate of personalized initial screening age. Here, using a
two-stage strategy, we prioritize 15 protein biomarkers as predictors to con-
struct a protein risk score (ProS). The risk prediction model integrating pro-
teomic profiles with polygenic risk score (PRS) and QCancer-15 risk score
(QCancer-S) shows improved performance (C-statistic: 0.79 vs. 0.71,
P = 4.94E–03 in training cohort; 0.75 vs0.69,P = 5.49E–04 in validation cohort)
andnet benefit thanQCancer-S alone. The combinedmodelmarkedly stratifies
the risk of CRC onset. Participants with high ProS, PRS, or combined risk score
are proposed to start screening at age 46, 41, or before 40 years old. In this
work, the integration of blood proteomics with PRS and QCancer-15 demon-
strates improvedperformance for risk stratification and clinical implication for
the derivation of risk-adapted starting ages of CRC screening, which may
contribute to the decision-making process for CRC screening.

Colorectal cancer (CRC) is the thirdmost commonmalignancy and the
second cause of cancer death globally1. Currently, the most effective
way to reduce the burden of CRC remains early detection by popula-
tion screening. Although the modalities of screening vary inter-
nationally, screening programs are mostly based on age and family
history and not considered other risk determinants. However, accu-
mulating evidence indicates that substantial variation of CRC risk
among populations is not only attributed to age and family history,
especially the incidence of early-onset CRC has gradually increased in

recent years2. Furthermore, given that colonoscopy (the gold stan-
dard) is invasive, time consuming, and expensive, further identification
of non-invasive early screening and diagnostic biomarkers and devel-
opment of the risk-based, personalized screening recommendations
for improving screening effectiveness is urgently required.

Blood proteins, appearing in circulation due to active secretion or
cellular leakage, present a holistic readout of human health states and
diseases3 and act as a major reservoir of biomarkers and therapeutic
targets, holding easier accessibility and the most intrinsic predictive
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potential for diseases4. Several studies have shown the close bond
between circulating proteins and CRC risk5,6 and suggested that pro-
tein biomarkers have the potential to discriminate CRC cases from
controls7–9. However, these proteins-based predictive studies were
based on case-control design, with small sample size. Population-
based longitudinal study, in theory, is more appropriate to estimate
early molecular signatures associated with disease onset for risk stra-
tification. Moreover, genetic and well-established non-genetic factors
(e.g., QCancer-[15 yr, colorectal])10,11 also play an important role in CRC
incidence and contribute to risk stratification of CRC12. Harnessing
circulating proteins, as well as genetic and non-genetic factors simul-
taneously can be expected to develop predictive tools with better
clinical utility in CRC.

In this work, we use a two-stage strategy based on case-control
and independent prospective population cohort to identify and vali-
date the CRC-related proteomic profiles (Fig. 1). Then, QCancer-15 risk
score and polygenic risk scores (PRSs) are constructed and combined
with key protein biomarkers to develop a prediction model for CRC
onset. Last, we evaluate the predictive performance of the combined
model and potential clinical utility in the aspect of net benefit, risk
stratification, and personalized initial screening age for CRC.

Results
Proteomic signatures of CRC
In the discovery stage, a total of 421 differentially expressed plasma
proteins were found between CRC cases and controls, with 243
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Fig. 1 | Flowchart showing the overall study design. BMI body mass index, TDI Townsend deprivation index, PRS polygenic risk score, RAP risk advancement period.
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upregulated proteins (Log2 fold change, Log2FC > 0, false discovery
rate, FDR <0.05) and 178 downregulated proteins (Log2FC < 0, FDR <
0.05) (Supplementary Data 1). In the validation stage (UK Biobank,
UKBB), during a median follow-up time of 13.05 (interquartile range,
IQR: 12.38–13.75) years, 731 participants were diagnosed with CRC
(Table 1). 253 of 421 proteins were also measured in UKBB, and a total
of 88 were validated. 75 proteins were positively associated with inci-
dent CRC (hazard ratio, HR > 1, P < 0.05) and 13 proteins were inversely
associatedwith incidentCRC (HR < 1,P < 0.05) (SupplementaryData 1).

Construction of risk scores
Of the 88 proteins identified by two-stage strategy, the least absolute
shrinkage and selection operator (LASSO)-Cox regression was applied
to optimize the selection of protein signatures associated with CRC
risk. Consequently, 15 protein biomarkers (IGFBP4, WFDC2, TFF1,
LTBP2, COL18A1, CCN3, SELL, PON3, ADGRG2, IGF2R, PZP, CDON,
TNXB, APLP1, CR2) were finally selected to construct the protein risk
score (ProS) for CRC risk (Fig. 2, Supplementary Fig. 1). The baseline
characteristics included in QCancer-15 predictors of UKBB are shown
in Table 1. The constructed ProS (HR: 1.24 per SD increment, 95%
confidence interval [CI]: 1.21–1.28, P = 1.85 × 10−48) and QCancer-15 risk
score (QCancer-S) (HR: 1.55 per SD increment, 95% CI: 1.48–1.62,
P = 1.51 × 10−72) were positively associated with incident CRC (Supple-
mentary Data 2). Using LDpred2, a total of 2 PRSs were constructed.
Both of the two PRSswere positively associatedwith incident CRC, and
HR per SD of PRS for CRC risk was 1.46 for LDpred2-auto and 2.31 for
LDpred2-grid (95% CI: 2.15–2.48, P = 4.36 × 10−115) (Supplemen-
tary Data 2).

Development and evaluation of prediction model
The prediction model based on QCancer-S, PRSs, and ProS were con-
structed in UKBB, respectively. In the training cohort, the C-statistics
for both QCancer-S and QCancer-S (including geographical region)
was 0.71 (95% CI: 0.66, 0.76), and there was no statistically significant
difference (P = 0.63) (Fig. 3a, Supplementary Data 2). For general-
izability, the QCancer-S was used in subsequent modeling and ana-
lyses. The C-statistics for ProS was 0.66 (95%CI: 0.61, 0.71) (Fig. 3a). Of
the 2 PRS models, LDpred2-grid performed best, with a C-statistic of
0.74 (95% CI: 0.69, 0.80) (Supplementary Data 2). Then the PRS
(LDpred2-grid) with the best performance was combined with
QCancer-S and ProS to construct a combined model, and the
C-statistic reached 0.79 (95% CI: 0.75, 0.84), which was significantly
improved than theQCancer-S alonemodel in both training (C-statistic:
0.79 vs. 0.71, P = 4.94E–03) and validation (C-statistic: 0.75 vs 0.69,
P = 5.49E–04) cohorts (Fig. 3a, Supplementary Data 2).

The results of stratified analyses are shown in Supplementary
Data 3. In the training cohort, the C-statistic of combined model was
0.76 (95% CI: 0.69, 0.83) for females and 0.77 (95% CI: 0.70, 0.84) for
males.When consideringCRC risk separately for colon and rectum, the
C-statistic of the combinedmodel reached 0.79 (95%CI: 0.74, 0.85) for
colon cancer and 0.82 (95% CI: 0.73, 0.91) for rectal cancer. The
combined model tended to perform better than QCancer-S alone
regardless of whether the participants had previously been screened
for bowel cancer or a family history of CRC. The C-statistic of the
combined model reached 0.79 (95% CI: 0.73, 0.85) for participants
without screening, 0.79 (95% CI: 0.62, 0.95) for participants who had
previously been screened before they were recruited into the UKBB
one year and earlier, and 0.91 (95% CI: 0.85, 0.98) for participants with
family history. Similar results were also observed in the validation
cohort. For participants without a family history of CRC and no
screening, the combined model still showed improved discrimination
than QCancer-S alone in both training (C-statistic, 0.82 vs. 0.71,
P <0.05) and validation (C-statistic, 0.75 vs. 0.71, P < 0.05) cohorts.
Calibration curves indicated that the observed andpredicted rates had
good concordance (Fig. 3b, Supplementary Fig. 2).

Net benefit of prediction model
Decision curve analyses showed that the combined model had greater
net benefit than QCancer-S alone model across a range of risk prob-
abilities in both training and validation cohorts, as well as whole
population (Fig. 3c, Supplementary Fig. 3). For instance, when the risk
probability was 1%, the net benefit for combined model was 0.65% in
whole population (0.62% in training cohort, 0.71% validation cohort),

Table 1 | Baseline characteristics of participants

Characteristic All participants Incident CRC cases

Number of participants 52,231 731

Follow-up (years), median (IQR) 13.05 (12.38, 13.75) 6.69 (3.49, 9.34)

Sex

Female 28,196 (54%) 305 (42%)

Male 24,035 (46%) 426 (58%)

Age (years), median (IQR) 58 (50, 64) 62 (57, 66)

Ethnicity

White/not recorded 48,951 (94%) 702 (96%)

Black African 684 (1.3%) 8 (1.1%)

Caribbean 502 (1.0%) 3 (0.4%)

Indian 581 (1.1%) 2 (0.3%)

Pakistani 172 (0.3%) 3 (0.4%)

Bangladeshi 29 (<0.1%) 0 (0%)

Other Asian 192 (0.4%) 3 (0.4%)

Chinese 147 (0.3%) 4 (0.5%)

Other 973 (1.9%) 6 (0.8%)

Townsend deprivation index, med-
ian (IQR)

–2.1 (–3.6, 0.8) –2.1 (–3.5, 0.6)

Body mass index (BMI), median (IQR) 26.8 (24.2, 29.9) 27.3 (24.8, 29.9)

Smoking

Non-smoker 28,304 (54%) 344 (47%)

Ex-smoker 18,160 (35%) 319 (44%)

Light smoker 2258 (4.3%) 23 (3.1%)

Moderate smoker 1617 (3.1%) 16 (2.2%)

Heavy smoker 1379 (2.6%) 20 (2.7%)

Missing 513 (1.0%) 9 (1.2%)

Alcohol intake

Non-drinker 4504 (8.6%) 61 (8.3%)

Trivial drinker 6189 (12%) 79 (11%)

Light drinker 15,584 (30%) 203 (28%)

Moderate drinker 10,514 (20%) 168 (23%)

Heavy drinker 1946 (3.7%) 37 (5.1%)

Very heavy drinker 1285 (2.5%) 35 (4.8%)

Missing 12,209 (23%) 148 (20%)

Family history of colorectal cancer

No 47,614 (91%) 633 (87%)

Yes 3569 (6.8%) 81 (11%)

Missing 1048 (2.0%) 17 (2.3%)

Medical history

Diabetes 742 (1.4%) 13 (1.8%)

Ulcerative colitis 114 (0.2%) 3 (0.4%)

Bowel polyps 26 (<0.1%) 0 (0%)

Breast cancer 1105 (2.1%) 17 (2.3%)

Uterine cancer 113 (0.2%) 2 (0.3%)

Ovarian cancer 80 (0.2%) 1 (0.1%)

Cervical cancer 220 (0.4%) 0 (0%)

Lung cancer 46 (<0.1%) 1 (0.1%)

Blood cancers 263 (0.5%) 6 (0.8%)

Oral cancers 99 (0.2%) 3 (0.4%)

CRC colorectal cancer, IQR interquartile range.
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meaning that compared with assuming that none of participants were
intervened, 65 (62 in training cohort, 71 in validation cohort) net detect
CRCs without an increase of false-positives and unnecessary colo-
noscopies per 10,000 participants. The net benefit for the combined
model was 0.24% (0.24% in training cohort, 0.21% in validation cohort)
greater than assuming that all participants were intervened and 0.10%
(0.11% in training cohort, 0.06% in validation cohort) greater than the
QCancer-Smodel (Supplementary Data 4). Furthermore, therewere 24
(24 in training cohort, 21 in validation cohort) fewer false-positives for
the combined model whereas only 14 (13 in training cohort, 15 in
validation cohort) fewer false-positives for the QCancer-S model per
100 individuals. In stratification by sex or tumor site, the combined
model still performed better than QCancer-S alone (Supplementary
Fig. 3). In participants without a family history of CRC and without
screening, these values were 26 fewer false-positives for the combined
models whereas only 16 fewer false-positives for the QCancer-Smodel
per 100 individuals (Supplementary Fig. 3, Supplementary Data 4).

Risk stratification for CRC across risk groups
The combined model was then used to assess the risk of CRC for
participants, and a nomogram based on the information was estab-
lished across the whole population, training cohort, and validation
cohort as shown in Fig. 3d and Supplementary Fig. 4. After further
dividing the components of combined model (QCancer-S, PRS, and
ProS) and combined risk score (ComS) into three groups (low, med-
ium, and high), respectively, compared with medium group, partici-
pants in highQCancer-S group hadmore than 1.9-fold increased risk of
CRC (HR: 1.91, 95% CI: 1.60–2.29) among whole population (HR [95%
CI]: 2.06 [1.65–2.56] in training cohort, 1.66 [1.23–2.25] in validation
cohort), 2.5-fold increased risk of CRC for high PRS group (HR: 2.71,
95% CI: 2.24–3.27) among whole population (HR [95% CI]: 2.84

[2.26–3.59] in training cohort, 2.46 [1.78–3.40] in validation cohort),
1.5-fold increased risk of CRC for high ProS group (HR: 1.67, 95% CI:
1.40–1.99) among whole population (HR [95% CI]: 1.78 [1.43–2.22] in
training cohort, 1.48 [1.09–1.99] in validation cohort), and threefold
increased risk of CRC for high ComS group (HR: 3.27, 95% CI:
2.71–3.96) among whole population (HR [95% CI]: 2.94 [2.35–3.67] in
training cohort, 4.27 [2.96–6.18] in validation cohort) (Supplementary
Data 5). Figure 4a–d and Supplementary Fig. 5 show Kaplan–Meier
cumulative incidence curves across three risk groups based on four
risk scores among whole population, training cohort, and validation
cohort, respectively, showing distinct separation between different
risk groups (Log-rank P <0.0001) and the risk groups based on ComS
showing improved separation. In participants without a family history
of CRC and without screening, the ComS also performed better in risk
stratification (Supplementary Data 5, Supplementary Fig. 6).

Risk advancement period of CRC across different
stratification groups
Furthermore, participants in high PRS group reached the equivalent
CRC risk ~17.9 years (risk advancement period, RAP: 17.87, 95% CI:
12.91, 22.83) earlier than participants with PRS in the medium group
among whole population, whereas participants in low PRS group were
8.9 years later than medium group (RAP: –8.93, 95% CI: –13.34, –4.52)
(Table 2). Compared with the medium ProS group, participants in the
high ProS group reached the equivalent CRC risk of ~4.7 years (RAP:
4.67, 95% CI: 1.08, 8.27) earlier, whereas 4.4 years (RAP: –4.42, 95% CI:
–8.17, –0.66) later for participants in the low ProS group. When com-
pared with themediumComS group, participants in high ComS group
even reached the equivalent CRC risk 27.5 years (RAP: 27.52, 95% CI:
16.66, 38.37) earlier, while ~15.2 years (RAP: –15.15, 95% CI: –23.78,
–6.52) later for participants in the low ComS group. The RAP estimates

Fig. 2 | The results of 15 plasma proteins that were used to construct protein
risk score (ProS) with colorectal cancer from proteome-wide differential
expression analysis (discovery stage) andCoxproportional hazards regression
analysis (validation stage). The P-value was derived corresponding to a two-sided
test, and false discovery rate (FDR) was used for multiple testing correction. In the

validation stage, the centers of the lines represent estimated hazard ratios, and the
lines represent the 95% confidence intervals. Source data are provided as a Source
Data file. Log2FC Log2 fold change, FDR false discovery rate, HR hazard ratio, CI
confidence interval.
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Fig. 3 | Assessment of the prediction models of the QCancer-15 risk score
(QCancer-S)-based, polygenic risk score (PRS)-based, protein risk score (ProS)-
based, and Combined model for colorectal cancer (CRC). a Receiver operating
characteristic (ROC) curves for QCancer-S, PRS, ProS, and Combined model in
training cohort. b The calibration curves of four models predict the probability of

CRC in training cohort. c Decision curve analysis for QCancer-S and Combined
model in training cohort, calculated at median follow-up time (13.05 years). The
gray line in net benefit curves indicates no intervention, and the black line indicates
intervention for all. dNomogram for the prediction of the 5-, 10-, and 15-year being
free of CRC in whole population. Source data are provided as a Source Data file.

ComSQCancer-S PRS ProS

ProS ComS

a cb d

gf
PRS

e

Fig. 4 | Risk stratification and risk-adapted starting age of colorectal cancer
(CRC) screening in whole population across risk groups. Kaplan–Meier cumu-
lative incidence curves across risk groups based on (a) QCancer-S (log-rank
p = 4.13E–54), (b) polygenic risk score (PRS) (log-rank p = 3.98E–79), (c) protein risk
score (ProS) (log-rank p = 5.08E–40), and (d) combined risk score (ComS) (log-rank
p = 1.82E–121). The shadow bands represent confidence intervals. Age-specific 10-

year cumulative risk of CRC for participants across risk groups based on (e) PRS, (f)
ProS, and (g) ComS. The dashed line in age-specific 10-year cumulative risk curves
indicates the risk at age 50 years (the starting age of screening for average-risk
adults recommended by the current guidelines) in the general population. Source
data are provided as a Source Data file.
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and 95% CI across different risk groups in training and validation
cohorts are shown in Supplementary Data 6. When the analysis was
limited to participants without a family history of CRC and without
screening, similar results were observed (Supplementary Data 7).

Risk-adapted starting age of CRC screening
The 10-year cumulative risk was calculated subsequently to estimating
the personalized initial screening age forwhole population of different
risk groups. The ages of participants with low-, medium-, or high-PRS
reached 10-year cumulativeCRC risk equal to the average risk at age 50
years old in the general population were >60, 53, and 41 years old
(Fig. 4e, Table 2). The ages of participants with low-, medium-, or high-
ProS reached 10-year cumulative CRC risk equal to the average risk of
general population at age 50 years old were 57, 47, and 46 years old
(Fig. 4f, Table 2). When integration of ProS, PRS, and QCancer-S, the
ages of participants with low-,medium-, or high-ComS reached 10-year
cumulative CRC risk equal to the average risk at age 50 years old in the
general population were >60, 48, and <40 years old (Fig. 4g, Table 2).
Similar results were also observed in participants without a family
history of CRC and without screening (Supplementary Fig. 7, Supple-
mentary Data 7).

Discussion
Using a two-stage strategy, we identified CRC-related circulating pro-
teomic profiles and prioritized 15 protein biomarkers for risk stratifica-
tion. The prediction model integrating proteomic profiles with genetic
(i.e., PRS) and non-genetic factors (i.e., QCancer-15) performed better
across all metrics than QCancer-15 alone. In addition, the combined
modelmarkedly stratified the risk of CRConset andderived risk-adapted
starting ages for CRC screening. Compared with themedium risk group,
participants with high ProS, PRS, or ComS reached the equivalent CRC
risk of 4.7, 17.9, or even 27.5 years earlier, while 4.4, 8.9 or 15.2 years later
in the low ProS, PRS, or ComS group. When referencing the general
population aged 50 years old, participants with high ProS, PRS, or ComS
were proposed to start screening at age 46, 41, or before 40 years old,
while the corresponding low-score groups were proposed to start
screening at age 57 or after 60 years. Similar results were observed in
participants without a family history of CRC and no screening.

The two-stage study design identified and prioritized 15 circulat-
ing protein biomarkers associated with CRC incidence. Most of them
have reported evidence to be associated with either CRC risk, prog-
nosis, or response to the therapy in either protein level (i.e., TFF1,
LTBP2, PZP)13–15, mRNA expression (i.e., TFF1, LTBP2, WFDC2,
CDON)14,16–18, DNA methylation (i.e., PON3)19, or gene polymorphisms
(i.e., CR2)20. TFF1 (Trefoil factor 1), belongs to the members of the

trefoil family, which are stable secretory proteins expressed in gas-
trointestinal mucosa. In line with our findings, previous studies have
reported that serum TFF1 levels were significantly higher in CRC
patients than healthy controls13, and the mRNA level of TFF1 was ele-
vated in CRC tissues than the adjacent normal tissues and promoted
themalignant behavior of colon cancer via activation of the epithelial-
mesenchymal transition process16. LTBP2 (Latent-transforming growth
factor beta-binding protein 2) is a member of the fibrillin/LTBP
superfamily. Both mRNA and protein levels of LTBP2 in CRC tissues
were reported to be remarkably higher than those in adjacent normal
tissues, andhigh LTBP2protein levelwas linked topoor overall survival
in CRC patients, suggesting that LTBP2 might act as an oncogene in
CRC development and an important biomarker for predicting CRC
prognosis14. We also indicated a protective effect of plasma PZP
(Pregnancy zone protein) on the risk of CRC onset. Similarly, Wang et
al. reported that serumPZPprotein level was related to the response to
neoadjuvant chemoradiation (nCRT), and rectal cancer patients with a
higher level of PZP tended to pathological complete response, with
potential predictive value for rectal cancer with nCRT15.

A proactive approach on the basis of individualized risk predic-
tion has been described as the future of early detection for cancers,
highlighting multifactorial cancer risk assessment of epidemiological
factors, inherited genetic variants, and omics biomarkers (especially
protein biomarkers)21. Previous studies have developed prediction
models for CRC risk based on only PRS or non-genetic predictors22,23 or
combining both and observed that models integrating PRS and non-
genetic predictors had better performance than non-genetic alone or
PRS alone12,24. Specifically, our previous study based on 116 GWAS
significant SNPs produced a C-statistic of 0.623. Thomas et al. reported
a C-statistic of 0.65 for CRC risk based on a cross-ancestry PRS alone
model in non-Hispanic White22. Briggs et al. integrated the QCancer
and PRS to produce a C-statistic of 0.73 in predicting CRC risk for
males and 0.69 for females12, and another study reported a C-statistic
of 0.72 after combining PRS and non-genetic predictors24. Further-
more, a case-control study in the American population has shown
improved discrimination after adding 11 plasma biomarkers reported
by previous studies basedon candidate strategy into a non-genetic risk
factors model, with a C-statistic of 0.66–0.739. Consistently, our work
supported and extended these findings. Even though there were dif-
ferences in protein coverage (candidate strategy vs. proteome), study
designs, and study population, the protein (IGFBP3) included in their
model and the protein (IGFBP4) included in our model both belong to
the insulin-like growth factor-binding protein family, which indicated
the generalizability in some degree. By integrating proteomic profiles
with PRS and QCancer-15, we constructed a combined model with a

Table 2 | Risk advancement period (RAP) and risk-adapted starting age of colorectal cancer (CRC) screening in participants
across different risk levels

Risk score Case Control RAP (95% CI) (years) Risk-adapted starting age (years) of screening

PRS

Low 183 25,932 –8.93 (–13.34, –4.52) >60

Medium 149 12,909 ref 53

High 399 12,659 17.87 (12.91, 22.83) 41

ProS

Low 210 25,905 –4.42 (–8.17, –0.66) 57

Medium 196 12,862 ref 47

High 325 12,733 4.67 (1.08, 8.27) 46

ComS

Low 140 25,976 –15.15 (–23.78, –6.52) >60

Medium 140 12,917 ref 48

High 451 12,607 27.52 (16.66, 38.37) <40

RAP risk advancement period, CI confidence interval, PRS polygenic risk score, ProS protein risk score, ComS combined risk score.
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C-statistic of 0.79 for prediction of the risk of CRC incidence in a
prospective cohort, which showed better performance than the
QCancer-15 or PRS alone models in both training and validation
cohorts. In addition, the results from the decision curve analysis and
Kaplan–Meier curves showed an increasednet benefit of the combined
model to the QCancer-15 alone model and suggested the potential
clinical utility in risk stratification for CRC.

The risk-adapted starting age of screening has important clinical
and public health significance for individualized prevention of cancer.
A previous study based on the family history of CRC estimated that
participants with different family histories reached a 10-year cumula-
tive risk of CRC equal to the risk at age 50 years old in the average-risk
population 3–29 years earlier25. Another study focusing on sex and PRS
using the approach of RAP estimated that individuals in the lowest or
highest PRS decile reached an equivalent risk of CRC onset at 8–10
years later or earlier than individuals in middle PRS deciles, and males
in the highest PRS decile reached comparable risk at 16 years earlier
than females inmiddle PRSdeciles26. Consistently, our study employed
both RAP and absolute risk (i.e., 10-year cumulative risk) methods and
obtained similar estimates for risk-adapted starting ages of CRC
screening. We found that participants in high PRS group reached the
equivalent CRC risk 17.9 years earlier than participants in the medium
PRS group, whereas participants in low PRS group were 8.9 years later
than medium group. Similarly, when using the average-risk adults at
50 years old which is the screening age recommended by the current
guidelines as ref. 27, the age of participants with high- or low-PRS
reached 10-year cumulative CRC risk equal to comparable risk was 41
or >60 years old. Additionally, we extended these approaches to
proteomics and estimated the risk-adapted starting age of CRC
screening for participants with ProS in high or low group to be 46 or
57 years old. When integrating QCancer-15, PRS, and ProS, the ages
reached equivalent risk across different risk groups showed greater
separation. Participants in high ComS group reached the equivalent
CRC risk 27.5 years earlier than participants in medium group, while
15.2 years later for participants in low ComS group than medium
group. The risk-adapted starting age of CRC screening for participants
in high- or low-risk group was estimated to be before 40 or after
60 years old. Similar results were observed in participants without a
family history of CRC and no screening who usually have a relatively
lower risk and are easily overlooked. Overall, these findings supported
strong evidence for promoting proteomics in clinical practice, which
could contribute to improving personalized risk assessment and
screening of CRC and the development of precisionmedicine for CRC.

This study has some strengths. First, a two-stage design based on
high-throughput proteomic technologies was used to identify the
CRC-related proteomic profiles, which ensured that the proteins with
stable associations with CRC across different populations and pro-
teomic platforms were used for modeling, improving the general-
izability of these findings. Second, the community-based prospective
cohort with a large sample size, good representation, and long-term
follow-up allowed us to build a population-based predictionmodel for
CRC onset. Third, integrating the circulating proteomic profiles with
genetic and well-established non-genetic factors provided a holistic
readout of humanhealth states,which contributed to themore precise
and comprehensive risk stratification for CRC to help focus limited
resources on individuals with high risk. Fourth, RAP and 10-year
cumulative risk provided similar results for the recommendation of
risk-adapted starting ages of CRC screening, which implied the stabi-
lity and reliability of the current findings. Additionally, the parameters
needed for themodel building can be obtained from self-reported and
a single non-invasive biospecimen (i.e., blood), which ensured the
feasibility and acceptance. Nevertheless, several limitations of this
study require careful consideration. First, although the CRC-related
proteomic biomarkers were identified by a two-stage design based on
both Chinese and UKBB populations, the prediction model was

established in the UKBB (including European and non-European
ancestry participants) with only internal verification. Further
research based on independent external populations was needed to
assess the generalizability before applying the current findings in
routine care. Second, the RAP and 10-year cumulative risk could not be
used in assessing risk-adapted starting age of CRC screening across
different QCancer-S groups due to the age information itself included
and predominated in QCancer-S. Further research to evaluate the
contribution of well-established non-genetic factors (excluding age) in
risk-adapted starting age of CRC screening may be interesting. Addi-
tionally, although most of the estimates of RAPs were similar between
the training cohort and validation cohort, theRAPestimates for several
risk score groups were not significant in the validation cohort, which
may be partly attributed to the small number of cases. Lastly, not only
the initial screening age but also screening intervals are included in
screening strategies. The screening intervals for risk-adapted CRC
screening need to be investigated by future studies.

In conclusion, the integration of blood proteomics with PRS and
QCancer-15 demonstrated improved performance for risk stratifica-
tion and clinical implication for the derivation of risk-adapted starting
ages of CRC screening. This may contribute to the decision-making
process for CRC screening, with the potential to reduce the screening
burden of people with lower risk, while improving screening detection
rates. Future research to evaluate the acceptance, feasibility, and cost-
effectiveness of the combinedmodel and risk-adapted screening age is
needed.

Methods
Ethics approval and consent to participate
Ethics approval for the discovery stage of this studywas obtained from
the Ethics Committees of Second Affiliated Hospital of Zhejiang Uni-
versity School of Medicine (2023-1190). The UKBB was approved by
North West Multicenter Research Ethics Committee (11/NW/0382). All
participants provided written informed consent, and this study was
performed in accordance with the Declaration of Helsinki.

Study design and participants
A flowchart shows the overall study design (Fig. 1). Briefly, using a two-
stage strategy, we first explored CRC-related protein biomarkers by
proteome-wide differential expression analysis based on a case-
control design and validated them in an independent prospective
population cohort. Then, the ProS, QCancer-S, and PRSs were con-
structed and integrated to develop a prediction model for the risk of
CRC onset based on the prospective population cohort. Last, the
combined model was evaluated in predictive performance and possi-
ble clinical utility (e.g., net benefit, risk stratification, and personalized
initial screening age).

The discovery stage comprised 150 newly diagnosed CRC cases
(age range: 44–89 years old) and 50 sex- and age-matched controls
from the Second Affiliated Hospital of Zhejiang University School of
Medicine. The validation cohort comprised CRC incident cases and
controls from UKBB, recruited from 2006 to 2010. Participants with
proteomics measurements were selected. After excluding individuals
with CRC at recruitment and missing genotype data, a total of 52,231
individuals (731 CRC incident cases, 51,500 controls) aged 39–70 years
old from UKBB remained.

Definition of outcome
The primary outcome was CRC diagnosis, which was defined as
malignant neoplasmsof the colon and rectum,diagnosedby a clinician
and pathologist in the discovery cohort, or using the International
Classification of Diseases (ICD, ICD-9: 153, 154.0, 154.1; or ICD-10: C18-
C20) in UKBB through linkage to hospital data and cancer and death
registries. The date of enrolment for a participant to UKBB be con-
sidered as the start of the follow-up period, and follow-up was
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censored at thedate of incidentCRC, death, loss to follow-up, or endof
available registry follow-up (March 31, 2021), whichever came first.

Plasma proteomics measurement
Blood samples were collected from participants at enrolment, and
plasma samples were prepared and stored at –80 °C. Protein mea-
surements were generated using the iodo TandemMass Tags (TMT)-
6plex quantitative proteomics in the discovery cohort. The peptide
segments were quantitative by the ratio of CRC sample channels to
the channels of the control group and were Log2 transformation and
normalized using the quantiles method. Details on proteomic mea-
surement, processing, and quality control (QC) are described in
Supplementary Methods. After QC, a total of 606 proteins were
identified and included in subsequent analyses (Supplemen-
tary Data 8).

In UKBB, details on sample selection, proteomic measurement,
processing, and QC have been described elsewhere28. Briefly, the
relative abundance of 2923 proteins was quantified byOlink Proximity
Extension Assay, and measurements were expressed as normalized
protein expression values by Log2 transforming. Protein values less
than the limit of detection (LOD)were replaced by dividing the LODby
the square root of 2. The missing measurements of protein were
imputed by mean values. For proteins with differential expression
between CRC cases and controls in discovery stage, we further verified
the relationships of them with CRC risk based on prospective cohort
design in UKBB.

Statistical analysis
Baseline characteristics description. The Kolmogorov–Smirnov
normality testwasused to identify the distribution types of continuous
variables. Median (IQR) was utilized to describe continuous variables,
and number (percentage) was used to describe categorical variables.

Identification of CRC-related protein biomarkers
A two-stage strategy was adopted to identify CRC-related proteomic
signatures. In the discovery stage based on case-control design, prin-
cipal component analysis and Pearson correlation coefficient matrix
were used to identify outlier samples (Supplementary Methods), and
20 samples with quantitative anomalies were identified (Supplemen-
tary Fig. 8). After removing outlier samples, proteome-wide differential
expression analysis based on ‘limma’ package29 was performed to
identify upregulated (Log2FC >0) or downregulated (Log2FC<0) pro-
teins between CRC cases and controls. The FDR was used for multiple
testing correction, with FDR<0.05 as the significance level. For sig-
nificant proteins (FDR<0.05) in discovery stage, we further employed
Cox proportional hazards (CPH) models to assess the relationships of
them with CRC incidence in validation cohort. The protein with a
consistent direction of effect and significant P-value (P<0.05) in the
validation stage was considered successful verification.

Definition of QCancer-15
TheQCancer-15 predictors were coded based on baseline characteristics
in UKBB matched as closely as possible to the original model11,12.
QCancer-15 predictors included age (age at recruitment), sex, Townsend
deprivation index, geographical region, bodymass index (BMI), smoking
status, alcohol intake, family history of CRC, and previous medical his-
tory. Individuals with missing data in these variables were assigned to a
“Missing” category for each respective variable. Details in the coding of
these predictors are shown in SupplementaryData 9. For generalizability
in other populations, we excluded the geographical region variable that
was tailored to the UK population from QCancer-15 predictors.

Approaches for deriving polygenic risk score (PRS)
The largest trans-ancestry CRC meta-GWASs of European ancestry
(21,731 cases and 47,444 controls of East Asian ancestry; 78,473 cases

and 107,143 controls of European ancestry)30 to datewere employed to
provide the association effect size of each single nucleotide poly-
morphism (SNP). LDpred2 was used to construct genome-wide PRS,
which is based on a Bayesian approach and accounts for linkage dis-
equilibrium (LD) between the SNPs31. Two different LDpred2 models
were performed, including automodel (LDpred2-auto) and gridmodel
(LDpred2-grid), usingHapMap3+dataset as reference. A total of 2 PRSs
were developed. Details are described in Supplementary Methods.

Construction of risk scores and development of
prediction model
The CRC-related protein signatures were further selected by LASSO-
Cox regression among proteins that passed the two-stage test, and a
total of 15 proteins remained. A weighted ProS or QCancer-S (risk
Score=h0(t)*exp(β1×1 + β2×2 +…+βnXn)) was constructed based on
the 15 selected proteins or QCancer-15 predictors in UKBB by
employing the ‘predict’ function of R package ‘caret’ (version 6.0.94)32,
respectively. Where Xn was the level of protein (or QCancer-15 pre-
dictor) and βn was the coefficient of protein (or QCancer-15 predictor)
associated with CRC risk derived from a CPHmodel, and the h0(t) was
the baseline hazard. Details are described in Supplementary Methods.
Then, UKBB participants were randomly split into training and vali-
dation cohorts with a 7:3 ratio by using ‘caret’ package. The prediction
models for CRC risk were developed based on QCancer-S, QCancer-S
(including geographical region), 2 PRSs, or ProS, respectively, using
the CPH model with fivefold cross-validation in the training cohort.
Next, the QCancer-S, ProS, and PRS with the best performance were
combined to construct the combined model for predicting the risk of
CRC onset. These models were also evaluated by the stratification of
sex, tumor sites (colon or rectum), bowel cancer screening (yes or no),
and family history of CRC (yes or no).

Evaluation of model performance and potential clinical utility
The model performance was evaluated using a wide range of metrics,
including the area under the receiver-operating characteristics curve
(AUC, known asC-statistic), relative risk calibration, net benefit, hazard
ratio estimates, risk stratification, risk advancement period, and
10-year cumulative risk for developing CRC.

Discrimination and calibration of model
The discrimination of these models was assessed by C-statistic (95%
confidence interval, CI) with fivefold cross-validation in the training
cohort and was further assessed in the validation cohort. The differ-
ences in the performance of differentmodels were compared by using
bootstrapmethod,with 500 stratifiedbootstrap replicates. Calibration
curves were drawn using ‘riskRegression’ package33 to visually depict
the concordance between observed event rates and predicted risks
basedonCPHmodels. The nomogramof theQCancer-S, PRS, and ProS
was set up for the prediction of the 5-, 10-, and 15-year being
free of CRC.

Decision curve analysis
To assess the potential clinical utility of the prediction models on
recommended interventions for CRC (e.g., screening), the decision
curve analysis was performed using ‘ggDCA’ package34 to calculate the
net benefit (NB) obtained using QCancer-S alone or combined model
(QCancer-S + PRS + ProS) to select individuals for screening colono-
scopy. NB = ((true positives)/n) – ((false positives)/n) ∗ (Pt/(1−Pt)),
where n is the total number of individuals, and Pt is the risk (or prob-
ability) threshold (e.g., at Pt = 1%, it is willing to perform colonoscopy
for 100 participants to detect one CRC case)34. We compared the
combined model with the model based on QCancer-S alone, as well as
intervention for none and intervention for all. The reduction in the
number of false positives per 100 individuals was estimated by the
formula: 100*(NB of the model–NB of intervention all)/(Pt/(1–Pt)).
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The NBs across relevant risk thresholds over median follow-up time
(13.05years)wereplotted indecisioncurves. Thevalues forNBat a range
of prespecified risk thresholds (1%, 1.5%, 2%, 2.5%, and3%)were reported.

Hazards ratios estimate and risk stratification analysis
HRs were first derived from CPH regression for per SD increase in
QCancer-S, PRS, and ProS for overall, sex-specific, and site-specific CRC
risk. Then, QCancer-S, PRS, ProS, and ComS (Supplementary Methods)
were divided into quartiles (Q1-lowest, Q2, Q3, and Q4-highest) based
on their distributions in the present UKBB population, respectively.
Because of the similar trends in the 10-year cumulative risk curves, risk
scores were further classified into 3 groups (low, medium, and high)
(Supplementary Fig. 9). Specifically, using the 10-year cumulative risk in
the general population as a reference, participants in Q3 with a similar
risk to the general population were classified into the medium-risk
group, participants in Q1 and Q2 with lower risk than the general
population were classified into low-risk group, and participants in Q4
were classified into high-risk group. The HRs (95% CIs) were also esti-
mated for the categorical variables using the medium group as the
reference. The risk stratification value of the risk scores was assessed by
Kaplan–Meier curves with log-rank tests.

Risk advancement period (RAP) analysis
To translate the HRs for PRS, ProS, and ComS into howmany years of
age later or earlier for individuals in the low or high PRS, ProS, and
ComS groups would reach risks comparable to the reference group
(i.e., those in the medium PRS, ProS, or ComS level), the RAP35 ana-
lysis was performed. The QCancer-S was not assessed by RAP due to
the age information itself included and predominated in QCancer-S.
The point estimates of RAPs were estimated from the multivariable
CPH model, which included age, PRS (low, medium, high), and ProS
(low, medium, high), and sex and the first 10 genetic principal
components (PCs) as covariates, by dividing the regression coeffi-
cient of the PRS or ProS by the coefficient of age. When estimating
the RAP of ComS, the model included age, ComS (low, medium,
high), sex, and the first 10 PCs, in which RAP was estimated by
dividing the regression coefficient of ComS by the coefficient of age.
The 95% CIs for RAPs were calculated based on bootstrap method,
with 500 stratified bootstrap replicates.

Estimating the risk-adapted starting age of screening
For further estimating the risk-adapted starting age of screening for
populations of different risk groups, the 10-year cumulative risk
was calculated. Considering the whole UKBB population to be more
informative and representative, we estimate the risk-adapted starting
age of screening based on the whole population. 10-year cumulative
risk = 1–exp(–10-year cumulative incidence rate), where the 10-year
cumulative incidence rate equaled the sumof each subsequent 10 years
age-specific annual incidence rate of each age36. The age-specific annual
incidence ratewas calculated by dividing the number of cases for each
age by person-years for that age. Given that starting age of screening is
50 years old for average-risk adults recommended by the current
guidelines27,wedefined the risk-adapted starting ageof screening as the
age at which individuals with a particular risk of CRC reached a similar
level of 10-year cumulative risk to the general population of 50 years
old36. All statistical tests were two-sided and were conducted using R
version 4.2.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of plasma proteomics generated in this study have been
deposited in the iProXdatabaseunder accession code IPX0008947000

(the equivalent ProteomeXChange PXD code: PXD054569) and
IPX0008947001. The UK Biobank data are available under restricted
access for data protocol, access can be obtained by registering and
applying at http://ukbiobank.ac.uk/register-apply/. This study used the
UK Biobank data under application number 66354. The result data
generated in this study areprovided in theSupplementary Information/
Source Data file. The CRC GWAS summary statistics30 are available
through the GWAS catalog (accession no. GCST90129505). Source data
are provided with this paper.

Code availability
Analysis code is available at https://github.com/shuaidexue/
Proteomics-predicted-colorectal-cancer-risk.
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